gcc/libitm/barrier.tpl

171 lines
5.4 KiB
Smarty

/* -*- c++ -*- */
/* Copyright (C) 2008, 2009, 2011 Free Software Foundation, Inc.
Contributed by Richard Henderson <rth@redhat.com>.
This file is part of the GNU Transactional Memory Library (libitm).
Libitm is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
Libitm is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "unaligned.h"
namespace {
using namespace GTM;
template<typename T>
T do_read (const T *ptr, abi_dispatch::lock_type lock)
{
//
// Find the cacheline that holds the current value of *PTR.
//
abi_dispatch *disp = abi_disp();
uintptr_t iptr = reinterpret_cast<uintptr_t>(ptr);
// Normalize PTR by chopping off the bottom bits so we can search
// for PTR in the cacheline hash.
uintptr_t iline = iptr & -CACHELINE_SIZE;
// The position in the resulting cacheline where *PTR is actually stored.
uintptr_t iofs = iptr & (CACHELINE_SIZE - 1);
const gtm_cacheline *pline = reinterpret_cast<const gtm_cacheline *>(iline);
// Search for the actual cacheline that holds the current value of *PTR.
const gtm_cacheline *line = disp->read_lock(pline, lock);
// Point to the position in the cacheline where *PTR is stored.
ptr = reinterpret_cast<const T *>(&line->b[iofs]);
// Straight up loads, because we're either aligned, or we don't care
// about alignment.
//
// If we require alignment on type T, do a straight load if we're
// aligned. Otherwise do a straight load IFF the load fits entirely
// in this cacheline. That is, it won't span multiple cachelines.
if (__builtin_expect (strict_alignment<T>::value
? (iofs & (sizeof (T) - 1)) == 0
: iofs + sizeof(T) <= CACHELINE_SIZE, 1))
{
do_normal_load:
return *ptr;
}
// If alignment on T is necessary, but we're unaligned, yet we fit
// entirely in this cacheline... do the unaligned load dance.
else if (__builtin_expect (strict_alignment<T>::value
&& iofs + sizeof(T) <= CACHELINE_SIZE, 1))
{
do_unaligned_load:
return unaligned_load<T>(ptr);
}
// Otherwise, this load will span multiple cachelines.
else
{
// Get the following cacheline for the rest of the data.
const gtm_cacheline *line2 = disp->read_lock(pline + 1, lock);
// If the two cachelines are adjacent, just load it all in one
// swoop.
if (line2 == line + 1)
{
if (!strict_alignment<T>::value)
goto do_normal_load;
else
goto do_unaligned_load;
}
else
{
// Otherwise, ask the backend to load from two different
// cachelines.
return unaligned_load2<T>(line, line2, iofs);
}
}
}
template<typename T>
void do_write (T *ptr, T val, abi_dispatch::lock_type lock)
{
// Note: See comments for do_read() above for hints on this
// function. Ideally we should abstract out a lot out of these two
// functions, and avoid all this duplication.
abi_dispatch *disp = abi_disp();
uintptr_t iptr = reinterpret_cast<uintptr_t>(ptr);
uintptr_t iline = iptr & -CACHELINE_SIZE;
uintptr_t iofs = iptr & (CACHELINE_SIZE - 1);
gtm_cacheline *pline = reinterpret_cast<gtm_cacheline *>(iline);
gtm_cacheline_mask m = ((gtm_cacheline_mask)2 << (sizeof(T) - 1)) - 1;
abi_dispatch::mask_pair pair = disp->write_lock(pline, lock);
ptr = reinterpret_cast<T *>(&pair.line->b[iofs]);
if (__builtin_expect (strict_alignment<T>::value
? (iofs & (sizeof (val) - 1)) == 0
: iofs + sizeof(val) <= CACHELINE_SIZE, 1))
{
*pair.mask |= m << iofs;
do_normal_store:
*ptr = val;
}
else if (__builtin_expect (strict_alignment<T>::value
&& iofs + sizeof(val) <= CACHELINE_SIZE, 1))
{
*pair.mask |= m << iofs;
do_unaligned_store:
unaligned_store<T>(ptr, val);
}
else
{
*pair.mask |= m << iofs;
abi_dispatch::mask_pair pair2 = disp->write_lock(pline + 1, lock);
uintptr_t ileft = CACHELINE_SIZE - iofs;
*pair2.mask |= m >> ileft;
if (pair2.line == pair.line + 1)
{
if (!strict_alignment<T>::value)
goto do_normal_store;
else
goto do_unaligned_store;
}
else
unaligned_store2<T>(pair.line, pair2.line, iofs, val);
}
}
} /* anonymous namespace */
#define ITM_READ(T, LOCK) \
_ITM_TYPE_##T ITM_REGPARM _ITM_##LOCK##T (const _ITM_TYPE_##T *ptr) \
{ \
return do_read (ptr, abi_dispatch::LOCK); \
}
#define ITM_WRITE(T, LOCK) \
void ITM_REGPARM _ITM_##LOCK##T (_ITM_TYPE_##T *ptr, _ITM_TYPE_##T val) \
{ \
do_write (ptr, val, abi_dispatch::LOCK); \
}
#define ITM_BARRIERS(T) \
ITM_READ(T, R) \
ITM_READ(T, RaR) \
ITM_READ(T, RaW) \
ITM_READ(T, RfW) \
ITM_WRITE(T, W) \
ITM_WRITE(T, WaR) \
ITM_WRITE(T, WaW)