mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			6104 lines
		
	
	
		
			174 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			6104 lines
		
	
	
		
			174 KiB
		
	
	
	
		
			C++
		
	
	
	
| // random number generation -*- C++ -*-
 | |
| 
 | |
| // Copyright (C) 2009-2019 Free Software Foundation, Inc.
 | |
| //
 | |
| // This file is part of the GNU ISO C++ Library.  This library is free
 | |
| // software; you can redistribute it and/or modify it under the
 | |
| // terms of the GNU General Public License as published by the
 | |
| // Free Software Foundation; either version 3, or (at your option)
 | |
| // any later version.
 | |
| 
 | |
| // This library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| // GNU General Public License for more details.
 | |
| 
 | |
| // Under Section 7 of GPL version 3, you are granted additional
 | |
| // permissions described in the GCC Runtime Library Exception, version
 | |
| // 3.1, as published by the Free Software Foundation.
 | |
| 
 | |
| // You should have received a copy of the GNU General Public License and
 | |
| // a copy of the GCC Runtime Library Exception along with this program;
 | |
| // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | |
| // <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| /**
 | |
|  * @file bits/random.h
 | |
|  *  This is an internal header file, included by other library headers.
 | |
|  *  Do not attempt to use it directly. @headername{random}
 | |
|  */
 | |
| 
 | |
| #ifndef _RANDOM_H
 | |
| #define _RANDOM_H 1
 | |
| 
 | |
| #include <vector>
 | |
| #include <bits/uniform_int_dist.h>
 | |
| 
 | |
| namespace std _GLIBCXX_VISIBILITY(default)
 | |
| {
 | |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION
 | |
| 
 | |
|   // [26.4] Random number generation
 | |
| 
 | |
|   /**
 | |
|    * @defgroup random Random Number Generation
 | |
|    * @ingroup numerics
 | |
|    *
 | |
|    * A facility for generating random numbers on selected distributions.
 | |
|    * @{
 | |
|    */
 | |
| 
 | |
|   /**
 | |
|    * @brief A function template for converting the output of a (integral)
 | |
|    * uniform random number generator to a floatng point result in the range
 | |
|    * [0-1).
 | |
|    */
 | |
|   template<typename _RealType, size_t __bits,
 | |
| 	   typename _UniformRandomNumberGenerator>
 | |
|     _RealType
 | |
|     generate_canonical(_UniformRandomNumberGenerator& __g);
 | |
| 
 | |
|   /*
 | |
|    * Implementation-space details.
 | |
|    */
 | |
|   namespace __detail
 | |
|   {
 | |
|     template<typename _UIntType, size_t __w,
 | |
| 	     bool = __w < static_cast<size_t>
 | |
| 			  (std::numeric_limits<_UIntType>::digits)>
 | |
|       struct _Shift
 | |
|       { static const _UIntType __value = 0; };
 | |
| 
 | |
|     template<typename _UIntType, size_t __w>
 | |
|       struct _Shift<_UIntType, __w, true>
 | |
|       { static const _UIntType __value = _UIntType(1) << __w; };
 | |
| 
 | |
|     template<int __s,
 | |
| 	     int __which = ((__s <= __CHAR_BIT__ * sizeof (int))
 | |
| 			    + (__s <= __CHAR_BIT__ * sizeof (long))
 | |
| 			    + (__s <= __CHAR_BIT__ * sizeof (long long))
 | |
| 			    /* assume long long no bigger than __int128 */
 | |
| 			    + (__s <= 128))>
 | |
|       struct _Select_uint_least_t
 | |
|       {
 | |
| 	static_assert(__which < 0, /* needs to be dependent */
 | |
| 		      "sorry, would be too much trouble for a slow result");
 | |
|       };
 | |
| 
 | |
|     template<int __s>
 | |
|       struct _Select_uint_least_t<__s, 4>
 | |
|       { typedef unsigned int type; };
 | |
| 
 | |
|     template<int __s>
 | |
|       struct _Select_uint_least_t<__s, 3>
 | |
|       { typedef unsigned long type; };
 | |
| 
 | |
|     template<int __s>
 | |
|       struct _Select_uint_least_t<__s, 2>
 | |
|       { typedef unsigned long long type; };
 | |
| 
 | |
| #ifdef _GLIBCXX_USE_INT128
 | |
|     template<int __s>
 | |
|       struct _Select_uint_least_t<__s, 1>
 | |
|       { typedef unsigned __int128 type; };
 | |
| #endif
 | |
| 
 | |
|     // Assume a != 0, a < m, c < m, x < m.
 | |
|     template<typename _Tp, _Tp __m, _Tp __a, _Tp __c,
 | |
| 	     bool __big_enough = (!(__m & (__m - 1))
 | |
| 				  || (_Tp(-1) - __c) / __a >= __m - 1),
 | |
|              bool __schrage_ok = __m % __a < __m / __a>
 | |
|       struct _Mod
 | |
|       {
 | |
| 	typedef typename _Select_uint_least_t<std::__lg(__a)
 | |
| 					      + std::__lg(__m) + 2>::type _Tp2;
 | |
| 	static _Tp
 | |
| 	__calc(_Tp __x)
 | |
| 	{ return static_cast<_Tp>((_Tp2(__a) * __x + __c) % __m); }
 | |
|       };
 | |
| 
 | |
|     // Schrage.
 | |
|     template<typename _Tp, _Tp __m, _Tp __a, _Tp __c>
 | |
|       struct _Mod<_Tp, __m, __a, __c, false, true>
 | |
|       {
 | |
| 	static _Tp
 | |
| 	__calc(_Tp __x);
 | |
|       };
 | |
| 
 | |
|     // Special cases:
 | |
|     // - for m == 2^n or m == 0, unsigned integer overflow is safe.
 | |
|     // - a * (m - 1) + c fits in _Tp, there is no overflow.
 | |
|     template<typename _Tp, _Tp __m, _Tp __a, _Tp __c, bool __s>
 | |
|       struct _Mod<_Tp, __m, __a, __c, true, __s>
 | |
|       {
 | |
| 	static _Tp
 | |
| 	__calc(_Tp __x)
 | |
| 	{
 | |
| 	  _Tp __res = __a * __x + __c;
 | |
| 	  if (__m)
 | |
| 	    __res %= __m;
 | |
| 	  return __res;
 | |
| 	}
 | |
|       };
 | |
| 
 | |
|     template<typename _Tp, _Tp __m, _Tp __a = 1, _Tp __c = 0>
 | |
|       inline _Tp
 | |
|       __mod(_Tp __x)
 | |
|       { return _Mod<_Tp, __m, __a, __c>::__calc(__x); }
 | |
| 
 | |
|     /*
 | |
|      * An adaptor class for converting the output of any Generator into
 | |
|      * the input for a specific Distribution.
 | |
|      */
 | |
|     template<typename _Engine, typename _DInputType>
 | |
|       struct _Adaptor
 | |
|       {
 | |
| 	static_assert(std::is_floating_point<_DInputType>::value,
 | |
| 		      "template argument must be a floating point type");
 | |
| 
 | |
|       public:
 | |
| 	_Adaptor(_Engine& __g)
 | |
| 	: _M_g(__g) { }
 | |
| 
 | |
| 	_DInputType
 | |
| 	min() const
 | |
| 	{ return _DInputType(0); }
 | |
| 
 | |
| 	_DInputType
 | |
| 	max() const
 | |
| 	{ return _DInputType(1); }
 | |
| 
 | |
| 	/*
 | |
| 	 * Converts a value generated by the adapted random number generator
 | |
| 	 * into a value in the input domain for the dependent random number
 | |
| 	 * distribution.
 | |
| 	 */
 | |
| 	_DInputType
 | |
| 	operator()()
 | |
| 	{
 | |
| 	  return std::generate_canonical<_DInputType,
 | |
| 	                            std::numeric_limits<_DInputType>::digits,
 | |
| 	                            _Engine>(_M_g);
 | |
| 	}
 | |
| 
 | |
|       private:
 | |
| 	_Engine& _M_g;
 | |
|       };
 | |
| 
 | |
|     template<typename _Sseq>
 | |
|       using __seed_seq_generate_t = decltype(
 | |
| 	  std::declval<_Sseq&>().generate(std::declval<uint_least32_t*>(),
 | |
| 					  std::declval<uint_least32_t*>()));
 | |
| 
 | |
|     // Detect whether _Sseq is a valid seed sequence for
 | |
|     // a random number engine _Engine with result type _Res.
 | |
|     template<typename _Sseq, typename _Engine, typename _Res,
 | |
| 	     typename _GenerateCheck = __seed_seq_generate_t<_Sseq>>
 | |
|       using __is_seed_seq = __and_<
 | |
|         __not_<is_same<__remove_cvref_t<_Sseq>, _Engine>>,
 | |
| 	is_unsigned<typename _Sseq::result_type>,
 | |
| 	__not_<is_convertible<_Sseq, _Res>>
 | |
|       >;
 | |
| 
 | |
|   } // namespace __detail
 | |
| 
 | |
|   /**
 | |
|    * @addtogroup random_generators Random Number Generators
 | |
|    * @ingroup random
 | |
|    *
 | |
|    * These classes define objects which provide random or pseudorandom
 | |
|    * numbers, either from a discrete or a continuous interval.  The
 | |
|    * random number generator supplied as a part of this library are
 | |
|    * all uniform random number generators which provide a sequence of
 | |
|    * random number uniformly distributed over their range.
 | |
|    *
 | |
|    * A number generator is a function object with an operator() that
 | |
|    * takes zero arguments and returns a number.
 | |
|    *
 | |
|    * A compliant random number generator must satisfy the following
 | |
|    * requirements.  <table border=1 cellpadding=10 cellspacing=0>
 | |
|    * <caption align=top>Random Number Generator Requirements</caption>
 | |
|    * <tr><td>To be documented.</td></tr> </table>
 | |
|    *
 | |
|    * @{
 | |
|    */
 | |
| 
 | |
|   /**
 | |
|    * @brief A model of a linear congruential random number generator.
 | |
|    *
 | |
|    * A random number generator that produces pseudorandom numbers via
 | |
|    * linear function:
 | |
|    * @f[
 | |
|    *     x_{i+1}\leftarrow(ax_{i} + c) \bmod m 
 | |
|    * @f]
 | |
|    *
 | |
|    * The template parameter @p _UIntType must be an unsigned integral type
 | |
|    * large enough to store values up to (__m-1). If the template parameter
 | |
|    * @p __m is 0, the modulus @p __m used is
 | |
|    * std::numeric_limits<_UIntType>::max() plus 1. Otherwise, the template
 | |
|    * parameters @p __a and @p __c must be less than @p __m.
 | |
|    *
 | |
|    * The size of the state is @f$1@f$.
 | |
|    */
 | |
|   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
 | |
|     class linear_congruential_engine
 | |
|     {
 | |
|       static_assert(std::is_unsigned<_UIntType>::value,
 | |
| 		    "result_type must be an unsigned integral type");
 | |
|       static_assert(__m == 0u || (__a < __m && __c < __m),
 | |
| 		    "template argument substituting __m out of bounds");
 | |
| 
 | |
|       template<typename _Sseq>
 | |
| 	using _If_seed_seq = typename enable_if<__detail::__is_seed_seq<
 | |
| 	  _Sseq, linear_congruential_engine, _UIntType>::value>::type;
 | |
| 
 | |
|     public:
 | |
|       /** The type of the generated random value. */
 | |
|       typedef _UIntType result_type;
 | |
| 
 | |
|       /** The multiplier. */
 | |
|       static constexpr result_type multiplier   = __a;
 | |
|       /** An increment. */
 | |
|       static constexpr result_type increment    = __c;
 | |
|       /** The modulus. */
 | |
|       static constexpr result_type modulus      = __m;
 | |
|       static constexpr result_type default_seed = 1u;
 | |
| 
 | |
|       /**
 | |
|        * @brief Constructs a %linear_congruential_engine random number
 | |
|        *        generator engine with seed 1.
 | |
|        */
 | |
|       linear_congruential_engine() : linear_congruential_engine(default_seed)
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Constructs a %linear_congruential_engine random number
 | |
|        *        generator engine with seed @p __s.  The default seed value
 | |
|        *        is 1.
 | |
|        *
 | |
|        * @param __s The initial seed value.
 | |
|        */
 | |
|       explicit
 | |
|       linear_congruential_engine(result_type __s)
 | |
|       { seed(__s); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Constructs a %linear_congruential_engine random number
 | |
|        *        generator engine seeded from the seed sequence @p __q.
 | |
|        *
 | |
|        * @param __q the seed sequence.
 | |
|        */
 | |
|       template<typename _Sseq, typename = _If_seed_seq<_Sseq>>
 | |
|         explicit
 | |
|         linear_congruential_engine(_Sseq& __q)
 | |
|         { seed(__q); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Reseeds the %linear_congruential_engine random number generator
 | |
|        *        engine sequence to the seed @p __s.
 | |
|        *
 | |
|        * @param __s The new seed.
 | |
|        */
 | |
|       void
 | |
|       seed(result_type __s = default_seed);
 | |
| 
 | |
|       /**
 | |
|        * @brief Reseeds the %linear_congruential_engine random number generator
 | |
|        *        engine
 | |
|        * sequence using values from the seed sequence @p __q.
 | |
|        *
 | |
|        * @param __q the seed sequence.
 | |
|        */
 | |
|       template<typename _Sseq>
 | |
|         _If_seed_seq<_Sseq>
 | |
|         seed(_Sseq& __q);
 | |
| 
 | |
|       /**
 | |
|        * @brief Gets the smallest possible value in the output range.
 | |
|        *
 | |
|        * The minimum depends on the @p __c parameter: if it is zero, the
 | |
|        * minimum generated must be > 0, otherwise 0 is allowed.
 | |
|        */
 | |
|       static constexpr result_type
 | |
|       min()
 | |
|       { return __c == 0u ? 1u : 0u; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Gets the largest possible value in the output range.
 | |
|        */
 | |
|       static constexpr result_type
 | |
|       max()
 | |
|       { return __m - 1u; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Discard a sequence of random numbers.
 | |
|        */
 | |
|       void
 | |
|       discard(unsigned long long __z)
 | |
|       {
 | |
| 	for (; __z != 0ULL; --__z)
 | |
| 	  (*this)();
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * @brief Gets the next random number in the sequence.
 | |
|        */
 | |
|       result_type
 | |
|       operator()()
 | |
|       {
 | |
| 	_M_x = __detail::__mod<_UIntType, __m, __a, __c>(_M_x);
 | |
| 	return _M_x;
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * @brief Compares two linear congruential random number generator
 | |
|        * objects of the same type for equality.
 | |
|        *
 | |
|        * @param __lhs A linear congruential random number generator object.
 | |
|        * @param __rhs Another linear congruential random number generator
 | |
|        *              object.
 | |
|        *
 | |
|        * @returns true if the infinite sequences of generated values
 | |
|        *          would be equal, false otherwise.
 | |
|        */
 | |
|       friend bool
 | |
|       operator==(const linear_congruential_engine& __lhs,
 | |
| 		 const linear_congruential_engine& __rhs)
 | |
|       { return __lhs._M_x == __rhs._M_x; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Writes the textual representation of the state x(i) of x to
 | |
|        *        @p __os.
 | |
|        *
 | |
|        * @param __os  The output stream.
 | |
|        * @param __lcr A % linear_congruential_engine random number generator.
 | |
|        * @returns __os.
 | |
|        */
 | |
|       template<typename _UIntType1, _UIntType1 __a1, _UIntType1 __c1,
 | |
| 	       _UIntType1 __m1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_ostream<_CharT, _Traits>&
 | |
| 	operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 		   const std::linear_congruential_engine<_UIntType1,
 | |
| 		   __a1, __c1, __m1>& __lcr);
 | |
| 
 | |
|       /**
 | |
|        * @brief Sets the state of the engine by reading its textual
 | |
|        *        representation from @p __is.
 | |
|        *
 | |
|        * The textual representation must have been previously written using
 | |
|        * an output stream whose imbued locale and whose type's template
 | |
|        * specialization arguments _CharT and _Traits were the same as those
 | |
|        * of @p __is.
 | |
|        *
 | |
|        * @param __is  The input stream.
 | |
|        * @param __lcr A % linear_congruential_engine random number generator.
 | |
|        * @returns __is.
 | |
|        */
 | |
|       template<typename _UIntType1, _UIntType1 __a1, _UIntType1 __c1,
 | |
| 	       _UIntType1 __m1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_istream<_CharT, _Traits>&
 | |
| 	operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 		   std::linear_congruential_engine<_UIntType1, __a1,
 | |
| 		   __c1, __m1>& __lcr);
 | |
| 
 | |
|     private:
 | |
|       _UIntType _M_x;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|    * @brief Compares two linear congruential random number generator
 | |
|    * objects of the same type for inequality.
 | |
|    *
 | |
|    * @param __lhs A linear congruential random number generator object.
 | |
|    * @param __rhs Another linear congruential random number generator
 | |
|    *              object.
 | |
|    *
 | |
|    * @returns true if the infinite sequences of generated values
 | |
|    *          would be different, false otherwise.
 | |
|    */
 | |
|   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
 | |
|     inline bool
 | |
|     operator!=(const std::linear_congruential_engine<_UIntType, __a,
 | |
| 	       __c, __m>& __lhs,
 | |
| 	       const std::linear_congruential_engine<_UIntType, __a,
 | |
| 	       __c, __m>& __rhs)
 | |
|     { return !(__lhs == __rhs); }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * A generalized feedback shift register discrete random number generator.
 | |
|    *
 | |
|    * This algorithm avoids multiplication and division and is designed to be
 | |
|    * friendly to a pipelined architecture.  If the parameters are chosen
 | |
|    * correctly, this generator will produce numbers with a very long period and
 | |
|    * fairly good apparent entropy, although still not cryptographically strong.
 | |
|    *
 | |
|    * The best way to use this generator is with the predefined mt19937 class.
 | |
|    *
 | |
|    * This algorithm was originally invented by Makoto Matsumoto and
 | |
|    * Takuji Nishimura.
 | |
|    *
 | |
|    * @tparam __w  Word size, the number of bits in each element of 
 | |
|    *              the state vector.
 | |
|    * @tparam __n  The degree of recursion.
 | |
|    * @tparam __m  The period parameter.
 | |
|    * @tparam __r  The separation point bit index.
 | |
|    * @tparam __a  The last row of the twist matrix.
 | |
|    * @tparam __u  The first right-shift tempering matrix parameter.
 | |
|    * @tparam __d  The first right-shift tempering matrix mask.
 | |
|    * @tparam __s  The first left-shift tempering matrix parameter.
 | |
|    * @tparam __b  The first left-shift tempering matrix mask.
 | |
|    * @tparam __t  The second left-shift tempering matrix parameter.
 | |
|    * @tparam __c  The second left-shift tempering matrix mask.
 | |
|    * @tparam __l  The second right-shift tempering matrix parameter.
 | |
|    * @tparam __f  Initialization multiplier.
 | |
|    */
 | |
|   template<typename _UIntType, size_t __w,
 | |
| 	   size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t,
 | |
| 	   _UIntType __c, size_t __l, _UIntType __f>
 | |
|     class mersenne_twister_engine
 | |
|     {
 | |
|       static_assert(std::is_unsigned<_UIntType>::value,
 | |
| 		    "result_type must be an unsigned integral type");
 | |
|       static_assert(1u <= __m && __m <= __n,
 | |
| 		    "template argument substituting __m out of bounds");
 | |
|       static_assert(__r <= __w, "template argument substituting "
 | |
| 		    "__r out of bound");
 | |
|       static_assert(__u <= __w, "template argument substituting "
 | |
| 		    "__u out of bound");
 | |
|       static_assert(__s <= __w, "template argument substituting "
 | |
| 		    "__s out of bound");
 | |
|       static_assert(__t <= __w, "template argument substituting "
 | |
| 		    "__t out of bound");
 | |
|       static_assert(__l <= __w, "template argument substituting "
 | |
| 		    "__l out of bound");
 | |
|       static_assert(__w <= std::numeric_limits<_UIntType>::digits,
 | |
| 		    "template argument substituting __w out of bound");
 | |
|       static_assert(__a <= (__detail::_Shift<_UIntType, __w>::__value - 1),
 | |
| 		    "template argument substituting __a out of bound");
 | |
|       static_assert(__b <= (__detail::_Shift<_UIntType, __w>::__value - 1),
 | |
| 		    "template argument substituting __b out of bound");
 | |
|       static_assert(__c <= (__detail::_Shift<_UIntType, __w>::__value - 1),
 | |
| 		    "template argument substituting __c out of bound");
 | |
|       static_assert(__d <= (__detail::_Shift<_UIntType, __w>::__value - 1),
 | |
| 		    "template argument substituting __d out of bound");
 | |
|       static_assert(__f <= (__detail::_Shift<_UIntType, __w>::__value - 1),
 | |
| 		    "template argument substituting __f out of bound");
 | |
| 
 | |
|       template<typename _Sseq>
 | |
| 	using _If_seed_seq = typename enable_if<__detail::__is_seed_seq<
 | |
| 	  _Sseq, mersenne_twister_engine, _UIntType>::value>::type;
 | |
| 
 | |
|     public:
 | |
|       /** The type of the generated random value. */
 | |
|       typedef _UIntType result_type;
 | |
| 
 | |
|       // parameter values
 | |
|       static constexpr size_t      word_size                 = __w;
 | |
|       static constexpr size_t      state_size                = __n;
 | |
|       static constexpr size_t      shift_size                = __m;
 | |
|       static constexpr size_t      mask_bits                 = __r;
 | |
|       static constexpr result_type xor_mask                  = __a;
 | |
|       static constexpr size_t      tempering_u               = __u;
 | |
|       static constexpr result_type tempering_d               = __d;
 | |
|       static constexpr size_t      tempering_s               = __s;
 | |
|       static constexpr result_type tempering_b               = __b;
 | |
|       static constexpr size_t      tempering_t               = __t;
 | |
|       static constexpr result_type tempering_c               = __c;
 | |
|       static constexpr size_t      tempering_l               = __l;
 | |
|       static constexpr result_type initialization_multiplier = __f;
 | |
|       static constexpr result_type default_seed = 5489u;
 | |
| 
 | |
|       // constructors and member functions
 | |
| 
 | |
|       mersenne_twister_engine() : mersenne_twister_engine(default_seed) { }
 | |
| 
 | |
|       explicit
 | |
|       mersenne_twister_engine(result_type __sd)
 | |
|       { seed(__sd); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Constructs a %mersenne_twister_engine random number generator
 | |
|        *        engine seeded from the seed sequence @p __q.
 | |
|        *
 | |
|        * @param __q the seed sequence.
 | |
|        */
 | |
|       template<typename _Sseq, typename = _If_seed_seq<_Sseq>>
 | |
|         explicit
 | |
|         mersenne_twister_engine(_Sseq& __q)
 | |
|         { seed(__q); }
 | |
| 
 | |
|       void
 | |
|       seed(result_type __sd = default_seed);
 | |
| 
 | |
|       template<typename _Sseq>
 | |
|         _If_seed_seq<_Sseq>
 | |
|         seed(_Sseq& __q);
 | |
| 
 | |
|       /**
 | |
|        * @brief Gets the smallest possible value in the output range.
 | |
|        */
 | |
|       static constexpr result_type
 | |
|       min()
 | |
|       { return 0; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Gets the largest possible value in the output range.
 | |
|        */
 | |
|       static constexpr result_type
 | |
|       max()
 | |
|       { return __detail::_Shift<_UIntType, __w>::__value - 1; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Discard a sequence of random numbers.
 | |
|        */
 | |
|       void
 | |
|       discard(unsigned long long __z);
 | |
| 
 | |
|       result_type
 | |
|       operator()();
 | |
| 
 | |
|       /**
 | |
|        * @brief Compares two % mersenne_twister_engine random number generator
 | |
|        *        objects of the same type for equality.
 | |
|        *
 | |
|        * @param __lhs A % mersenne_twister_engine random number generator
 | |
|        *              object.
 | |
|        * @param __rhs Another % mersenne_twister_engine random number
 | |
|        *              generator object.
 | |
|        *
 | |
|        * @returns true if the infinite sequences of generated values
 | |
|        *          would be equal, false otherwise.
 | |
|        */
 | |
|       friend bool
 | |
|       operator==(const mersenne_twister_engine& __lhs,
 | |
| 		 const mersenne_twister_engine& __rhs)
 | |
|       { return (std::equal(__lhs._M_x, __lhs._M_x + state_size, __rhs._M_x)
 | |
| 		&& __lhs._M_p == __rhs._M_p); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Inserts the current state of a % mersenne_twister_engine
 | |
|        *        random number generator engine @p __x into the output stream
 | |
|        *        @p __os.
 | |
|        *
 | |
|        * @param __os An output stream.
 | |
|        * @param __x  A % mersenne_twister_engine random number generator
 | |
|        *             engine.
 | |
|        *
 | |
|        * @returns The output stream with the state of @p __x inserted or in
 | |
|        * an error state.
 | |
|        */
 | |
|       template<typename _UIntType1,
 | |
| 	       size_t __w1, size_t __n1,
 | |
| 	       size_t __m1, size_t __r1,
 | |
| 	       _UIntType1 __a1, size_t __u1,
 | |
| 	       _UIntType1 __d1, size_t __s1,
 | |
| 	       _UIntType1 __b1, size_t __t1,
 | |
| 	       _UIntType1 __c1, size_t __l1, _UIntType1 __f1,
 | |
| 	       typename _CharT, typename _Traits>
 | |
| 	friend std::basic_ostream<_CharT, _Traits>&
 | |
| 	operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 		   const std::mersenne_twister_engine<_UIntType1, __w1, __n1,
 | |
| 		   __m1, __r1, __a1, __u1, __d1, __s1, __b1, __t1, __c1,
 | |
| 		   __l1, __f1>& __x);
 | |
| 
 | |
|       /**
 | |
|        * @brief Extracts the current state of a % mersenne_twister_engine
 | |
|        *        random number generator engine @p __x from the input stream
 | |
|        *        @p __is.
 | |
|        *
 | |
|        * @param __is An input stream.
 | |
|        * @param __x  A % mersenne_twister_engine random number generator
 | |
|        *             engine.
 | |
|        *
 | |
|        * @returns The input stream with the state of @p __x extracted or in
 | |
|        * an error state.
 | |
|        */
 | |
|       template<typename _UIntType1,
 | |
| 	       size_t __w1, size_t __n1,
 | |
| 	       size_t __m1, size_t __r1,
 | |
| 	       _UIntType1 __a1, size_t __u1,
 | |
| 	       _UIntType1 __d1, size_t __s1,
 | |
| 	       _UIntType1 __b1, size_t __t1,
 | |
| 	       _UIntType1 __c1, size_t __l1, _UIntType1 __f1,
 | |
| 	       typename _CharT, typename _Traits>
 | |
| 	friend std::basic_istream<_CharT, _Traits>&
 | |
| 	operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 		   std::mersenne_twister_engine<_UIntType1, __w1, __n1, __m1,
 | |
| 		   __r1, __a1, __u1, __d1, __s1, __b1, __t1, __c1,
 | |
| 		   __l1, __f1>& __x);
 | |
| 
 | |
|     private:
 | |
|       void _M_gen_rand();
 | |
| 
 | |
|       _UIntType _M_x[state_size];
 | |
|       size_t    _M_p;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|    * @brief Compares two % mersenne_twister_engine random number generator
 | |
|    *        objects of the same type for inequality.
 | |
|    *
 | |
|    * @param __lhs A % mersenne_twister_engine random number generator
 | |
|    *              object.
 | |
|    * @param __rhs Another % mersenne_twister_engine random number
 | |
|    *              generator object.
 | |
|    *
 | |
|    * @returns true if the infinite sequences of generated values
 | |
|    *          would be different, false otherwise.
 | |
|    */
 | |
|   template<typename _UIntType, size_t __w,
 | |
| 	   size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t,
 | |
| 	   _UIntType __c, size_t __l, _UIntType __f>
 | |
|     inline bool
 | |
|     operator!=(const std::mersenne_twister_engine<_UIntType, __w, __n, __m,
 | |
| 	       __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __lhs,
 | |
| 	       const std::mersenne_twister_engine<_UIntType, __w, __n, __m,
 | |
| 	       __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __rhs)
 | |
|     { return !(__lhs == __rhs); }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * @brief The Marsaglia-Zaman generator.
 | |
|    *
 | |
|    * This is a model of a Generalized Fibonacci discrete random number
 | |
|    * generator, sometimes referred to as the SWC generator.
 | |
|    *
 | |
|    * A discrete random number generator that produces pseudorandom
 | |
|    * numbers using:
 | |
|    * @f[
 | |
|    *     x_{i}\leftarrow(x_{i - s} - x_{i - r} - carry_{i-1}) \bmod m 
 | |
|    * @f]
 | |
|    *
 | |
|    * The size of the state is @f$r@f$
 | |
|    * and the maximum period of the generator is @f$(m^r - m^s - 1)@f$.
 | |
|    */
 | |
|   template<typename _UIntType, size_t __w, size_t __s, size_t __r>
 | |
|     class subtract_with_carry_engine
 | |
|     {
 | |
|       static_assert(std::is_unsigned<_UIntType>::value,
 | |
| 		    "result_type must be an unsigned integral type");
 | |
|       static_assert(0u < __s && __s < __r,
 | |
| 		    "0 < s < r");
 | |
|       static_assert(0u < __w && __w <= std::numeric_limits<_UIntType>::digits,
 | |
| 		    "template argument substituting __w out of bounds");
 | |
| 
 | |
|       template<typename _Sseq>
 | |
| 	using _If_seed_seq = typename enable_if<__detail::__is_seed_seq<
 | |
| 	  _Sseq, subtract_with_carry_engine, _UIntType>::value>::type;
 | |
| 
 | |
|     public:
 | |
|       /** The type of the generated random value. */
 | |
|       typedef _UIntType result_type;
 | |
| 
 | |
|       // parameter values
 | |
|       static constexpr size_t      word_size    = __w;
 | |
|       static constexpr size_t      short_lag    = __s;
 | |
|       static constexpr size_t      long_lag     = __r;
 | |
|       static constexpr result_type default_seed = 19780503u;
 | |
| 
 | |
|       subtract_with_carry_engine() : subtract_with_carry_engine(default_seed)
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Constructs an explicitly seeded %subtract_with_carry_engine
 | |
|        *        random number generator.
 | |
|        */
 | |
|       explicit
 | |
|       subtract_with_carry_engine(result_type __sd)
 | |
|       { seed(__sd); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Constructs a %subtract_with_carry_engine random number engine
 | |
|        *        seeded from the seed sequence @p __q.
 | |
|        *
 | |
|        * @param __q the seed sequence.
 | |
|        */
 | |
|       template<typename _Sseq, typename = _If_seed_seq<_Sseq>>
 | |
|         explicit
 | |
|         subtract_with_carry_engine(_Sseq& __q)
 | |
|         { seed(__q); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Seeds the initial state @f$x_0@f$ of the random number
 | |
|        *        generator.
 | |
|        *
 | |
|        * N1688[4.19] modifies this as follows.  If @p __value == 0,
 | |
|        * sets value to 19780503.  In any case, with a linear
 | |
|        * congruential generator lcg(i) having parameters @f$ m_{lcg} =
 | |
|        * 2147483563, a_{lcg} = 40014, c_{lcg} = 0, and lcg(0) = value
 | |
|        * @f$, sets @f$ x_{-r} \dots x_{-1} @f$ to @f$ lcg(1) \bmod m
 | |
|        * \dots lcg(r) \bmod m @f$ respectively.  If @f$ x_{-1} = 0 @f$
 | |
|        * set carry to 1, otherwise sets carry to 0.
 | |
|        */
 | |
|       void
 | |
|       seed(result_type __sd = default_seed);
 | |
| 
 | |
|       /**
 | |
|        * @brief Seeds the initial state @f$x_0@f$ of the
 | |
|        * % subtract_with_carry_engine random number generator.
 | |
|        */
 | |
|       template<typename _Sseq>
 | |
| 	_If_seed_seq<_Sseq>
 | |
|         seed(_Sseq& __q);
 | |
| 
 | |
|       /**
 | |
|        * @brief Gets the inclusive minimum value of the range of random
 | |
|        * integers returned by this generator.
 | |
|        */
 | |
|       static constexpr result_type
 | |
|       min()
 | |
|       { return 0; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Gets the inclusive maximum value of the range of random
 | |
|        * integers returned by this generator.
 | |
|        */
 | |
|       static constexpr result_type
 | |
|       max()
 | |
|       { return __detail::_Shift<_UIntType, __w>::__value - 1; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Discard a sequence of random numbers.
 | |
|        */
 | |
|       void
 | |
|       discard(unsigned long long __z)
 | |
|       {
 | |
| 	for (; __z != 0ULL; --__z)
 | |
| 	  (*this)();
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * @brief Gets the next random number in the sequence.
 | |
|        */
 | |
|       result_type
 | |
|       operator()();
 | |
| 
 | |
|       /**
 | |
|        * @brief Compares two % subtract_with_carry_engine random number
 | |
|        *        generator objects of the same type for equality.
 | |
|        *
 | |
|        * @param __lhs A % subtract_with_carry_engine random number generator
 | |
|        *              object.
 | |
|        * @param __rhs Another % subtract_with_carry_engine random number
 | |
|        *              generator object.
 | |
|        *
 | |
|        * @returns true if the infinite sequences of generated values
 | |
|        *          would be equal, false otherwise.
 | |
|       */
 | |
|       friend bool
 | |
|       operator==(const subtract_with_carry_engine& __lhs,
 | |
| 		 const subtract_with_carry_engine& __rhs)
 | |
|       { return (std::equal(__lhs._M_x, __lhs._M_x + long_lag, __rhs._M_x)
 | |
| 		&& __lhs._M_carry == __rhs._M_carry
 | |
| 		&& __lhs._M_p == __rhs._M_p); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Inserts the current state of a % subtract_with_carry_engine
 | |
|        *        random number generator engine @p __x into the output stream
 | |
|        *        @p __os.
 | |
|        *
 | |
|        * @param __os An output stream.
 | |
|        * @param __x  A % subtract_with_carry_engine random number generator
 | |
|        *             engine.
 | |
|        *
 | |
|        * @returns The output stream with the state of @p __x inserted or in
 | |
|        * an error state.
 | |
|        */
 | |
|       template<typename _UIntType1, size_t __w1, size_t __s1, size_t __r1,
 | |
| 	       typename _CharT, typename _Traits>
 | |
| 	friend std::basic_ostream<_CharT, _Traits>&
 | |
| 	operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 		   const std::subtract_with_carry_engine<_UIntType1, __w1,
 | |
| 		   __s1, __r1>& __x);
 | |
| 
 | |
|       /**
 | |
|        * @brief Extracts the current state of a % subtract_with_carry_engine
 | |
|        *        random number generator engine @p __x from the input stream
 | |
|        *        @p __is.
 | |
|        *
 | |
|        * @param __is An input stream.
 | |
|        * @param __x  A % subtract_with_carry_engine random number generator
 | |
|        *             engine.
 | |
|        *
 | |
|        * @returns The input stream with the state of @p __x extracted or in
 | |
|        * an error state.
 | |
|        */
 | |
|       template<typename _UIntType1, size_t __w1, size_t __s1, size_t __r1,
 | |
| 	       typename _CharT, typename _Traits>
 | |
| 	friend std::basic_istream<_CharT, _Traits>&
 | |
| 	operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 		   std::subtract_with_carry_engine<_UIntType1, __w1,
 | |
| 		   __s1, __r1>& __x);
 | |
| 
 | |
|     private:
 | |
|       /// The state of the generator.  This is a ring buffer.
 | |
|       _UIntType  _M_x[long_lag];
 | |
|       _UIntType  _M_carry;		///< The carry
 | |
|       size_t     _M_p;			///< Current index of x(i - r).
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|    * @brief Compares two % subtract_with_carry_engine random number
 | |
|    *        generator objects of the same type for inequality.
 | |
|    *
 | |
|    * @param __lhs A % subtract_with_carry_engine random number generator
 | |
|    *              object.
 | |
|    * @param __rhs Another % subtract_with_carry_engine random number
 | |
|    *              generator object.
 | |
|    *
 | |
|    * @returns true if the infinite sequences of generated values
 | |
|    *          would be different, false otherwise.
 | |
|    */
 | |
|   template<typename _UIntType, size_t __w, size_t __s, size_t __r>
 | |
|     inline bool
 | |
|     operator!=(const std::subtract_with_carry_engine<_UIntType, __w,
 | |
| 	       __s, __r>& __lhs,
 | |
| 	       const std::subtract_with_carry_engine<_UIntType, __w,
 | |
| 	       __s, __r>& __rhs)
 | |
|     { return !(__lhs == __rhs); }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * Produces random numbers from some base engine by discarding blocks of
 | |
|    * data.
 | |
|    *
 | |
|    * 0 <= @p __r <= @p __p
 | |
|    */
 | |
|   template<typename _RandomNumberEngine, size_t __p, size_t __r>
 | |
|     class discard_block_engine
 | |
|     {
 | |
|       static_assert(1 <= __r && __r <= __p,
 | |
| 		    "template argument substituting __r out of bounds");
 | |
| 
 | |
|     public:
 | |
|       /** The type of the generated random value. */
 | |
|       typedef typename _RandomNumberEngine::result_type result_type;
 | |
| 
 | |
|       template<typename _Sseq>
 | |
| 	using _If_seed_seq = typename enable_if<__detail::__is_seed_seq<
 | |
| 	  _Sseq, discard_block_engine, result_type>::value>::type;
 | |
| 
 | |
|       // parameter values
 | |
|       static constexpr size_t block_size = __p;
 | |
|       static constexpr size_t used_block = __r;
 | |
| 
 | |
|       /**
 | |
|        * @brief Constructs a default %discard_block_engine engine.
 | |
|        *
 | |
|        * The underlying engine is default constructed as well.
 | |
|        */
 | |
|       discard_block_engine()
 | |
|       : _M_b(), _M_n(0) { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Copy constructs a %discard_block_engine engine.
 | |
|        *
 | |
|        * Copies an existing base class random number generator.
 | |
|        * @param __rng An existing (base class) engine object.
 | |
|        */
 | |
|       explicit
 | |
|       discard_block_engine(const _RandomNumberEngine& __rng)
 | |
|       : _M_b(__rng), _M_n(0) { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Move constructs a %discard_block_engine engine.
 | |
|        *
 | |
|        * Copies an existing base class random number generator.
 | |
|        * @param __rng An existing (base class) engine object.
 | |
|        */
 | |
|       explicit
 | |
|       discard_block_engine(_RandomNumberEngine&& __rng)
 | |
|       : _M_b(std::move(__rng)), _M_n(0) { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Seed constructs a %discard_block_engine engine.
 | |
|        *
 | |
|        * Constructs the underlying generator engine seeded with @p __s.
 | |
|        * @param __s A seed value for the base class engine.
 | |
|        */
 | |
|       explicit
 | |
|       discard_block_engine(result_type __s)
 | |
|       : _M_b(__s), _M_n(0) { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generator construct a %discard_block_engine engine.
 | |
|        *
 | |
|        * @param __q A seed sequence.
 | |
|        */
 | |
|       template<typename _Sseq, typename = _If_seed_seq<_Sseq>>
 | |
|         explicit
 | |
|         discard_block_engine(_Sseq& __q)
 | |
| 	: _M_b(__q), _M_n(0)
 | |
|         { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Reseeds the %discard_block_engine object with the default
 | |
|        *        seed for the underlying base class generator engine.
 | |
|        */
 | |
|       void
 | |
|       seed()
 | |
|       {
 | |
| 	_M_b.seed();
 | |
| 	_M_n = 0;
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * @brief Reseeds the %discard_block_engine object with the default
 | |
|        *        seed for the underlying base class generator engine.
 | |
|        */
 | |
|       void
 | |
|       seed(result_type __s)
 | |
|       {
 | |
| 	_M_b.seed(__s);
 | |
| 	_M_n = 0;
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * @brief Reseeds the %discard_block_engine object with the given seed
 | |
|        *        sequence.
 | |
|        * @param __q A seed generator function.
 | |
|        */
 | |
|       template<typename _Sseq>
 | |
|         _If_seed_seq<_Sseq>
 | |
|         seed(_Sseq& __q)
 | |
|         {
 | |
| 	  _M_b.seed(__q);
 | |
| 	  _M_n = 0;
 | |
| 	}
 | |
| 
 | |
|       /**
 | |
|        * @brief Gets a const reference to the underlying generator engine
 | |
|        *        object.
 | |
|        */
 | |
|       const _RandomNumberEngine&
 | |
|       base() const noexcept
 | |
|       { return _M_b; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Gets the minimum value in the generated random number range.
 | |
|        */
 | |
|       static constexpr result_type
 | |
|       min()
 | |
|       { return _RandomNumberEngine::min(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Gets the maximum value in the generated random number range.
 | |
|        */
 | |
|       static constexpr result_type
 | |
|       max()
 | |
|       { return _RandomNumberEngine::max(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Discard a sequence of random numbers.
 | |
|        */
 | |
|       void
 | |
|       discard(unsigned long long __z)
 | |
|       {
 | |
| 	for (; __z != 0ULL; --__z)
 | |
| 	  (*this)();
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * @brief Gets the next value in the generated random number sequence.
 | |
|        */
 | |
|       result_type
 | |
|       operator()();
 | |
| 
 | |
|       /**
 | |
|        * @brief Compares two %discard_block_engine random number generator
 | |
|        *        objects of the same type for equality.
 | |
|        *
 | |
|        * @param __lhs A %discard_block_engine random number generator object.
 | |
|        * @param __rhs Another %discard_block_engine random number generator
 | |
|        *              object.
 | |
|        *
 | |
|        * @returns true if the infinite sequences of generated values
 | |
|        *          would be equal, false otherwise.
 | |
|        */
 | |
|       friend bool
 | |
|       operator==(const discard_block_engine& __lhs,
 | |
| 		 const discard_block_engine& __rhs)
 | |
|       { return __lhs._M_b == __rhs._M_b && __lhs._M_n == __rhs._M_n; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Inserts the current state of a %discard_block_engine random
 | |
|        *        number generator engine @p __x into the output stream
 | |
|        *        @p __os.
 | |
|        *
 | |
|        * @param __os An output stream.
 | |
|        * @param __x  A %discard_block_engine random number generator engine.
 | |
|        *
 | |
|        * @returns The output stream with the state of @p __x inserted or in
 | |
|        * an error state.
 | |
|        */
 | |
|       template<typename _RandomNumberEngine1, size_t __p1, size_t __r1,
 | |
| 	       typename _CharT, typename _Traits>
 | |
| 	friend std::basic_ostream<_CharT, _Traits>&
 | |
| 	operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 		   const std::discard_block_engine<_RandomNumberEngine1,
 | |
| 		   __p1, __r1>& __x);
 | |
| 
 | |
|       /**
 | |
|        * @brief Extracts the current state of a % subtract_with_carry_engine
 | |
|        *        random number generator engine @p __x from the input stream
 | |
|        *        @p __is.
 | |
|        *
 | |
|        * @param __is An input stream.
 | |
|        * @param __x  A %discard_block_engine random number generator engine.
 | |
|        *
 | |
|        * @returns The input stream with the state of @p __x extracted or in
 | |
|        * an error state.
 | |
|        */
 | |
|       template<typename _RandomNumberEngine1, size_t __p1, size_t __r1,
 | |
| 	       typename _CharT, typename _Traits>
 | |
| 	friend std::basic_istream<_CharT, _Traits>&
 | |
| 	operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 		   std::discard_block_engine<_RandomNumberEngine1,
 | |
| 		   __p1, __r1>& __x);
 | |
| 
 | |
|     private:
 | |
|       _RandomNumberEngine _M_b;
 | |
|       size_t _M_n;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|    * @brief Compares two %discard_block_engine random number generator
 | |
|    *        objects of the same type for inequality.
 | |
|    *
 | |
|    * @param __lhs A %discard_block_engine random number generator object.
 | |
|    * @param __rhs Another %discard_block_engine random number generator
 | |
|    *              object.
 | |
|    *
 | |
|    * @returns true if the infinite sequences of generated values
 | |
|    *          would be different, false otherwise.
 | |
|    */
 | |
|   template<typename _RandomNumberEngine, size_t __p, size_t __r>
 | |
|     inline bool
 | |
|     operator!=(const std::discard_block_engine<_RandomNumberEngine, __p,
 | |
| 	       __r>& __lhs,
 | |
| 	       const std::discard_block_engine<_RandomNumberEngine, __p,
 | |
| 	       __r>& __rhs)
 | |
|     { return !(__lhs == __rhs); }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * Produces random numbers by combining random numbers from some base
 | |
|    * engine to produce random numbers with a specifies number of bits @p __w.
 | |
|    */
 | |
|   template<typename _RandomNumberEngine, size_t __w, typename _UIntType>
 | |
|     class independent_bits_engine
 | |
|     {
 | |
|       static_assert(std::is_unsigned<_UIntType>::value,
 | |
| 		    "result_type must be an unsigned integral type");
 | |
|       static_assert(0u < __w && __w <= std::numeric_limits<_UIntType>::digits,
 | |
| 		    "template argument substituting __w out of bounds");
 | |
| 
 | |
|       template<typename _Sseq>
 | |
| 	using _If_seed_seq = typename enable_if<__detail::__is_seed_seq<
 | |
| 	  _Sseq, independent_bits_engine, _UIntType>::value>::type;
 | |
| 
 | |
|     public:
 | |
|       /** The type of the generated random value. */
 | |
|       typedef _UIntType result_type;
 | |
| 
 | |
|       /**
 | |
|        * @brief Constructs a default %independent_bits_engine engine.
 | |
|        *
 | |
|        * The underlying engine is default constructed as well.
 | |
|        */
 | |
|       independent_bits_engine()
 | |
|       : _M_b() { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Copy constructs a %independent_bits_engine engine.
 | |
|        *
 | |
|        * Copies an existing base class random number generator.
 | |
|        * @param __rng An existing (base class) engine object.
 | |
|        */
 | |
|       explicit
 | |
|       independent_bits_engine(const _RandomNumberEngine& __rng)
 | |
|       : _M_b(__rng) { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Move constructs a %independent_bits_engine engine.
 | |
|        *
 | |
|        * Copies an existing base class random number generator.
 | |
|        * @param __rng An existing (base class) engine object.
 | |
|        */
 | |
|       explicit
 | |
|       independent_bits_engine(_RandomNumberEngine&& __rng)
 | |
|       : _M_b(std::move(__rng)) { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Seed constructs a %independent_bits_engine engine.
 | |
|        *
 | |
|        * Constructs the underlying generator engine seeded with @p __s.
 | |
|        * @param __s A seed value for the base class engine.
 | |
|        */
 | |
|       explicit
 | |
|       independent_bits_engine(result_type __s)
 | |
|       : _M_b(__s) { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generator construct a %independent_bits_engine engine.
 | |
|        *
 | |
|        * @param __q A seed sequence.
 | |
|        */
 | |
|       template<typename _Sseq, typename = _If_seed_seq<_Sseq>>
 | |
|         explicit
 | |
|         independent_bits_engine(_Sseq& __q)
 | |
|         : _M_b(__q)
 | |
|         { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Reseeds the %independent_bits_engine object with the default
 | |
|        *        seed for the underlying base class generator engine.
 | |
|        */
 | |
|       void
 | |
|       seed()
 | |
|       { _M_b.seed(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Reseeds the %independent_bits_engine object with the default
 | |
|        *        seed for the underlying base class generator engine.
 | |
|        */
 | |
|       void
 | |
|       seed(result_type __s)
 | |
|       { _M_b.seed(__s); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Reseeds the %independent_bits_engine object with the given
 | |
|        *        seed sequence.
 | |
|        * @param __q A seed generator function.
 | |
|        */
 | |
|       template<typename _Sseq>
 | |
|         _If_seed_seq<_Sseq>
 | |
|         seed(_Sseq& __q)
 | |
|         { _M_b.seed(__q); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Gets a const reference to the underlying generator engine
 | |
|        *        object.
 | |
|        */
 | |
|       const _RandomNumberEngine&
 | |
|       base() const noexcept
 | |
|       { return _M_b; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Gets the minimum value in the generated random number range.
 | |
|        */
 | |
|       static constexpr result_type
 | |
|       min()
 | |
|       { return 0U; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Gets the maximum value in the generated random number range.
 | |
|        */
 | |
|       static constexpr result_type
 | |
|       max()
 | |
|       { return __detail::_Shift<_UIntType, __w>::__value - 1; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Discard a sequence of random numbers.
 | |
|        */
 | |
|       void
 | |
|       discard(unsigned long long __z)
 | |
|       {
 | |
| 	for (; __z != 0ULL; --__z)
 | |
| 	  (*this)();
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * @brief Gets the next value in the generated random number sequence.
 | |
|        */
 | |
|       result_type
 | |
|       operator()();
 | |
| 
 | |
|       /**
 | |
|        * @brief Compares two %independent_bits_engine random number generator
 | |
|        * objects of the same type for equality.
 | |
|        *
 | |
|        * @param __lhs A %independent_bits_engine random number generator
 | |
|        *              object.
 | |
|        * @param __rhs Another %independent_bits_engine random number generator
 | |
|        *              object.
 | |
|        *
 | |
|        * @returns true if the infinite sequences of generated values
 | |
|        *          would be equal, false otherwise.
 | |
|        */
 | |
|       friend bool
 | |
|       operator==(const independent_bits_engine& __lhs,
 | |
| 		 const independent_bits_engine& __rhs)
 | |
|       { return __lhs._M_b == __rhs._M_b; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Extracts the current state of a % subtract_with_carry_engine
 | |
|        *        random number generator engine @p __x from the input stream
 | |
|        *        @p __is.
 | |
|        *
 | |
|        * @param __is An input stream.
 | |
|        * @param __x  A %independent_bits_engine random number generator
 | |
|        *             engine.
 | |
|        *
 | |
|        * @returns The input stream with the state of @p __x extracted or in
 | |
|        *          an error state.
 | |
|        */
 | |
|       template<typename _CharT, typename _Traits>
 | |
| 	friend std::basic_istream<_CharT, _Traits>&
 | |
| 	operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 		   std::independent_bits_engine<_RandomNumberEngine,
 | |
| 		   __w, _UIntType>& __x)
 | |
| 	{
 | |
| 	  __is >> __x._M_b;
 | |
| 	  return __is;
 | |
| 	}
 | |
| 
 | |
|     private:
 | |
|       _RandomNumberEngine _M_b;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|    * @brief Compares two %independent_bits_engine random number generator
 | |
|    * objects of the same type for inequality.
 | |
|    *
 | |
|    * @param __lhs A %independent_bits_engine random number generator
 | |
|    *              object.
 | |
|    * @param __rhs Another %independent_bits_engine random number generator
 | |
|    *              object.
 | |
|    *
 | |
|    * @returns true if the infinite sequences of generated values
 | |
|    *          would be different, false otherwise.
 | |
|    */
 | |
|   template<typename _RandomNumberEngine, size_t __w, typename _UIntType>
 | |
|     inline bool
 | |
|     operator!=(const std::independent_bits_engine<_RandomNumberEngine, __w,
 | |
| 	       _UIntType>& __lhs,
 | |
| 	       const std::independent_bits_engine<_RandomNumberEngine, __w,
 | |
| 	       _UIntType>& __rhs)
 | |
|     { return !(__lhs == __rhs); }
 | |
| 
 | |
|   /**
 | |
|    * @brief Inserts the current state of a %independent_bits_engine random
 | |
|    *        number generator engine @p __x into the output stream @p __os.
 | |
|    *
 | |
|    * @param __os An output stream.
 | |
|    * @param __x  A %independent_bits_engine random number generator engine.
 | |
|    *
 | |
|    * @returns The output stream with the state of @p __x inserted or in
 | |
|    *          an error state.
 | |
|    */
 | |
|   template<typename _RandomNumberEngine, size_t __w, typename _UIntType,
 | |
| 	   typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const std::independent_bits_engine<_RandomNumberEngine,
 | |
| 	       __w, _UIntType>& __x)
 | |
|     {
 | |
|       __os << __x.base();
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * @brief Produces random numbers by combining random numbers from some
 | |
|    * base engine to produce random numbers with a specifies number of bits
 | |
|    * @p __k.
 | |
|    */
 | |
|   template<typename _RandomNumberEngine, size_t __k>
 | |
|     class shuffle_order_engine
 | |
|     {
 | |
|       static_assert(1u <= __k, "template argument substituting "
 | |
| 		    "__k out of bound");
 | |
| 
 | |
|     public:
 | |
|       /** The type of the generated random value. */
 | |
|       typedef typename _RandomNumberEngine::result_type result_type;
 | |
| 
 | |
|       template<typename _Sseq>
 | |
| 	using _If_seed_seq = typename enable_if<__detail::__is_seed_seq<
 | |
| 	  _Sseq, shuffle_order_engine, result_type>::value>::type;
 | |
| 
 | |
|       static constexpr size_t table_size = __k;
 | |
| 
 | |
|       /**
 | |
|        * @brief Constructs a default %shuffle_order_engine engine.
 | |
|        *
 | |
|        * The underlying engine is default constructed as well.
 | |
|        */
 | |
|       shuffle_order_engine()
 | |
|       : _M_b()
 | |
|       { _M_initialize(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Copy constructs a %shuffle_order_engine engine.
 | |
|        *
 | |
|        * Copies an existing base class random number generator.
 | |
|        * @param __rng An existing (base class) engine object.
 | |
|        */
 | |
|       explicit
 | |
|       shuffle_order_engine(const _RandomNumberEngine& __rng)
 | |
|       : _M_b(__rng)
 | |
|       { _M_initialize(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Move constructs a %shuffle_order_engine engine.
 | |
|        *
 | |
|        * Copies an existing base class random number generator.
 | |
|        * @param __rng An existing (base class) engine object.
 | |
|        */
 | |
|       explicit
 | |
|       shuffle_order_engine(_RandomNumberEngine&& __rng)
 | |
|       : _M_b(std::move(__rng))
 | |
|       { _M_initialize(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Seed constructs a %shuffle_order_engine engine.
 | |
|        *
 | |
|        * Constructs the underlying generator engine seeded with @p __s.
 | |
|        * @param __s A seed value for the base class engine.
 | |
|        */
 | |
|       explicit
 | |
|       shuffle_order_engine(result_type __s)
 | |
|       : _M_b(__s)
 | |
|       { _M_initialize(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generator construct a %shuffle_order_engine engine.
 | |
|        *
 | |
|        * @param __q A seed sequence.
 | |
|        */
 | |
|       template<typename _Sseq, typename = _If_seed_seq<_Sseq>>
 | |
|         explicit
 | |
|         shuffle_order_engine(_Sseq& __q)
 | |
|         : _M_b(__q)
 | |
|         { _M_initialize(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Reseeds the %shuffle_order_engine object with the default seed
 | |
|                 for the underlying base class generator engine.
 | |
|        */
 | |
|       void
 | |
|       seed()
 | |
|       {
 | |
| 	_M_b.seed();
 | |
| 	_M_initialize();
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * @brief Reseeds the %shuffle_order_engine object with the default seed
 | |
|        *        for the underlying base class generator engine.
 | |
|        */
 | |
|       void
 | |
|       seed(result_type __s)
 | |
|       {
 | |
| 	_M_b.seed(__s);
 | |
| 	_M_initialize();
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * @brief Reseeds the %shuffle_order_engine object with the given seed
 | |
|        *        sequence.
 | |
|        * @param __q A seed generator function.
 | |
|        */
 | |
|       template<typename _Sseq>
 | |
|         _If_seed_seq<_Sseq>
 | |
|         seed(_Sseq& __q)
 | |
|         {
 | |
| 	  _M_b.seed(__q);
 | |
| 	  _M_initialize();
 | |
| 	}
 | |
| 
 | |
|       /**
 | |
|        * Gets a const reference to the underlying generator engine object.
 | |
|        */
 | |
|       const _RandomNumberEngine&
 | |
|       base() const noexcept
 | |
|       { return _M_b; }
 | |
| 
 | |
|       /**
 | |
|        * Gets the minimum value in the generated random number range.
 | |
|        */
 | |
|       static constexpr result_type
 | |
|       min()
 | |
|       { return _RandomNumberEngine::min(); }
 | |
| 
 | |
|       /**
 | |
|        * Gets the maximum value in the generated random number range.
 | |
|        */
 | |
|       static constexpr result_type
 | |
|       max()
 | |
|       { return _RandomNumberEngine::max(); }
 | |
| 
 | |
|       /**
 | |
|        * Discard a sequence of random numbers.
 | |
|        */
 | |
|       void
 | |
|       discard(unsigned long long __z)
 | |
|       {
 | |
| 	for (; __z != 0ULL; --__z)
 | |
| 	  (*this)();
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * Gets the next value in the generated random number sequence.
 | |
|        */
 | |
|       result_type
 | |
|       operator()();
 | |
| 
 | |
|       /**
 | |
|        * Compares two %shuffle_order_engine random number generator objects
 | |
|        * of the same type for equality.
 | |
|        *
 | |
|        * @param __lhs A %shuffle_order_engine random number generator object.
 | |
|        * @param __rhs Another %shuffle_order_engine random number generator
 | |
|        *              object.
 | |
|        *
 | |
|        * @returns true if the infinite sequences of generated values
 | |
|        *          would be equal, false otherwise.
 | |
|       */
 | |
|       friend bool
 | |
|       operator==(const shuffle_order_engine& __lhs,
 | |
| 		 const shuffle_order_engine& __rhs)
 | |
|       { return (__lhs._M_b == __rhs._M_b
 | |
| 		&& std::equal(__lhs._M_v, __lhs._M_v + __k, __rhs._M_v)
 | |
| 		&& __lhs._M_y == __rhs._M_y); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Inserts the current state of a %shuffle_order_engine random
 | |
|        *        number generator engine @p __x into the output stream
 | |
| 	@p __os.
 | |
|        *
 | |
|        * @param __os An output stream.
 | |
|        * @param __x  A %shuffle_order_engine random number generator engine.
 | |
|        *
 | |
|        * @returns The output stream with the state of @p __x inserted or in
 | |
|        * an error state.
 | |
|        */
 | |
|       template<typename _RandomNumberEngine1, size_t __k1,
 | |
| 	       typename _CharT, typename _Traits>
 | |
| 	friend std::basic_ostream<_CharT, _Traits>&
 | |
| 	operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 		   const std::shuffle_order_engine<_RandomNumberEngine1,
 | |
| 		   __k1>& __x);
 | |
| 
 | |
|       /**
 | |
|        * @brief Extracts the current state of a % subtract_with_carry_engine
 | |
|        *        random number generator engine @p __x from the input stream
 | |
|        *        @p __is.
 | |
|        *
 | |
|        * @param __is An input stream.
 | |
|        * @param __x  A %shuffle_order_engine random number generator engine.
 | |
|        *
 | |
|        * @returns The input stream with the state of @p __x extracted or in
 | |
|        * an error state.
 | |
|        */
 | |
|       template<typename _RandomNumberEngine1, size_t __k1,
 | |
| 	       typename _CharT, typename _Traits>
 | |
| 	friend std::basic_istream<_CharT, _Traits>&
 | |
| 	operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 		   std::shuffle_order_engine<_RandomNumberEngine1, __k1>& __x);
 | |
| 
 | |
|     private:
 | |
|       void _M_initialize()
 | |
|       {
 | |
| 	for (size_t __i = 0; __i < __k; ++__i)
 | |
| 	  _M_v[__i] = _M_b();
 | |
| 	_M_y = _M_b();
 | |
|       }
 | |
| 
 | |
|       _RandomNumberEngine _M_b;
 | |
|       result_type _M_v[__k];
 | |
|       result_type _M_y;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|    * Compares two %shuffle_order_engine random number generator objects
 | |
|    * of the same type for inequality.
 | |
|    *
 | |
|    * @param __lhs A %shuffle_order_engine random number generator object.
 | |
|    * @param __rhs Another %shuffle_order_engine random number generator
 | |
|    *              object.
 | |
|    *
 | |
|    * @returns true if the infinite sequences of generated values
 | |
|    *          would be different, false otherwise.
 | |
|    */
 | |
|   template<typename _RandomNumberEngine, size_t __k>
 | |
|     inline bool
 | |
|     operator!=(const std::shuffle_order_engine<_RandomNumberEngine,
 | |
| 	       __k>& __lhs,
 | |
| 	       const std::shuffle_order_engine<_RandomNumberEngine,
 | |
| 	       __k>& __rhs)
 | |
|     { return !(__lhs == __rhs); }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * The classic Minimum Standard rand0 of Lewis, Goodman, and Miller.
 | |
|    */
 | |
|   typedef linear_congruential_engine<uint_fast32_t, 16807UL, 0UL, 2147483647UL>
 | |
|   minstd_rand0;
 | |
| 
 | |
|   /**
 | |
|    * An alternative LCR (Lehmer Generator function).
 | |
|    */
 | |
|   typedef linear_congruential_engine<uint_fast32_t, 48271UL, 0UL, 2147483647UL>
 | |
|   minstd_rand;
 | |
| 
 | |
|   /**
 | |
|    * The classic Mersenne Twister.
 | |
|    *
 | |
|    * Reference:
 | |
|    * M. Matsumoto and T. Nishimura, Mersenne Twister: A 623-Dimensionally
 | |
|    * Equidistributed Uniform Pseudo-Random Number Generator, ACM Transactions
 | |
|    * on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.
 | |
|    */
 | |
|   typedef mersenne_twister_engine<
 | |
|     uint_fast32_t,
 | |
|     32, 624, 397, 31,
 | |
|     0x9908b0dfUL, 11,
 | |
|     0xffffffffUL, 7,
 | |
|     0x9d2c5680UL, 15,
 | |
|     0xefc60000UL, 18, 1812433253UL> mt19937;
 | |
| 
 | |
|   /**
 | |
|    * An alternative Mersenne Twister.
 | |
|    */
 | |
|   typedef mersenne_twister_engine<
 | |
|     uint_fast64_t,
 | |
|     64, 312, 156, 31,
 | |
|     0xb5026f5aa96619e9ULL, 29,
 | |
|     0x5555555555555555ULL, 17,
 | |
|     0x71d67fffeda60000ULL, 37,
 | |
|     0xfff7eee000000000ULL, 43,
 | |
|     6364136223846793005ULL> mt19937_64;
 | |
| 
 | |
|   typedef subtract_with_carry_engine<uint_fast32_t, 24, 10, 24>
 | |
|     ranlux24_base;
 | |
| 
 | |
|   typedef subtract_with_carry_engine<uint_fast64_t, 48, 5, 12>
 | |
|     ranlux48_base;
 | |
| 
 | |
|   typedef discard_block_engine<ranlux24_base, 223, 23> ranlux24;
 | |
| 
 | |
|   typedef discard_block_engine<ranlux48_base, 389, 11> ranlux48;
 | |
| 
 | |
|   typedef shuffle_order_engine<minstd_rand0, 256> knuth_b;
 | |
| 
 | |
|   typedef minstd_rand0 default_random_engine;
 | |
| 
 | |
|   /**
 | |
|    * A standard interface to a platform-specific non-deterministic
 | |
|    * random number generator (if any are available).
 | |
|    */
 | |
|   class random_device
 | |
|   {
 | |
|   public:
 | |
|     /** The type of the generated random value. */
 | |
|     typedef unsigned int result_type;
 | |
| 
 | |
|     // constructors, destructors and member functions
 | |
| 
 | |
| #ifdef _GLIBCXX_USE_DEV_RANDOM
 | |
|     random_device() { _M_init("default"); }
 | |
| 
 | |
|     explicit
 | |
|     random_device(const std::string& __token) { _M_init(__token); }
 | |
| 
 | |
|     ~random_device()
 | |
|     { _M_fini(); }
 | |
| #else
 | |
|     random_device() { _M_init_pretr1("mt19937"); }
 | |
| 
 | |
|     explicit
 | |
|     random_device(const std::string& __token)
 | |
|     { _M_init_pretr1(__token); }
 | |
| #endif
 | |
| 
 | |
|     static constexpr result_type
 | |
|     min()
 | |
|     { return std::numeric_limits<result_type>::min(); }
 | |
| 
 | |
|     static constexpr result_type
 | |
|     max()
 | |
|     { return std::numeric_limits<result_type>::max(); }
 | |
| 
 | |
|     double
 | |
|     entropy() const noexcept
 | |
|     {
 | |
| #ifdef _GLIBCXX_USE_DEV_RANDOM
 | |
|       return this->_M_getentropy();
 | |
| #else
 | |
|       return 0.0;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     result_type
 | |
|     operator()()
 | |
|     {
 | |
| #ifdef _GLIBCXX_USE_DEV_RANDOM
 | |
|       return this->_M_getval();
 | |
| #else
 | |
|       return this->_M_getval_pretr1();
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     // No copy functions.
 | |
|     random_device(const random_device&) = delete;
 | |
|     void operator=(const random_device&) = delete;
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     void _M_init(const std::string& __token);
 | |
|     void _M_init_pretr1(const std::string& __token);
 | |
|     void _M_fini();
 | |
| 
 | |
|     result_type _M_getval();
 | |
|     result_type _M_getval_pretr1();
 | |
|     double _M_getentropy() const noexcept;
 | |
| 
 | |
|     union
 | |
|     {
 | |
|       void*      _M_file;
 | |
|       mt19937    _M_mt;
 | |
|     };
 | |
|   };
 | |
| 
 | |
|   /* @} */ // group random_generators
 | |
| 
 | |
|   /**
 | |
|    * @addtogroup random_distributions Random Number Distributions
 | |
|    * @ingroup random
 | |
|    * @{
 | |
|    */
 | |
| 
 | |
|   /**
 | |
|    * @addtogroup random_distributions_uniform Uniform Distributions
 | |
|    * @ingroup random_distributions
 | |
|    * @{
 | |
|    */
 | |
| 
 | |
|   // std::uniform_int_distribution is defined in <bits/uniform_int_dist.h>
 | |
| 
 | |
|   /**
 | |
|    * @brief Return true if two uniform integer distributions have
 | |
|    *        different parameters.
 | |
|    */
 | |
|   template<typename _IntType>
 | |
|     inline bool
 | |
|     operator!=(const std::uniform_int_distribution<_IntType>& __d1,
 | |
| 	       const std::uniform_int_distribution<_IntType>& __d2)
 | |
|     { return !(__d1 == __d2); }
 | |
| 
 | |
|   /**
 | |
|    * @brief Inserts a %uniform_int_distribution random number
 | |
|    *        distribution @p __x into the output stream @p os.
 | |
|    *
 | |
|    * @param __os An output stream.
 | |
|    * @param __x  A %uniform_int_distribution random number distribution.
 | |
|    *
 | |
|    * @returns The output stream with the state of @p __x inserted or in
 | |
|    * an error state.
 | |
|    */
 | |
|   template<typename _IntType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>&,
 | |
| 	       const std::uniform_int_distribution<_IntType>&);
 | |
| 
 | |
|   /**
 | |
|    * @brief Extracts a %uniform_int_distribution random number distribution
 | |
|    * @p __x from the input stream @p __is.
 | |
|    *
 | |
|    * @param __is An input stream.
 | |
|    * @param __x  A %uniform_int_distribution random number generator engine.
 | |
|    *
 | |
|    * @returns The input stream with @p __x extracted or in an error state.
 | |
|    */
 | |
|   template<typename _IntType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>&,
 | |
| 	       std::uniform_int_distribution<_IntType>&);
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * @brief Uniform continuous distribution for random numbers.
 | |
|    *
 | |
|    * A continuous random distribution on the range [min, max) with equal
 | |
|    * probability throughout the range.  The URNG should be real-valued and
 | |
|    * deliver number in the range [0, 1).
 | |
|    */
 | |
|   template<typename _RealType = double>
 | |
|     class uniform_real_distribution
 | |
|     {
 | |
|       static_assert(std::is_floating_point<_RealType>::value,
 | |
| 		    "result_type must be a floating point type");
 | |
| 
 | |
|     public:
 | |
|       /** The type of the range of the distribution. */
 | |
|       typedef _RealType result_type;
 | |
| 
 | |
|       /** Parameter type. */
 | |
|       struct param_type
 | |
|       {
 | |
| 	typedef uniform_real_distribution<_RealType> distribution_type;
 | |
| 
 | |
| 	param_type() : param_type(0) { }
 | |
| 
 | |
| 	explicit
 | |
| 	param_type(_RealType __a, _RealType __b = _RealType(1))
 | |
| 	: _M_a(__a), _M_b(__b)
 | |
| 	{
 | |
| 	  __glibcxx_assert(_M_a <= _M_b);
 | |
| 	}
 | |
| 
 | |
| 	result_type
 | |
| 	a() const
 | |
| 	{ return _M_a; }
 | |
| 
 | |
| 	result_type
 | |
| 	b() const
 | |
| 	{ return _M_b; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator==(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator!=(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return !(__p1 == __p2); }
 | |
| 
 | |
|       private:
 | |
| 	_RealType _M_a;
 | |
| 	_RealType _M_b;
 | |
|       };
 | |
| 
 | |
|     public:
 | |
|       /**
 | |
|        * @brief Constructs a uniform_real_distribution object.
 | |
|        *
 | |
|        * The lower bound is set to 0.0 and the upper bound to 1.0
 | |
|        */
 | |
|       uniform_real_distribution() : uniform_real_distribution(0.0) { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Constructs a uniform_real_distribution object.
 | |
|        *
 | |
|        * @param __a [IN]  The lower bound of the distribution.
 | |
|        * @param __b [IN]  The upper bound of the distribution.
 | |
|        */
 | |
|       explicit
 | |
|       uniform_real_distribution(_RealType __a, _RealType __b = _RealType(1))
 | |
|       : _M_param(__a, __b)
 | |
|       { }
 | |
| 
 | |
|       explicit
 | |
|       uniform_real_distribution(const param_type& __p)
 | |
|       : _M_param(__p)
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Resets the distribution state.
 | |
|        *
 | |
|        * Does nothing for the uniform real distribution.
 | |
|        */
 | |
|       void
 | |
|       reset() { }
 | |
| 
 | |
|       result_type
 | |
|       a() const
 | |
|       { return _M_param.a(); }
 | |
| 
 | |
|       result_type
 | |
|       b() const
 | |
|       { return _M_param.b(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the parameter set of the distribution.
 | |
|        */
 | |
|       param_type
 | |
|       param() const
 | |
|       { return _M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Sets the parameter set of the distribution.
 | |
|        * @param __param The new parameter set of the distribution.
 | |
|        */
 | |
|       void
 | |
|       param(const param_type& __param)
 | |
|       { _M_param = __param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the inclusive lower bound of the distribution range.
 | |
|        */
 | |
|       result_type
 | |
|       min() const
 | |
|       { return this->a(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the inclusive upper bound of the distribution range.
 | |
|        */
 | |
|       result_type
 | |
|       max() const
 | |
|       { return this->b(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generating functions.
 | |
|        */
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng)
 | |
|         { return this->operator()(__urng, _M_param); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{
 | |
| 	  __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
 | |
| 	    __aurng(__urng);
 | |
| 	  return (__aurng() * (__p.b() - __p.a())) + __p.a();
 | |
| 	}
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
| 	{ this->__generate(__f, __t, __urng, _M_param); }
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return true if two uniform real distributions have
 | |
|        *        the same parameters.
 | |
|        */
 | |
|       friend bool
 | |
|       operator==(const uniform_real_distribution& __d1,
 | |
| 		 const uniform_real_distribution& __d2)
 | |
|       { return __d1._M_param == __d2._M_param; }
 | |
| 
 | |
|     private:
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng,
 | |
| 			const param_type& __p);
 | |
| 
 | |
|       param_type _M_param;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|    * @brief Return true if two uniform real distributions have
 | |
|    *        different parameters.
 | |
|    */
 | |
|   template<typename _IntType>
 | |
|     inline bool
 | |
|     operator!=(const std::uniform_real_distribution<_IntType>& __d1,
 | |
| 	       const std::uniform_real_distribution<_IntType>& __d2)
 | |
|     { return !(__d1 == __d2); }
 | |
| 
 | |
|   /**
 | |
|    * @brief Inserts a %uniform_real_distribution random number
 | |
|    *        distribution @p __x into the output stream @p __os.
 | |
|    *
 | |
|    * @param __os An output stream.
 | |
|    * @param __x  A %uniform_real_distribution random number distribution.
 | |
|    *
 | |
|    * @returns The output stream with the state of @p __x inserted or in
 | |
|    *          an error state.
 | |
|    */
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>&,
 | |
| 	       const std::uniform_real_distribution<_RealType>&);
 | |
| 
 | |
|   /**
 | |
|    * @brief Extracts a %uniform_real_distribution random number distribution
 | |
|    * @p __x from the input stream @p __is.
 | |
|    *
 | |
|    * @param __is An input stream.
 | |
|    * @param __x  A %uniform_real_distribution random number generator engine.
 | |
|    *
 | |
|    * @returns The input stream with @p __x extracted or in an error state.
 | |
|    */
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>&,
 | |
| 	       std::uniform_real_distribution<_RealType>&);
 | |
| 
 | |
|   /* @} */ // group random_distributions_uniform
 | |
| 
 | |
|   /**
 | |
|    * @addtogroup random_distributions_normal Normal Distributions
 | |
|    * @ingroup random_distributions
 | |
|    * @{
 | |
|    */
 | |
| 
 | |
|   /**
 | |
|    * @brief A normal continuous distribution for random numbers.
 | |
|    *
 | |
|    * The formula for the normal probability density function is
 | |
|    * @f[
 | |
|    *     p(x|\mu,\sigma) = \frac{1}{\sigma \sqrt{2 \pi}}
 | |
|    *            e^{- \frac{{x - \mu}^ {2}}{2 \sigma ^ {2}} } 
 | |
|    * @f]
 | |
|    */
 | |
|   template<typename _RealType = double>
 | |
|     class normal_distribution
 | |
|     {
 | |
|       static_assert(std::is_floating_point<_RealType>::value,
 | |
| 		    "result_type must be a floating point type");
 | |
| 
 | |
|     public:
 | |
|       /** The type of the range of the distribution. */
 | |
|       typedef _RealType result_type;
 | |
| 
 | |
|       /** Parameter type. */
 | |
|       struct param_type
 | |
|       {
 | |
| 	typedef normal_distribution<_RealType> distribution_type;
 | |
| 
 | |
| 	param_type() : param_type(0.0) { }
 | |
| 
 | |
| 	explicit
 | |
| 	param_type(_RealType __mean, _RealType __stddev = _RealType(1))
 | |
| 	: _M_mean(__mean), _M_stddev(__stddev)
 | |
| 	{
 | |
| 	  __glibcxx_assert(_M_stddev > _RealType(0));
 | |
| 	}
 | |
| 
 | |
| 	_RealType
 | |
| 	mean() const
 | |
| 	{ return _M_mean; }
 | |
| 
 | |
| 	_RealType
 | |
| 	stddev() const
 | |
| 	{ return _M_stddev; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator==(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return (__p1._M_mean == __p2._M_mean
 | |
| 		  && __p1._M_stddev == __p2._M_stddev); }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator!=(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return !(__p1 == __p2); }
 | |
| 
 | |
|       private:
 | |
| 	_RealType _M_mean;
 | |
| 	_RealType _M_stddev;
 | |
|       };
 | |
| 
 | |
|     public:
 | |
|       normal_distribution() : normal_distribution(0.0) { }
 | |
| 
 | |
|       /**
 | |
|        * Constructs a normal distribution with parameters @f$mean@f$ and
 | |
|        * standard deviation.
 | |
|        */
 | |
|       explicit
 | |
|       normal_distribution(result_type __mean,
 | |
| 			  result_type __stddev = result_type(1))
 | |
|       : _M_param(__mean, __stddev), _M_saved_available(false)
 | |
|       { }
 | |
| 
 | |
|       explicit
 | |
|       normal_distribution(const param_type& __p)
 | |
|       : _M_param(__p), _M_saved_available(false)
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Resets the distribution state.
 | |
|        */
 | |
|       void
 | |
|       reset()
 | |
|       { _M_saved_available = false; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the mean of the distribution.
 | |
|        */
 | |
|       _RealType
 | |
|       mean() const
 | |
|       { return _M_param.mean(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the standard deviation of the distribution.
 | |
|        */
 | |
|       _RealType
 | |
|       stddev() const
 | |
|       { return _M_param.stddev(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the parameter set of the distribution.
 | |
|        */
 | |
|       param_type
 | |
|       param() const
 | |
|       { return _M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Sets the parameter set of the distribution.
 | |
|        * @param __param The new parameter set of the distribution.
 | |
|        */
 | |
|       void
 | |
|       param(const param_type& __param)
 | |
|       { _M_param = __param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the greatest lower bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       min() const
 | |
|       { return std::numeric_limits<result_type>::lowest(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the least upper bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       max() const
 | |
|       { return std::numeric_limits<result_type>::max(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generating functions.
 | |
|        */
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng)
 | |
| 	{ return this->operator()(__urng, _M_param); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p);
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
| 	{ this->__generate(__f, __t, __urng, _M_param); }
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return true if two normal distributions have
 | |
|        *        the same parameters and the sequences that would
 | |
|        *        be generated are equal.
 | |
|        */
 | |
|       template<typename _RealType1>
 | |
| 	friend bool
 | |
|         operator==(const std::normal_distribution<_RealType1>& __d1,
 | |
| 		   const std::normal_distribution<_RealType1>& __d2);
 | |
| 
 | |
|       /**
 | |
|        * @brief Inserts a %normal_distribution random number distribution
 | |
|        * @p __x into the output stream @p __os.
 | |
|        *
 | |
|        * @param __os An output stream.
 | |
|        * @param __x  A %normal_distribution random number distribution.
 | |
|        *
 | |
|        * @returns The output stream with the state of @p __x inserted or in
 | |
|        * an error state.
 | |
|        */
 | |
|       template<typename _RealType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_ostream<_CharT, _Traits>&
 | |
| 	operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 		   const std::normal_distribution<_RealType1>& __x);
 | |
| 
 | |
|       /**
 | |
|        * @brief Extracts a %normal_distribution random number distribution
 | |
|        * @p __x from the input stream @p __is.
 | |
|        *
 | |
|        * @param __is An input stream.
 | |
|        * @param __x  A %normal_distribution random number generator engine.
 | |
|        *
 | |
|        * @returns The input stream with @p __x extracted or in an error
 | |
|        *          state.
 | |
|        */
 | |
|       template<typename _RealType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_istream<_CharT, _Traits>&
 | |
| 	operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 		   std::normal_distribution<_RealType1>& __x);
 | |
| 
 | |
|     private:
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng,
 | |
| 			const param_type& __p);
 | |
| 
 | |
|       param_type  _M_param;
 | |
|       result_type _M_saved;
 | |
|       bool        _M_saved_available;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|    * @brief Return true if two normal distributions are different.
 | |
|    */
 | |
|   template<typename _RealType>
 | |
|     inline bool
 | |
|     operator!=(const std::normal_distribution<_RealType>& __d1,
 | |
| 	       const std::normal_distribution<_RealType>& __d2)
 | |
|     { return !(__d1 == __d2); }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * @brief A lognormal_distribution random number distribution.
 | |
|    *
 | |
|    * The formula for the normal probability mass function is
 | |
|    * @f[
 | |
|    *     p(x|m,s) = \frac{1}{sx\sqrt{2\pi}}
 | |
|    *                \exp{-\frac{(\ln{x} - m)^2}{2s^2}} 
 | |
|    * @f]
 | |
|    */
 | |
|   template<typename _RealType = double>
 | |
|     class lognormal_distribution
 | |
|     {
 | |
|       static_assert(std::is_floating_point<_RealType>::value,
 | |
| 		    "result_type must be a floating point type");
 | |
| 
 | |
|     public:
 | |
|       /** The type of the range of the distribution. */
 | |
|       typedef _RealType result_type;
 | |
| 
 | |
|       /** Parameter type. */
 | |
|       struct param_type
 | |
|       {
 | |
| 	typedef lognormal_distribution<_RealType> distribution_type;
 | |
| 
 | |
| 	param_type() : param_type(0.0) { }
 | |
| 
 | |
| 	explicit
 | |
| 	param_type(_RealType __m, _RealType __s = _RealType(1))
 | |
| 	: _M_m(__m), _M_s(__s)
 | |
| 	{ }
 | |
| 
 | |
| 	_RealType
 | |
| 	m() const
 | |
| 	{ return _M_m; }
 | |
| 
 | |
| 	_RealType
 | |
| 	s() const
 | |
| 	{ return _M_s; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator==(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return __p1._M_m == __p2._M_m && __p1._M_s == __p2._M_s; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator!=(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return !(__p1 == __p2); }
 | |
| 
 | |
|       private:
 | |
| 	_RealType _M_m;
 | |
| 	_RealType _M_s;
 | |
|       };
 | |
| 
 | |
|       lognormal_distribution() : lognormal_distribution(0.0) { }
 | |
| 
 | |
|       explicit
 | |
|       lognormal_distribution(_RealType __m, _RealType __s = _RealType(1))
 | |
|       : _M_param(__m, __s), _M_nd()
 | |
|       { }
 | |
| 
 | |
|       explicit
 | |
|       lognormal_distribution(const param_type& __p)
 | |
|       : _M_param(__p), _M_nd()
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * Resets the distribution state.
 | |
|        */
 | |
|       void
 | |
|       reset()
 | |
|       { _M_nd.reset(); }
 | |
| 
 | |
|       /**
 | |
|        *
 | |
|        */
 | |
|       _RealType
 | |
|       m() const
 | |
|       { return _M_param.m(); }
 | |
| 
 | |
|       _RealType
 | |
|       s() const
 | |
|       { return _M_param.s(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the parameter set of the distribution.
 | |
|        */
 | |
|       param_type
 | |
|       param() const
 | |
|       { return _M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Sets the parameter set of the distribution.
 | |
|        * @param __param The new parameter set of the distribution.
 | |
|        */
 | |
|       void
 | |
|       param(const param_type& __param)
 | |
|       { _M_param = __param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the greatest lower bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       min() const
 | |
|       { return result_type(0); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the least upper bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       max() const
 | |
|       { return std::numeric_limits<result_type>::max(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generating functions.
 | |
|        */
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng)
 | |
|         { return this->operator()(__urng, _M_param); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
|         { return std::exp(__p.s() * _M_nd(__urng) + __p.m()); }
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
| 	{ this->__generate(__f, __t, __urng, _M_param); }
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return true if two lognormal distributions have
 | |
|        *        the same parameters and the sequences that would
 | |
|        *        be generated are equal.
 | |
|        */
 | |
|       friend bool
 | |
|       operator==(const lognormal_distribution& __d1,
 | |
| 		 const lognormal_distribution& __d2)
 | |
|       { return (__d1._M_param == __d2._M_param
 | |
| 		&& __d1._M_nd == __d2._M_nd); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Inserts a %lognormal_distribution random number distribution
 | |
|        * @p __x into the output stream @p __os.
 | |
|        *
 | |
|        * @param __os An output stream.
 | |
|        * @param __x  A %lognormal_distribution random number distribution.
 | |
|        *
 | |
|        * @returns The output stream with the state of @p __x inserted or in
 | |
|        * an error state.
 | |
|        */
 | |
|       template<typename _RealType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_ostream<_CharT, _Traits>&
 | |
| 	operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 		   const std::lognormal_distribution<_RealType1>& __x);
 | |
| 
 | |
|       /**
 | |
|        * @brief Extracts a %lognormal_distribution random number distribution
 | |
|        * @p __x from the input stream @p __is.
 | |
|        *
 | |
|        * @param __is An input stream.
 | |
|        * @param __x A %lognormal_distribution random number
 | |
|        *            generator engine.
 | |
|        *
 | |
|        * @returns The input stream with @p __x extracted or in an error state.
 | |
|        */
 | |
|       template<typename _RealType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_istream<_CharT, _Traits>&
 | |
| 	operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 		   std::lognormal_distribution<_RealType1>& __x);
 | |
| 
 | |
|     private:
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng,
 | |
| 			const param_type& __p);
 | |
| 
 | |
|       param_type _M_param;
 | |
| 
 | |
|       std::normal_distribution<result_type> _M_nd;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|    * @brief Return true if two lognormal distributions are different.
 | |
|    */
 | |
|   template<typename _RealType>
 | |
|     inline bool
 | |
|     operator!=(const std::lognormal_distribution<_RealType>& __d1,
 | |
| 	       const std::lognormal_distribution<_RealType>& __d2)
 | |
|     { return !(__d1 == __d2); }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * @brief A gamma continuous distribution for random numbers.
 | |
|    *
 | |
|    * The formula for the gamma probability density function is:
 | |
|    * @f[
 | |
|    *     p(x|\alpha,\beta) = \frac{1}{\beta\Gamma(\alpha)}
 | |
|    *                         (x/\beta)^{\alpha - 1} e^{-x/\beta} 
 | |
|    * @f]
 | |
|    */
 | |
|   template<typename _RealType = double>
 | |
|     class gamma_distribution
 | |
|     {
 | |
|       static_assert(std::is_floating_point<_RealType>::value,
 | |
| 		    "result_type must be a floating point type");
 | |
| 
 | |
|     public:
 | |
|       /** The type of the range of the distribution. */
 | |
|       typedef _RealType result_type;
 | |
| 
 | |
|       /** Parameter type. */
 | |
|       struct param_type
 | |
|       {
 | |
| 	typedef gamma_distribution<_RealType> distribution_type;
 | |
| 	friend class gamma_distribution<_RealType>;
 | |
| 
 | |
| 	param_type() : param_type(1.0) { }
 | |
| 
 | |
| 	explicit
 | |
| 	param_type(_RealType __alpha_val, _RealType __beta_val = _RealType(1))
 | |
| 	: _M_alpha(__alpha_val), _M_beta(__beta_val)
 | |
| 	{
 | |
| 	  __glibcxx_assert(_M_alpha > _RealType(0));
 | |
| 	  _M_initialize();
 | |
| 	}
 | |
| 
 | |
| 	_RealType
 | |
| 	alpha() const
 | |
| 	{ return _M_alpha; }
 | |
| 
 | |
| 	_RealType
 | |
| 	beta() const
 | |
| 	{ return _M_beta; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator==(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return (__p1._M_alpha == __p2._M_alpha
 | |
| 		  && __p1._M_beta == __p2._M_beta); }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator!=(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return !(__p1 == __p2); }
 | |
| 
 | |
|       private:
 | |
| 	void
 | |
| 	_M_initialize();
 | |
| 
 | |
| 	_RealType _M_alpha;
 | |
| 	_RealType _M_beta;
 | |
| 
 | |
| 	_RealType _M_malpha, _M_a2;
 | |
|       };
 | |
| 
 | |
|     public:
 | |
|       /**
 | |
|        * @brief Constructs a gamma distribution with parameters 1 and 1.
 | |
|        */
 | |
|       gamma_distribution() : gamma_distribution(1.0) { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Constructs a gamma distribution with parameters
 | |
|        * @f$\alpha@f$ and @f$\beta@f$.
 | |
|        */
 | |
|       explicit
 | |
|       gamma_distribution(_RealType __alpha_val,
 | |
| 			 _RealType __beta_val = _RealType(1))
 | |
|       : _M_param(__alpha_val, __beta_val), _M_nd()
 | |
|       { }
 | |
| 
 | |
|       explicit
 | |
|       gamma_distribution(const param_type& __p)
 | |
|       : _M_param(__p), _M_nd()
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Resets the distribution state.
 | |
|        */
 | |
|       void
 | |
|       reset()
 | |
|       { _M_nd.reset(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the @f$\alpha@f$ of the distribution.
 | |
|        */
 | |
|       _RealType
 | |
|       alpha() const
 | |
|       { return _M_param.alpha(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the @f$\beta@f$ of the distribution.
 | |
|        */
 | |
|       _RealType
 | |
|       beta() const
 | |
|       { return _M_param.beta(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the parameter set of the distribution.
 | |
|        */
 | |
|       param_type
 | |
|       param() const
 | |
|       { return _M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Sets the parameter set of the distribution.
 | |
|        * @param __param The new parameter set of the distribution.
 | |
|        */
 | |
|       void
 | |
|       param(const param_type& __param)
 | |
|       { _M_param = __param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the greatest lower bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       min() const
 | |
|       { return result_type(0); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the least upper bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       max() const
 | |
|       { return std::numeric_limits<result_type>::max(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generating functions.
 | |
|        */
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng)
 | |
| 	{ return this->operator()(__urng, _M_param); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p);
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
| 	{ this->__generate(__f, __t, __urng, _M_param); }
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return true if two gamma distributions have the same
 | |
|        *        parameters and the sequences that would be generated
 | |
|        *        are equal.
 | |
|        */
 | |
|       friend bool
 | |
|       operator==(const gamma_distribution& __d1,
 | |
| 		 const gamma_distribution& __d2)
 | |
|       { return (__d1._M_param == __d2._M_param
 | |
| 		&& __d1._M_nd == __d2._M_nd); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Inserts a %gamma_distribution random number distribution
 | |
|        * @p __x into the output stream @p __os.
 | |
|        *
 | |
|        * @param __os An output stream.
 | |
|        * @param __x  A %gamma_distribution random number distribution.
 | |
|        *
 | |
|        * @returns The output stream with the state of @p __x inserted or in
 | |
|        * an error state.
 | |
|        */
 | |
|       template<typename _RealType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_ostream<_CharT, _Traits>&
 | |
| 	operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 		   const std::gamma_distribution<_RealType1>& __x);
 | |
| 
 | |
|       /**
 | |
|        * @brief Extracts a %gamma_distribution random number distribution
 | |
|        * @p __x from the input stream @p __is.
 | |
|        *
 | |
|        * @param __is An input stream.
 | |
|        * @param __x  A %gamma_distribution random number generator engine.
 | |
|        *
 | |
|        * @returns The input stream with @p __x extracted or in an error state.
 | |
|        */
 | |
|       template<typename _RealType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_istream<_CharT, _Traits>&
 | |
| 	operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 		   std::gamma_distribution<_RealType1>& __x);
 | |
| 
 | |
|     private:
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng,
 | |
| 			const param_type& __p);
 | |
| 
 | |
|       param_type _M_param;
 | |
| 
 | |
|       std::normal_distribution<result_type> _M_nd;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|    * @brief Return true if two gamma distributions are different.
 | |
|    */
 | |
|    template<typename _RealType>
 | |
|      inline bool
 | |
|      operator!=(const std::gamma_distribution<_RealType>& __d1,
 | |
| 		const std::gamma_distribution<_RealType>& __d2)
 | |
|     { return !(__d1 == __d2); }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * @brief A chi_squared_distribution random number distribution.
 | |
|    *
 | |
|    * The formula for the normal probability mass function is
 | |
|    * @f$p(x|n) = \frac{x^{(n/2) - 1}e^{-x/2}}{\Gamma(n/2) 2^{n/2}}@f$
 | |
|    */
 | |
|   template<typename _RealType = double>
 | |
|     class chi_squared_distribution
 | |
|     {
 | |
|       static_assert(std::is_floating_point<_RealType>::value,
 | |
| 		    "result_type must be a floating point type");
 | |
| 
 | |
|     public:
 | |
|       /** The type of the range of the distribution. */
 | |
|       typedef _RealType result_type;
 | |
| 
 | |
|       /** Parameter type. */
 | |
|       struct param_type
 | |
|       {
 | |
| 	typedef chi_squared_distribution<_RealType> distribution_type;
 | |
| 
 | |
| 	param_type() : param_type(1) { }
 | |
| 
 | |
| 	explicit
 | |
| 	param_type(_RealType __n)
 | |
| 	: _M_n(__n)
 | |
| 	{ }
 | |
| 
 | |
| 	_RealType
 | |
| 	n() const
 | |
| 	{ return _M_n; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator==(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return __p1._M_n == __p2._M_n; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator!=(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return !(__p1 == __p2); }
 | |
| 
 | |
|       private:
 | |
| 	_RealType _M_n;
 | |
|       };
 | |
| 
 | |
|       chi_squared_distribution() : chi_squared_distribution(1) { }
 | |
| 
 | |
|       explicit
 | |
|       chi_squared_distribution(_RealType __n)
 | |
|       : _M_param(__n), _M_gd(__n / 2)
 | |
|       { }
 | |
| 
 | |
|       explicit
 | |
|       chi_squared_distribution(const param_type& __p)
 | |
|       : _M_param(__p), _M_gd(__p.n() / 2)
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Resets the distribution state.
 | |
|        */
 | |
|       void
 | |
|       reset()
 | |
|       { _M_gd.reset(); }
 | |
| 
 | |
|       /**
 | |
|        *
 | |
|        */
 | |
|       _RealType
 | |
|       n() const
 | |
|       { return _M_param.n(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the parameter set of the distribution.
 | |
|        */
 | |
|       param_type
 | |
|       param() const
 | |
|       { return _M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Sets the parameter set of the distribution.
 | |
|        * @param __param The new parameter set of the distribution.
 | |
|        */
 | |
|       void
 | |
|       param(const param_type& __param)
 | |
|       {
 | |
| 	_M_param = __param;
 | |
| 	typedef typename std::gamma_distribution<result_type>::param_type
 | |
| 	  param_type;
 | |
| 	_M_gd.param(param_type{__param.n() / 2});
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the greatest lower bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       min() const
 | |
|       { return result_type(0); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the least upper bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       max() const
 | |
|       { return std::numeric_limits<result_type>::max(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generating functions.
 | |
|        */
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng)
 | |
| 	{ return 2 * _M_gd(__urng); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
|         {
 | |
| 	  typedef typename std::gamma_distribution<result_type>::param_type
 | |
| 	    param_type;
 | |
| 	  return 2 * _M_gd(__urng, param_type(__p.n() / 2));
 | |
| 	}
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
|         { this->__generate_impl(__f, __t, __urng); }
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ typename std::gamma_distribution<result_type>::param_type
 | |
| 	    __p2(__p.n() / 2);
 | |
| 	  this->__generate_impl(__f, __t, __urng, __p2); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
|         { this->__generate_impl(__f, __t, __urng); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ typename std::gamma_distribution<result_type>::param_type
 | |
| 	    __p2(__p.n() / 2);
 | |
| 	  this->__generate_impl(__f, __t, __urng, __p2); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return true if two Chi-squared distributions have
 | |
|        *        the same parameters and the sequences that would be
 | |
|        *        generated are equal.
 | |
|        */
 | |
|       friend bool
 | |
|       operator==(const chi_squared_distribution& __d1,
 | |
| 		 const chi_squared_distribution& __d2)
 | |
|       { return __d1._M_param == __d2._M_param && __d1._M_gd == __d2._M_gd; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Inserts a %chi_squared_distribution random number distribution
 | |
|        * @p __x into the output stream @p __os.
 | |
|        *
 | |
|        * @param __os An output stream.
 | |
|        * @param __x  A %chi_squared_distribution random number distribution.
 | |
|        *
 | |
|        * @returns The output stream with the state of @p __x inserted or in
 | |
|        * an error state.
 | |
|        */
 | |
|       template<typename _RealType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_ostream<_CharT, _Traits>&
 | |
| 	operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 		   const std::chi_squared_distribution<_RealType1>& __x);
 | |
| 
 | |
|       /**
 | |
|        * @brief Extracts a %chi_squared_distribution random number distribution
 | |
|        * @p __x from the input stream @p __is.
 | |
|        *
 | |
|        * @param __is An input stream.
 | |
|        * @param __x A %chi_squared_distribution random number
 | |
|        *            generator engine.
 | |
|        *
 | |
|        * @returns The input stream with @p __x extracted or in an error state.
 | |
|        */
 | |
|       template<typename _RealType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_istream<_CharT, _Traits>&
 | |
| 	operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 		   std::chi_squared_distribution<_RealType1>& __x);
 | |
| 
 | |
|     private:
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng);
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng,
 | |
| 			const typename
 | |
| 			std::gamma_distribution<result_type>::param_type& __p);
 | |
| 
 | |
|       param_type _M_param;
 | |
| 
 | |
|       std::gamma_distribution<result_type> _M_gd;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|    * @brief Return true if two Chi-squared distributions are different.
 | |
|    */
 | |
|   template<typename _RealType>
 | |
|     inline bool
 | |
|     operator!=(const std::chi_squared_distribution<_RealType>& __d1,
 | |
| 	       const std::chi_squared_distribution<_RealType>& __d2)
 | |
|     { return !(__d1 == __d2); }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * @brief A cauchy_distribution random number distribution.
 | |
|    *
 | |
|    * The formula for the normal probability mass function is
 | |
|    * @f$p(x|a,b) = (\pi b (1 + (\frac{x-a}{b})^2))^{-1}@f$
 | |
|    */
 | |
|   template<typename _RealType = double>
 | |
|     class cauchy_distribution
 | |
|     {
 | |
|       static_assert(std::is_floating_point<_RealType>::value,
 | |
| 		    "result_type must be a floating point type");
 | |
| 
 | |
|     public:
 | |
|       /** The type of the range of the distribution. */
 | |
|       typedef _RealType result_type;
 | |
| 
 | |
|       /** Parameter type. */
 | |
|       struct param_type
 | |
|       {
 | |
| 	typedef cauchy_distribution<_RealType> distribution_type;
 | |
| 
 | |
| 	param_type() : param_type(0) { }
 | |
| 
 | |
| 	explicit
 | |
| 	param_type(_RealType __a, _RealType __b = _RealType(1))
 | |
| 	: _M_a(__a), _M_b(__b)
 | |
| 	{ }
 | |
| 
 | |
| 	_RealType
 | |
| 	a() const
 | |
| 	{ return _M_a; }
 | |
| 
 | |
| 	_RealType
 | |
| 	b() const
 | |
| 	{ return _M_b; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator==(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator!=(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return !(__p1 == __p2); }
 | |
| 
 | |
|       private:
 | |
| 	_RealType _M_a;
 | |
| 	_RealType _M_b;
 | |
|       };
 | |
| 
 | |
|       cauchy_distribution() : cauchy_distribution(0.0) { }
 | |
| 
 | |
|       explicit
 | |
|       cauchy_distribution(_RealType __a, _RealType __b = 1.0)
 | |
|       : _M_param(__a, __b)
 | |
|       { }
 | |
| 
 | |
|       explicit
 | |
|       cauchy_distribution(const param_type& __p)
 | |
|       : _M_param(__p)
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Resets the distribution state.
 | |
|        */
 | |
|       void
 | |
|       reset()
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        *
 | |
|        */
 | |
|       _RealType
 | |
|       a() const
 | |
|       { return _M_param.a(); }
 | |
| 
 | |
|       _RealType
 | |
|       b() const
 | |
|       { return _M_param.b(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the parameter set of the distribution.
 | |
|        */
 | |
|       param_type
 | |
|       param() const
 | |
|       { return _M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Sets the parameter set of the distribution.
 | |
|        * @param __param The new parameter set of the distribution.
 | |
|        */
 | |
|       void
 | |
|       param(const param_type& __param)
 | |
|       { _M_param = __param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the greatest lower bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       min() const
 | |
|       { return std::numeric_limits<result_type>::lowest(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the least upper bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       max() const
 | |
|       { return std::numeric_limits<result_type>::max(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generating functions.
 | |
|        */
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng)
 | |
| 	{ return this->operator()(__urng, _M_param); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p);
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
| 	{ this->__generate(__f, __t, __urng, _M_param); }
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return true if two Cauchy distributions have
 | |
|        *        the same parameters.
 | |
|        */
 | |
|       friend bool
 | |
|       operator==(const cauchy_distribution& __d1,
 | |
| 		 const cauchy_distribution& __d2)
 | |
|       { return __d1._M_param == __d2._M_param; }
 | |
| 
 | |
|     private:
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng,
 | |
| 			const param_type& __p);
 | |
| 
 | |
|       param_type _M_param;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|    * @brief Return true if two Cauchy distributions have
 | |
|    *        different parameters.
 | |
|    */
 | |
|   template<typename _RealType>
 | |
|     inline bool
 | |
|     operator!=(const std::cauchy_distribution<_RealType>& __d1,
 | |
| 	       const std::cauchy_distribution<_RealType>& __d2)
 | |
|     { return !(__d1 == __d2); }
 | |
| 
 | |
|   /**
 | |
|    * @brief Inserts a %cauchy_distribution random number distribution
 | |
|    * @p __x into the output stream @p __os.
 | |
|    *
 | |
|    * @param __os An output stream.
 | |
|    * @param __x  A %cauchy_distribution random number distribution.
 | |
|    *
 | |
|    * @returns The output stream with the state of @p __x inserted or in
 | |
|    * an error state.
 | |
|    */
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const std::cauchy_distribution<_RealType>& __x);
 | |
| 
 | |
|   /**
 | |
|    * @brief Extracts a %cauchy_distribution random number distribution
 | |
|    * @p __x from the input stream @p __is.
 | |
|    *
 | |
|    * @param __is An input stream.
 | |
|    * @param __x A %cauchy_distribution random number
 | |
|    *            generator engine.
 | |
|    *
 | |
|    * @returns The input stream with @p __x extracted or in an error state.
 | |
|    */
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       std::cauchy_distribution<_RealType>& __x);
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * @brief A fisher_f_distribution random number distribution.
 | |
|    *
 | |
|    * The formula for the normal probability mass function is
 | |
|    * @f[
 | |
|    *     p(x|m,n) = \frac{\Gamma((m+n)/2)}{\Gamma(m/2)\Gamma(n/2)}
 | |
|    *                (\frac{m}{n})^{m/2} x^{(m/2)-1}
 | |
|    *                (1 + \frac{mx}{n})^{-(m+n)/2} 
 | |
|    * @f]
 | |
|    */
 | |
|   template<typename _RealType = double>
 | |
|     class fisher_f_distribution
 | |
|     {
 | |
|       static_assert(std::is_floating_point<_RealType>::value,
 | |
| 		    "result_type must be a floating point type");
 | |
| 
 | |
|     public:
 | |
|       /** The type of the range of the distribution. */
 | |
|       typedef _RealType result_type;
 | |
| 
 | |
|       /** Parameter type. */
 | |
|       struct param_type
 | |
|       {
 | |
| 	typedef fisher_f_distribution<_RealType> distribution_type;
 | |
| 
 | |
| 	param_type() : param_type(1) { }
 | |
| 
 | |
| 	explicit
 | |
| 	param_type(_RealType __m, _RealType __n = _RealType(1))
 | |
| 	: _M_m(__m), _M_n(__n)
 | |
| 	{ }
 | |
| 
 | |
| 	_RealType
 | |
| 	m() const
 | |
| 	{ return _M_m; }
 | |
| 
 | |
| 	_RealType
 | |
| 	n() const
 | |
| 	{ return _M_n; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator==(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return __p1._M_m == __p2._M_m && __p1._M_n == __p2._M_n; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator!=(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return !(__p1 == __p2); }
 | |
| 
 | |
|       private:
 | |
| 	_RealType _M_m;
 | |
| 	_RealType _M_n;
 | |
|       };
 | |
| 
 | |
|       fisher_f_distribution() : fisher_f_distribution(1.0) { }
 | |
| 
 | |
|       explicit
 | |
|       fisher_f_distribution(_RealType __m,
 | |
| 			    _RealType __n = _RealType(1))
 | |
|       : _M_param(__m, __n), _M_gd_x(__m / 2), _M_gd_y(__n / 2)
 | |
|       { }
 | |
| 
 | |
|       explicit
 | |
|       fisher_f_distribution(const param_type& __p)
 | |
|       : _M_param(__p), _M_gd_x(__p.m() / 2), _M_gd_y(__p.n() / 2)
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Resets the distribution state.
 | |
|        */
 | |
|       void
 | |
|       reset()
 | |
|       {
 | |
| 	_M_gd_x.reset();
 | |
| 	_M_gd_y.reset();
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        *
 | |
|        */
 | |
|       _RealType
 | |
|       m() const
 | |
|       { return _M_param.m(); }
 | |
| 
 | |
|       _RealType
 | |
|       n() const
 | |
|       { return _M_param.n(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the parameter set of the distribution.
 | |
|        */
 | |
|       param_type
 | |
|       param() const
 | |
|       { return _M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Sets the parameter set of the distribution.
 | |
|        * @param __param The new parameter set of the distribution.
 | |
|        */
 | |
|       void
 | |
|       param(const param_type& __param)
 | |
|       { _M_param = __param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the greatest lower bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       min() const
 | |
|       { return result_type(0); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the least upper bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       max() const
 | |
|       { return std::numeric_limits<result_type>::max(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generating functions.
 | |
|        */
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng)
 | |
| 	{ return (_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m()); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
|         {
 | |
| 	  typedef typename std::gamma_distribution<result_type>::param_type
 | |
| 	    param_type;
 | |
| 	  return ((_M_gd_x(__urng, param_type(__p.m() / 2)) * n())
 | |
| 		  / (_M_gd_y(__urng, param_type(__p.n() / 2)) * m()));
 | |
| 	}
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
| 	{ this->__generate_impl(__f, __t, __urng); }
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
| 	{ this->__generate_impl(__f, __t, __urng); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return true if two Fisher f distributions have
 | |
|        *        the same parameters and the sequences that would
 | |
|        *        be generated are equal.
 | |
|        */
 | |
|       friend bool
 | |
|       operator==(const fisher_f_distribution& __d1,
 | |
| 		 const fisher_f_distribution& __d2)
 | |
|       { return (__d1._M_param == __d2._M_param
 | |
| 		&& __d1._M_gd_x == __d2._M_gd_x
 | |
| 		&& __d1._M_gd_y == __d2._M_gd_y); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Inserts a %fisher_f_distribution random number distribution
 | |
|        * @p __x into the output stream @p __os.
 | |
|        *
 | |
|        * @param __os An output stream.
 | |
|        * @param __x  A %fisher_f_distribution random number distribution.
 | |
|        *
 | |
|        * @returns The output stream with the state of @p __x inserted or in
 | |
|        * an error state.
 | |
|        */
 | |
|       template<typename _RealType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_ostream<_CharT, _Traits>&
 | |
| 	operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 		   const std::fisher_f_distribution<_RealType1>& __x);
 | |
| 
 | |
|       /**
 | |
|        * @brief Extracts a %fisher_f_distribution random number distribution
 | |
|        * @p __x from the input stream @p __is.
 | |
|        *
 | |
|        * @param __is An input stream.
 | |
|        * @param __x A %fisher_f_distribution random number
 | |
|        *            generator engine.
 | |
|        *
 | |
|        * @returns The input stream with @p __x extracted or in an error state.
 | |
|        */
 | |
|       template<typename _RealType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_istream<_CharT, _Traits>&
 | |
| 	operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 		   std::fisher_f_distribution<_RealType1>& __x);
 | |
| 
 | |
|     private:
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng);
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng,
 | |
| 			const param_type& __p);
 | |
| 
 | |
|       param_type _M_param;
 | |
| 
 | |
|       std::gamma_distribution<result_type> _M_gd_x, _M_gd_y;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|    * @brief Return true if two Fisher f distributions are different.
 | |
|    */
 | |
|   template<typename _RealType>
 | |
|     inline bool
 | |
|     operator!=(const std::fisher_f_distribution<_RealType>& __d1,
 | |
| 	       const std::fisher_f_distribution<_RealType>& __d2)
 | |
|     { return !(__d1 == __d2); }
 | |
| 
 | |
|   /**
 | |
|    * @brief A student_t_distribution random number distribution.
 | |
|    *
 | |
|    * The formula for the normal probability mass function is:
 | |
|    * @f[
 | |
|    *     p(x|n) = \frac{1}{\sqrt(n\pi)} \frac{\Gamma((n+1)/2)}{\Gamma(n/2)}
 | |
|    *              (1 + \frac{x^2}{n}) ^{-(n+1)/2} 
 | |
|    * @f]
 | |
|    */
 | |
|   template<typename _RealType = double>
 | |
|     class student_t_distribution
 | |
|     {
 | |
|       static_assert(std::is_floating_point<_RealType>::value,
 | |
| 		    "result_type must be a floating point type");
 | |
| 
 | |
|     public:
 | |
|       /** The type of the range of the distribution. */
 | |
|       typedef _RealType result_type;
 | |
| 
 | |
|       /** Parameter type. */
 | |
|       struct param_type
 | |
|       {
 | |
| 	typedef student_t_distribution<_RealType> distribution_type;
 | |
| 
 | |
| 	param_type() : param_type(1) { }
 | |
| 
 | |
| 	explicit
 | |
| 	param_type(_RealType __n)
 | |
| 	: _M_n(__n)
 | |
| 	{ }
 | |
| 
 | |
| 	_RealType
 | |
| 	n() const
 | |
| 	{ return _M_n; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator==(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return __p1._M_n == __p2._M_n; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator!=(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return !(__p1 == __p2); }
 | |
| 
 | |
|       private:
 | |
| 	_RealType _M_n;
 | |
|       };
 | |
| 
 | |
|       student_t_distribution() : student_t_distribution(1.0) { }
 | |
| 
 | |
|       explicit
 | |
|       student_t_distribution(_RealType __n)
 | |
|       : _M_param(__n), _M_nd(), _M_gd(__n / 2, 2)
 | |
|       { }
 | |
| 
 | |
|       explicit
 | |
|       student_t_distribution(const param_type& __p)
 | |
|       : _M_param(__p), _M_nd(), _M_gd(__p.n() / 2, 2)
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Resets the distribution state.
 | |
|        */
 | |
|       void
 | |
|       reset()
 | |
|       {
 | |
| 	_M_nd.reset();
 | |
| 	_M_gd.reset();
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        *
 | |
|        */
 | |
|       _RealType
 | |
|       n() const
 | |
|       { return _M_param.n(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the parameter set of the distribution.
 | |
|        */
 | |
|       param_type
 | |
|       param() const
 | |
|       { return _M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Sets the parameter set of the distribution.
 | |
|        * @param __param The new parameter set of the distribution.
 | |
|        */
 | |
|       void
 | |
|       param(const param_type& __param)
 | |
|       { _M_param = __param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the greatest lower bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       min() const
 | |
|       { return std::numeric_limits<result_type>::lowest(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the least upper bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       max() const
 | |
|       { return std::numeric_limits<result_type>::max(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generating functions.
 | |
|        */
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
|         operator()(_UniformRandomNumberGenerator& __urng)
 | |
|         { return _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng)); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
|         {
 | |
| 	  typedef typename std::gamma_distribution<result_type>::param_type
 | |
| 	    param_type;
 | |
| 	
 | |
| 	  const result_type __g = _M_gd(__urng, param_type(__p.n() / 2, 2));
 | |
| 	  return _M_nd(__urng) * std::sqrt(__p.n() / __g);
 | |
|         }
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
| 	{ this->__generate_impl(__f, __t, __urng); }
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
| 	{ this->__generate_impl(__f, __t, __urng); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return true if two Student t distributions have
 | |
|        *        the same parameters and the sequences that would
 | |
|        *        be generated are equal.
 | |
|        */
 | |
|       friend bool
 | |
|       operator==(const student_t_distribution& __d1,
 | |
| 		 const student_t_distribution& __d2)
 | |
|       { return (__d1._M_param == __d2._M_param
 | |
| 		&& __d1._M_nd == __d2._M_nd && __d1._M_gd == __d2._M_gd); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Inserts a %student_t_distribution random number distribution
 | |
|        * @p __x into the output stream @p __os.
 | |
|        *
 | |
|        * @param __os An output stream.
 | |
|        * @param __x  A %student_t_distribution random number distribution.
 | |
|        *
 | |
|        * @returns The output stream with the state of @p __x inserted or in
 | |
|        * an error state.
 | |
|        */
 | |
|       template<typename _RealType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_ostream<_CharT, _Traits>&
 | |
| 	operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 		   const std::student_t_distribution<_RealType1>& __x);
 | |
| 
 | |
|       /**
 | |
|        * @brief Extracts a %student_t_distribution random number distribution
 | |
|        * @p __x from the input stream @p __is.
 | |
|        *
 | |
|        * @param __is An input stream.
 | |
|        * @param __x A %student_t_distribution random number
 | |
|        *            generator engine.
 | |
|        *
 | |
|        * @returns The input stream with @p __x extracted or in an error state.
 | |
|        */
 | |
|       template<typename _RealType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_istream<_CharT, _Traits>&
 | |
| 	operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 		   std::student_t_distribution<_RealType1>& __x);
 | |
| 
 | |
|     private:
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng);
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng,
 | |
| 			const param_type& __p);
 | |
| 
 | |
|       param_type _M_param;
 | |
| 
 | |
|       std::normal_distribution<result_type> _M_nd;
 | |
|       std::gamma_distribution<result_type> _M_gd;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|    * @brief Return true if two Student t distributions are different.
 | |
|    */
 | |
|   template<typename _RealType>
 | |
|     inline bool
 | |
|     operator!=(const std::student_t_distribution<_RealType>& __d1,
 | |
| 	       const std::student_t_distribution<_RealType>& __d2)
 | |
|     { return !(__d1 == __d2); }
 | |
| 
 | |
| 
 | |
|   /* @} */ // group random_distributions_normal
 | |
| 
 | |
|   /**
 | |
|    * @addtogroup random_distributions_bernoulli Bernoulli Distributions
 | |
|    * @ingroup random_distributions
 | |
|    * @{
 | |
|    */
 | |
| 
 | |
|   /**
 | |
|    * @brief A Bernoulli random number distribution.
 | |
|    *
 | |
|    * Generates a sequence of true and false values with likelihood @f$p@f$
 | |
|    * that true will come up and @f$(1 - p)@f$ that false will appear.
 | |
|    */
 | |
|   class bernoulli_distribution
 | |
|   {
 | |
|   public:
 | |
|     /** The type of the range of the distribution. */
 | |
|     typedef bool result_type;
 | |
| 
 | |
|     /** Parameter type. */
 | |
|     struct param_type
 | |
|     {
 | |
|       typedef bernoulli_distribution distribution_type;
 | |
| 
 | |
|       param_type() : param_type(0.5) { }
 | |
| 
 | |
|       explicit
 | |
|       param_type(double __p)
 | |
|       : _M_p(__p)
 | |
|       {
 | |
| 	__glibcxx_assert((_M_p >= 0.0) && (_M_p <= 1.0));
 | |
|       }
 | |
| 
 | |
|       double
 | |
|       p() const
 | |
|       { return _M_p; }
 | |
| 
 | |
|       friend bool
 | |
|       operator==(const param_type& __p1, const param_type& __p2)
 | |
|       { return __p1._M_p == __p2._M_p; }
 | |
| 
 | |
|       friend bool
 | |
|       operator!=(const param_type& __p1, const param_type& __p2)
 | |
|       { return !(__p1 == __p2); }
 | |
| 
 | |
|     private:
 | |
|       double _M_p;
 | |
|     };
 | |
| 
 | |
|   public:
 | |
|     /**
 | |
|      * @brief Constructs a Bernoulli distribution with likelihood 0.5.
 | |
|      */
 | |
|     bernoulli_distribution() : bernoulli_distribution(0.5) { }
 | |
| 
 | |
|     /**
 | |
|      * @brief Constructs a Bernoulli distribution with likelihood @p p.
 | |
|      *
 | |
|      * @param __p  [IN]  The likelihood of a true result being returned.
 | |
|      *                   Must be in the interval @f$[0, 1]@f$.
 | |
|      */
 | |
|     explicit
 | |
|     bernoulli_distribution(double __p)
 | |
|     : _M_param(__p)
 | |
|     { }
 | |
| 
 | |
|     explicit
 | |
|     bernoulli_distribution(const param_type& __p)
 | |
|     : _M_param(__p)
 | |
|     { }
 | |
| 
 | |
|     /**
 | |
|      * @brief Resets the distribution state.
 | |
|      *
 | |
|      * Does nothing for a Bernoulli distribution.
 | |
|      */
 | |
|     void
 | |
|     reset() { }
 | |
| 
 | |
|     /**
 | |
|      * @brief Returns the @p p parameter of the distribution.
 | |
|      */
 | |
|     double
 | |
|     p() const
 | |
|     { return _M_param.p(); }
 | |
| 
 | |
|     /**
 | |
|      * @brief Returns the parameter set of the distribution.
 | |
|      */
 | |
|     param_type
 | |
|     param() const
 | |
|     { return _M_param; }
 | |
| 
 | |
|     /**
 | |
|      * @brief Sets the parameter set of the distribution.
 | |
|      * @param __param The new parameter set of the distribution.
 | |
|      */
 | |
|     void
 | |
|     param(const param_type& __param)
 | |
|     { _M_param = __param; }
 | |
| 
 | |
|     /**
 | |
|      * @brief Returns the greatest lower bound value of the distribution.
 | |
|      */
 | |
|     result_type
 | |
|     min() const
 | |
|     { return std::numeric_limits<result_type>::min(); }
 | |
| 
 | |
|     /**
 | |
|      * @brief Returns the least upper bound value of the distribution.
 | |
|      */
 | |
|     result_type
 | |
|     max() const
 | |
|     { return std::numeric_limits<result_type>::max(); }
 | |
| 
 | |
|     /**
 | |
|      * @brief Generating functions.
 | |
|      */
 | |
|     template<typename _UniformRandomNumberGenerator>
 | |
|       result_type
 | |
|       operator()(_UniformRandomNumberGenerator& __urng)
 | |
|       { return this->operator()(__urng, _M_param); }
 | |
| 
 | |
|     template<typename _UniformRandomNumberGenerator>
 | |
|       result_type
 | |
|       operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		 const param_type& __p)
 | |
|       {
 | |
| 	__detail::_Adaptor<_UniformRandomNumberGenerator, double>
 | |
| 	  __aurng(__urng);
 | |
| 	if ((__aurng() - __aurng.min())
 | |
| 	     < __p.p() * (__aurng.max() - __aurng.min()))
 | |
| 	  return true;
 | |
| 	return false;
 | |
|       }
 | |
| 
 | |
|     template<typename _ForwardIterator,
 | |
| 	     typename _UniformRandomNumberGenerator>
 | |
|       void
 | |
|       __generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		 _UniformRandomNumberGenerator& __urng)
 | |
|       { this->__generate(__f, __t, __urng, _M_param); }
 | |
| 
 | |
|     template<typename _ForwardIterator,
 | |
| 	     typename _UniformRandomNumberGenerator>
 | |
|       void
 | |
|       __generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		 _UniformRandomNumberGenerator& __urng, const param_type& __p)
 | |
|       { this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|     template<typename _UniformRandomNumberGenerator>
 | |
|       void
 | |
|       __generate(result_type* __f, result_type* __t,
 | |
| 		 _UniformRandomNumberGenerator& __urng,
 | |
| 		 const param_type& __p)
 | |
|       { this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|     /**
 | |
|      * @brief Return true if two Bernoulli distributions have
 | |
|      *        the same parameters.
 | |
|      */
 | |
|     friend bool
 | |
|     operator==(const bernoulli_distribution& __d1,
 | |
| 	       const bernoulli_distribution& __d2)
 | |
|     { return __d1._M_param == __d2._M_param; }
 | |
| 
 | |
|   private:
 | |
|     template<typename _ForwardIterator,
 | |
| 	     typename _UniformRandomNumberGenerator>
 | |
|       void
 | |
|       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		      _UniformRandomNumberGenerator& __urng,
 | |
| 		      const param_type& __p);
 | |
| 
 | |
|     param_type _M_param;
 | |
|   };
 | |
| 
 | |
|   /**
 | |
|    * @brief Return true if two Bernoulli distributions have
 | |
|    *        different parameters.
 | |
|    */
 | |
|   inline bool
 | |
|   operator!=(const std::bernoulli_distribution& __d1,
 | |
| 	     const std::bernoulli_distribution& __d2)
 | |
|   { return !(__d1 == __d2); }
 | |
| 
 | |
|   /**
 | |
|    * @brief Inserts a %bernoulli_distribution random number distribution
 | |
|    * @p __x into the output stream @p __os.
 | |
|    *
 | |
|    * @param __os An output stream.
 | |
|    * @param __x  A %bernoulli_distribution random number distribution.
 | |
|    *
 | |
|    * @returns The output stream with the state of @p __x inserted or in
 | |
|    * an error state.
 | |
|    */
 | |
|   template<typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const std::bernoulli_distribution& __x);
 | |
| 
 | |
|   /**
 | |
|    * @brief Extracts a %bernoulli_distribution random number distribution
 | |
|    * @p __x from the input stream @p __is.
 | |
|    *
 | |
|    * @param __is An input stream.
 | |
|    * @param __x  A %bernoulli_distribution random number generator engine.
 | |
|    *
 | |
|    * @returns The input stream with @p __x extracted or in an error state.
 | |
|    */
 | |
|   template<typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       std::bernoulli_distribution& __x)
 | |
|     {
 | |
|       double __p;
 | |
|       __is >> __p;
 | |
|       __x.param(bernoulli_distribution::param_type(__p));
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * @brief A discrete binomial random number distribution.
 | |
|    *
 | |
|    * The formula for the binomial probability density function is
 | |
|    * @f$p(i|t,p) = \binom{t}{i} p^i (1 - p)^{t - i}@f$ where @f$t@f$
 | |
|    * and @f$p@f$ are the parameters of the distribution.
 | |
|    */
 | |
|   template<typename _IntType = int>
 | |
|     class binomial_distribution
 | |
|     {
 | |
|       static_assert(std::is_integral<_IntType>::value,
 | |
| 		    "result_type must be an integral type");
 | |
| 
 | |
|     public:
 | |
|       /** The type of the range of the distribution. */
 | |
|       typedef _IntType result_type;
 | |
| 
 | |
|       /** Parameter type. */
 | |
|       struct param_type
 | |
|       {
 | |
| 	typedef binomial_distribution<_IntType> distribution_type;
 | |
| 	friend class binomial_distribution<_IntType>;
 | |
| 
 | |
| 	param_type() : param_type(1) { }
 | |
| 
 | |
| 	explicit
 | |
| 	param_type(_IntType __t, double __p = 0.5)
 | |
| 	: _M_t(__t), _M_p(__p)
 | |
| 	{
 | |
| 	  __glibcxx_assert((_M_t >= _IntType(0))
 | |
| 				&& (_M_p >= 0.0)
 | |
| 				&& (_M_p <= 1.0));
 | |
| 	  _M_initialize();
 | |
| 	}
 | |
| 
 | |
| 	_IntType
 | |
| 	t() const
 | |
| 	{ return _M_t; }
 | |
| 
 | |
| 	double
 | |
| 	p() const
 | |
| 	{ return _M_p; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator==(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return __p1._M_t == __p2._M_t && __p1._M_p == __p2._M_p; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator!=(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return !(__p1 == __p2); }
 | |
| 
 | |
|       private:
 | |
| 	void
 | |
| 	_M_initialize();
 | |
| 
 | |
| 	_IntType _M_t;
 | |
| 	double _M_p;
 | |
| 
 | |
| 	double _M_q;
 | |
| #if _GLIBCXX_USE_C99_MATH_TR1
 | |
| 	double _M_d1, _M_d2, _M_s1, _M_s2, _M_c,
 | |
| 	       _M_a1, _M_a123, _M_s, _M_lf, _M_lp1p;
 | |
| #endif
 | |
| 	bool   _M_easy;
 | |
|       };
 | |
| 
 | |
|       // constructors and member functions
 | |
| 
 | |
|       binomial_distribution() : binomial_distribution(1) { }
 | |
| 
 | |
|       explicit
 | |
|       binomial_distribution(_IntType __t, double __p = 0.5)
 | |
|       : _M_param(__t, __p), _M_nd()
 | |
|       { }
 | |
| 
 | |
|       explicit
 | |
|       binomial_distribution(const param_type& __p)
 | |
|       : _M_param(__p), _M_nd()
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Resets the distribution state.
 | |
|        */
 | |
|       void
 | |
|       reset()
 | |
|       { _M_nd.reset(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the distribution @p t parameter.
 | |
|        */
 | |
|       _IntType
 | |
|       t() const
 | |
|       { return _M_param.t(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the distribution @p p parameter.
 | |
|        */
 | |
|       double
 | |
|       p() const
 | |
|       { return _M_param.p(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the parameter set of the distribution.
 | |
|        */
 | |
|       param_type
 | |
|       param() const
 | |
|       { return _M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Sets the parameter set of the distribution.
 | |
|        * @param __param The new parameter set of the distribution.
 | |
|        */
 | |
|       void
 | |
|       param(const param_type& __param)
 | |
|       { _M_param = __param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the greatest lower bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       min() const
 | |
|       { return 0; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the least upper bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       max() const
 | |
|       { return _M_param.t(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generating functions.
 | |
|        */
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng)
 | |
| 	{ return this->operator()(__urng, _M_param); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p);
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
| 	{ this->__generate(__f, __t, __urng, _M_param); }
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return true if two binomial distributions have
 | |
|        *        the same parameters and the sequences that would
 | |
|        *        be generated are equal.
 | |
|        */
 | |
| 	friend bool
 | |
|         operator==(const binomial_distribution& __d1,
 | |
| 		   const binomial_distribution& __d2)
 | |
| #ifdef _GLIBCXX_USE_C99_MATH_TR1
 | |
| 	{ return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd; }
 | |
| #else
 | |
|         { return __d1._M_param == __d2._M_param; }
 | |
| #endif
 | |
| 
 | |
|       /**
 | |
|        * @brief Inserts a %binomial_distribution random number distribution
 | |
|        * @p __x into the output stream @p __os.
 | |
|        *
 | |
|        * @param __os An output stream.
 | |
|        * @param __x  A %binomial_distribution random number distribution.
 | |
|        *
 | |
|        * @returns The output stream with the state of @p __x inserted or in
 | |
|        * an error state.
 | |
|        */
 | |
|       template<typename _IntType1,
 | |
| 	       typename _CharT, typename _Traits>
 | |
| 	friend std::basic_ostream<_CharT, _Traits>&
 | |
| 	operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 		   const std::binomial_distribution<_IntType1>& __x);
 | |
| 
 | |
|       /**
 | |
|        * @brief Extracts a %binomial_distribution random number distribution
 | |
|        * @p __x from the input stream @p __is.
 | |
|        *
 | |
|        * @param __is An input stream.
 | |
|        * @param __x  A %binomial_distribution random number generator engine.
 | |
|        *
 | |
|        * @returns The input stream with @p __x extracted or in an error
 | |
|        *          state.
 | |
|        */
 | |
|       template<typename _IntType1,
 | |
| 	       typename _CharT, typename _Traits>
 | |
| 	friend std::basic_istream<_CharT, _Traits>&
 | |
| 	operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 		   std::binomial_distribution<_IntType1>& __x);
 | |
| 
 | |
|     private:
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng,
 | |
| 			const param_type& __p);
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	_M_waiting(_UniformRandomNumberGenerator& __urng,
 | |
| 		   _IntType __t, double __q);
 | |
| 
 | |
|       param_type _M_param;
 | |
| 
 | |
|       // NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined.
 | |
|       std::normal_distribution<double> _M_nd;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|    * @brief Return true if two binomial distributions are different.
 | |
|    */
 | |
|   template<typename _IntType>
 | |
|     inline bool
 | |
|     operator!=(const std::binomial_distribution<_IntType>& __d1,
 | |
| 	       const std::binomial_distribution<_IntType>& __d2)
 | |
|     { return !(__d1 == __d2); }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * @brief A discrete geometric random number distribution.
 | |
|    *
 | |
|    * The formula for the geometric probability density function is
 | |
|    * @f$p(i|p) = p(1 - p)^{i}@f$ where @f$p@f$ is the parameter of the
 | |
|    * distribution.
 | |
|    */
 | |
|   template<typename _IntType = int>
 | |
|     class geometric_distribution
 | |
|     {
 | |
|       static_assert(std::is_integral<_IntType>::value,
 | |
| 		    "result_type must be an integral type");
 | |
| 
 | |
|     public:
 | |
|       /** The type of the range of the distribution. */
 | |
|       typedef _IntType  result_type;
 | |
| 
 | |
|       /** Parameter type. */
 | |
|       struct param_type
 | |
|       {
 | |
| 	typedef geometric_distribution<_IntType> distribution_type;
 | |
| 	friend class geometric_distribution<_IntType>;
 | |
| 
 | |
| 	param_type() : param_type(0.5) { }
 | |
| 
 | |
| 	explicit
 | |
| 	param_type(double __p)
 | |
| 	: _M_p(__p)
 | |
| 	{
 | |
| 	  __glibcxx_assert((_M_p > 0.0) && (_M_p < 1.0));
 | |
| 	  _M_initialize();
 | |
| 	}
 | |
| 
 | |
| 	double
 | |
| 	p() const
 | |
| 	{ return _M_p; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator==(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return __p1._M_p == __p2._M_p; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator!=(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return !(__p1 == __p2); }
 | |
| 
 | |
|       private:
 | |
| 	void
 | |
| 	_M_initialize()
 | |
| 	{ _M_log_1_p = std::log(1.0 - _M_p); }
 | |
| 
 | |
| 	double _M_p;
 | |
| 
 | |
| 	double _M_log_1_p;
 | |
|       };
 | |
| 
 | |
|       // constructors and member functions
 | |
| 
 | |
|       geometric_distribution() : geometric_distribution(0.5) { }
 | |
| 
 | |
|       explicit
 | |
|       geometric_distribution(double __p)
 | |
|       : _M_param(__p)
 | |
|       { }
 | |
| 
 | |
|       explicit
 | |
|       geometric_distribution(const param_type& __p)
 | |
|       : _M_param(__p)
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Resets the distribution state.
 | |
|        *
 | |
|        * Does nothing for the geometric distribution.
 | |
|        */
 | |
|       void
 | |
|       reset() { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the distribution parameter @p p.
 | |
|        */
 | |
|       double
 | |
|       p() const
 | |
|       { return _M_param.p(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the parameter set of the distribution.
 | |
|        */
 | |
|       param_type
 | |
|       param() const
 | |
|       { return _M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Sets the parameter set of the distribution.
 | |
|        * @param __param The new parameter set of the distribution.
 | |
|        */
 | |
|       void
 | |
|       param(const param_type& __param)
 | |
|       { _M_param = __param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the greatest lower bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       min() const
 | |
|       { return 0; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the least upper bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       max() const
 | |
|       { return std::numeric_limits<result_type>::max(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generating functions.
 | |
|        */
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng)
 | |
| 	{ return this->operator()(__urng, _M_param); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p);
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
| 	{ this->__generate(__f, __t, __urng, _M_param); }
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return true if two geometric distributions have
 | |
|        *        the same parameters.
 | |
|        */
 | |
|       friend bool
 | |
|       operator==(const geometric_distribution& __d1,
 | |
| 		 const geometric_distribution& __d2)
 | |
|       { return __d1._M_param == __d2._M_param; }
 | |
| 
 | |
|     private:
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng,
 | |
| 			const param_type& __p);
 | |
| 
 | |
|       param_type _M_param;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|    * @brief Return true if two geometric distributions have
 | |
|    *        different parameters.
 | |
|    */
 | |
|   template<typename _IntType>
 | |
|     inline bool
 | |
|     operator!=(const std::geometric_distribution<_IntType>& __d1,
 | |
| 	       const std::geometric_distribution<_IntType>& __d2)
 | |
|     { return !(__d1 == __d2); }
 | |
| 
 | |
|   /**
 | |
|    * @brief Inserts a %geometric_distribution random number distribution
 | |
|    * @p __x into the output stream @p __os.
 | |
|    *
 | |
|    * @param __os An output stream.
 | |
|    * @param __x  A %geometric_distribution random number distribution.
 | |
|    *
 | |
|    * @returns The output stream with the state of @p __x inserted or in
 | |
|    * an error state.
 | |
|    */
 | |
|   template<typename _IntType,
 | |
| 	   typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const std::geometric_distribution<_IntType>& __x);
 | |
| 
 | |
|   /**
 | |
|    * @brief Extracts a %geometric_distribution random number distribution
 | |
|    * @p __x from the input stream @p __is.
 | |
|    *
 | |
|    * @param __is An input stream.
 | |
|    * @param __x  A %geometric_distribution random number generator engine.
 | |
|    *
 | |
|    * @returns The input stream with @p __x extracted or in an error state.
 | |
|    */
 | |
|   template<typename _IntType,
 | |
| 	   typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       std::geometric_distribution<_IntType>& __x);
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * @brief A negative_binomial_distribution random number distribution.
 | |
|    *
 | |
|    * The formula for the negative binomial probability mass function is
 | |
|    * @f$p(i) = \binom{n}{i} p^i (1 - p)^{t - i}@f$ where @f$t@f$
 | |
|    * and @f$p@f$ are the parameters of the distribution.
 | |
|    */
 | |
|   template<typename _IntType = int>
 | |
|     class negative_binomial_distribution
 | |
|     {
 | |
|       static_assert(std::is_integral<_IntType>::value,
 | |
| 		    "result_type must be an integral type");
 | |
| 
 | |
|     public:
 | |
|       /** The type of the range of the distribution. */
 | |
|       typedef _IntType result_type;
 | |
| 
 | |
|       /** Parameter type. */
 | |
|       struct param_type
 | |
|       {
 | |
| 	typedef negative_binomial_distribution<_IntType> distribution_type;
 | |
| 
 | |
| 	param_type() : param_type(1) { }
 | |
| 
 | |
| 	explicit
 | |
| 	param_type(_IntType __k, double __p = 0.5)
 | |
| 	: _M_k(__k), _M_p(__p)
 | |
| 	{
 | |
| 	  __glibcxx_assert((_M_k > 0) && (_M_p > 0.0) && (_M_p <= 1.0));
 | |
| 	}
 | |
| 
 | |
| 	_IntType
 | |
| 	k() const
 | |
| 	{ return _M_k; }
 | |
| 
 | |
| 	double
 | |
| 	p() const
 | |
| 	{ return _M_p; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator==(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return __p1._M_k == __p2._M_k && __p1._M_p == __p2._M_p; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator!=(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return !(__p1 == __p2); }
 | |
| 
 | |
|       private:
 | |
| 	_IntType _M_k;
 | |
| 	double _M_p;
 | |
|       };
 | |
| 
 | |
|       negative_binomial_distribution() : negative_binomial_distribution(1) { }
 | |
| 
 | |
|       explicit
 | |
|       negative_binomial_distribution(_IntType __k, double __p = 0.5)
 | |
|       : _M_param(__k, __p), _M_gd(__k, (1.0 - __p) / __p)
 | |
|       { }
 | |
| 
 | |
|       explicit
 | |
|       negative_binomial_distribution(const param_type& __p)
 | |
|       : _M_param(__p), _M_gd(__p.k(), (1.0 - __p.p()) / __p.p())
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Resets the distribution state.
 | |
|        */
 | |
|       void
 | |
|       reset()
 | |
|       { _M_gd.reset(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return the @f$k@f$ parameter of the distribution.
 | |
|        */
 | |
|       _IntType
 | |
|       k() const
 | |
|       { return _M_param.k(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return the @f$p@f$ parameter of the distribution.
 | |
|        */
 | |
|       double
 | |
|       p() const
 | |
|       { return _M_param.p(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the parameter set of the distribution.
 | |
|        */
 | |
|       param_type
 | |
|       param() const
 | |
|       { return _M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Sets the parameter set of the distribution.
 | |
|        * @param __param The new parameter set of the distribution.
 | |
|        */
 | |
|       void
 | |
|       param(const param_type& __param)
 | |
|       { _M_param = __param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the greatest lower bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       min() const
 | |
|       { return result_type(0); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the least upper bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       max() const
 | |
|       { return std::numeric_limits<result_type>::max(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generating functions.
 | |
|        */
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
|         operator()(_UniformRandomNumberGenerator& __urng);
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p);
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
| 	{ this->__generate_impl(__f, __t, __urng); }
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
| 	{ this->__generate_impl(__f, __t, __urng); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return true if two negative binomial distributions have
 | |
|        *        the same parameters and the sequences that would be
 | |
|        *        generated are equal.
 | |
|        */
 | |
|       friend bool
 | |
|       operator==(const negative_binomial_distribution& __d1,
 | |
| 		 const negative_binomial_distribution& __d2)
 | |
|       { return __d1._M_param == __d2._M_param && __d1._M_gd == __d2._M_gd; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Inserts a %negative_binomial_distribution random
 | |
|        *        number distribution @p __x into the output stream @p __os.
 | |
|        *
 | |
|        * @param __os An output stream.
 | |
|        * @param __x  A %negative_binomial_distribution random number
 | |
|        *             distribution.
 | |
|        *
 | |
|        * @returns The output stream with the state of @p __x inserted or in
 | |
|        *          an error state.
 | |
|        */
 | |
|       template<typename _IntType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_ostream<_CharT, _Traits>&
 | |
| 	operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 		   const std::negative_binomial_distribution<_IntType1>& __x);
 | |
| 
 | |
|       /**
 | |
|        * @brief Extracts a %negative_binomial_distribution random number
 | |
|        *        distribution @p __x from the input stream @p __is.
 | |
|        *
 | |
|        * @param __is An input stream.
 | |
|        * @param __x A %negative_binomial_distribution random number
 | |
|        *            generator engine.
 | |
|        *
 | |
|        * @returns The input stream with @p __x extracted or in an error state.
 | |
|        */
 | |
|       template<typename _IntType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_istream<_CharT, _Traits>&
 | |
| 	operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 		   std::negative_binomial_distribution<_IntType1>& __x);
 | |
| 
 | |
|     private:
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng);
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng,
 | |
| 			const param_type& __p);
 | |
| 
 | |
|       param_type _M_param;
 | |
| 
 | |
|       std::gamma_distribution<double> _M_gd;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|    * @brief Return true if two negative binomial distributions are different.
 | |
|    */
 | |
|   template<typename _IntType>
 | |
|     inline bool
 | |
|     operator!=(const std::negative_binomial_distribution<_IntType>& __d1,
 | |
| 	       const std::negative_binomial_distribution<_IntType>& __d2)
 | |
|     { return !(__d1 == __d2); }
 | |
| 
 | |
| 
 | |
|   /* @} */ // group random_distributions_bernoulli
 | |
| 
 | |
|   /**
 | |
|    * @addtogroup random_distributions_poisson Poisson Distributions
 | |
|    * @ingroup random_distributions
 | |
|    * @{
 | |
|    */
 | |
| 
 | |
|   /**
 | |
|    * @brief A discrete Poisson random number distribution.
 | |
|    *
 | |
|    * The formula for the Poisson probability density function is
 | |
|    * @f$p(i|\mu) = \frac{\mu^i}{i!} e^{-\mu}@f$ where @f$\mu@f$ is the
 | |
|    * parameter of the distribution.
 | |
|    */
 | |
|   template<typename _IntType = int>
 | |
|     class poisson_distribution
 | |
|     {
 | |
|       static_assert(std::is_integral<_IntType>::value,
 | |
| 		    "result_type must be an integral type");
 | |
| 
 | |
|     public:
 | |
|       /** The type of the range of the distribution. */
 | |
|       typedef _IntType  result_type;
 | |
| 
 | |
|       /** Parameter type. */
 | |
|       struct param_type
 | |
|       {
 | |
| 	typedef poisson_distribution<_IntType> distribution_type;
 | |
| 	friend class poisson_distribution<_IntType>;
 | |
| 
 | |
| 	param_type() : param_type(1.0) { }
 | |
| 
 | |
| 	explicit
 | |
| 	param_type(double __mean)
 | |
| 	: _M_mean(__mean)
 | |
| 	{
 | |
| 	  __glibcxx_assert(_M_mean > 0.0);
 | |
| 	  _M_initialize();
 | |
| 	}
 | |
| 
 | |
| 	double
 | |
| 	mean() const
 | |
| 	{ return _M_mean; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator==(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return __p1._M_mean == __p2._M_mean; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator!=(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return !(__p1 == __p2); }
 | |
| 
 | |
|       private:
 | |
| 	// Hosts either log(mean) or the threshold of the simple method.
 | |
| 	void
 | |
| 	_M_initialize();
 | |
| 
 | |
| 	double _M_mean;
 | |
| 
 | |
| 	double _M_lm_thr;
 | |
| #if _GLIBCXX_USE_C99_MATH_TR1
 | |
| 	double _M_lfm, _M_sm, _M_d, _M_scx, _M_1cx, _M_c2b, _M_cb;
 | |
| #endif
 | |
|       };
 | |
| 
 | |
|       // constructors and member functions
 | |
| 
 | |
|       poisson_distribution() : poisson_distribution(1.0) { }
 | |
| 
 | |
|       explicit
 | |
|       poisson_distribution(double __mean)
 | |
|       : _M_param(__mean), _M_nd()
 | |
|       { }
 | |
| 
 | |
|       explicit
 | |
|       poisson_distribution(const param_type& __p)
 | |
|       : _M_param(__p), _M_nd()
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Resets the distribution state.
 | |
|        */
 | |
|       void
 | |
|       reset()
 | |
|       { _M_nd.reset(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the distribution parameter @p mean.
 | |
|        */
 | |
|       double
 | |
|       mean() const
 | |
|       { return _M_param.mean(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the parameter set of the distribution.
 | |
|        */
 | |
|       param_type
 | |
|       param() const
 | |
|       { return _M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Sets the parameter set of the distribution.
 | |
|        * @param __param The new parameter set of the distribution.
 | |
|        */
 | |
|       void
 | |
|       param(const param_type& __param)
 | |
|       { _M_param = __param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the greatest lower bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       min() const
 | |
|       { return 0; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the least upper bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       max() const
 | |
|       { return std::numeric_limits<result_type>::max(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generating functions.
 | |
|        */
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng)
 | |
| 	{ return this->operator()(__urng, _M_param); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p);
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
| 	{ this->__generate(__f, __t, __urng, _M_param); }
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|        /**
 | |
| 	* @brief Return true if two Poisson distributions have the same
 | |
| 	*        parameters and the sequences that would be generated
 | |
| 	*        are equal.
 | |
| 	*/
 | |
|       friend bool
 | |
|       operator==(const poisson_distribution& __d1,
 | |
| 		 const poisson_distribution& __d2)
 | |
| #ifdef _GLIBCXX_USE_C99_MATH_TR1
 | |
|       { return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd; }
 | |
| #else
 | |
|       { return __d1._M_param == __d2._M_param; }
 | |
| #endif
 | |
| 
 | |
|       /**
 | |
|        * @brief Inserts a %poisson_distribution random number distribution
 | |
|        * @p __x into the output stream @p __os.
 | |
|        *
 | |
|        * @param __os An output stream.
 | |
|        * @param __x  A %poisson_distribution random number distribution.
 | |
|        *
 | |
|        * @returns The output stream with the state of @p __x inserted or in
 | |
|        * an error state.
 | |
|        */
 | |
|       template<typename _IntType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_ostream<_CharT, _Traits>&
 | |
| 	operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 		   const std::poisson_distribution<_IntType1>& __x);
 | |
| 
 | |
|       /**
 | |
|        * @brief Extracts a %poisson_distribution random number distribution
 | |
|        * @p __x from the input stream @p __is.
 | |
|        *
 | |
|        * @param __is An input stream.
 | |
|        * @param __x  A %poisson_distribution random number generator engine.
 | |
|        *
 | |
|        * @returns The input stream with @p __x extracted or in an error
 | |
|        *          state.
 | |
|        */
 | |
|       template<typename _IntType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_istream<_CharT, _Traits>&
 | |
| 	operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 		   std::poisson_distribution<_IntType1>& __x);
 | |
| 
 | |
|     private:
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng,
 | |
| 			const param_type& __p);
 | |
| 
 | |
|       param_type _M_param;
 | |
| 
 | |
|       // NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined.
 | |
|       std::normal_distribution<double> _M_nd;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|    * @brief Return true if two Poisson distributions are different.
 | |
|    */
 | |
|   template<typename _IntType>
 | |
|     inline bool
 | |
|     operator!=(const std::poisson_distribution<_IntType>& __d1,
 | |
| 	       const std::poisson_distribution<_IntType>& __d2)
 | |
|     { return !(__d1 == __d2); }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * @brief An exponential continuous distribution for random numbers.
 | |
|    *
 | |
|    * The formula for the exponential probability density function is
 | |
|    * @f$p(x|\lambda) = \lambda e^{-\lambda x}@f$.
 | |
|    *
 | |
|    * <table border=1 cellpadding=10 cellspacing=0>
 | |
|    * <caption align=top>Distribution Statistics</caption>
 | |
|    * <tr><td>Mean</td><td>@f$\frac{1}{\lambda}@f$</td></tr>
 | |
|    * <tr><td>Median</td><td>@f$\frac{\ln 2}{\lambda}@f$</td></tr>
 | |
|    * <tr><td>Mode</td><td>@f$zero@f$</td></tr>
 | |
|    * <tr><td>Range</td><td>@f$[0, \infty]@f$</td></tr>
 | |
|    * <tr><td>Standard Deviation</td><td>@f$\frac{1}{\lambda}@f$</td></tr>
 | |
|    * </table>
 | |
|    */
 | |
|   template<typename _RealType = double>
 | |
|     class exponential_distribution
 | |
|     {
 | |
|       static_assert(std::is_floating_point<_RealType>::value,
 | |
| 		    "result_type must be a floating point type");
 | |
| 
 | |
|     public:
 | |
|       /** The type of the range of the distribution. */
 | |
|       typedef _RealType result_type;
 | |
| 
 | |
|       /** Parameter type. */
 | |
|       struct param_type
 | |
|       {
 | |
| 	typedef exponential_distribution<_RealType> distribution_type;
 | |
| 
 | |
| 	param_type() : param_type(1.0) { }
 | |
| 
 | |
| 	explicit
 | |
| 	param_type(_RealType __lambda)
 | |
| 	: _M_lambda(__lambda)
 | |
| 	{
 | |
| 	  __glibcxx_assert(_M_lambda > _RealType(0));
 | |
| 	}
 | |
| 
 | |
| 	_RealType
 | |
| 	lambda() const
 | |
| 	{ return _M_lambda; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator==(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return __p1._M_lambda == __p2._M_lambda; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator!=(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return !(__p1 == __p2); }
 | |
| 
 | |
|       private:
 | |
| 	_RealType _M_lambda;
 | |
|       };
 | |
| 
 | |
|     public:
 | |
|       /**
 | |
|        * @brief Constructs an exponential distribution with inverse scale
 | |
|        *        parameter 1.0
 | |
|        */
 | |
|       exponential_distribution() : exponential_distribution(1.0) { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Constructs an exponential distribution with inverse scale
 | |
|        *        parameter @f$\lambda@f$.
 | |
|        */
 | |
|       explicit
 | |
|       exponential_distribution(_RealType __lambda)
 | |
|       : _M_param(__lambda)
 | |
|       { }
 | |
| 
 | |
|       explicit
 | |
|       exponential_distribution(const param_type& __p)
 | |
|       : _M_param(__p)
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Resets the distribution state.
 | |
|        *
 | |
|        * Has no effect on exponential distributions.
 | |
|        */
 | |
|       void
 | |
|       reset() { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the inverse scale parameter of the distribution.
 | |
|        */
 | |
|       _RealType
 | |
|       lambda() const
 | |
|       { return _M_param.lambda(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the parameter set of the distribution.
 | |
|        */
 | |
|       param_type
 | |
|       param() const
 | |
|       { return _M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Sets the parameter set of the distribution.
 | |
|        * @param __param The new parameter set of the distribution.
 | |
|        */
 | |
|       void
 | |
|       param(const param_type& __param)
 | |
|       { _M_param = __param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the greatest lower bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       min() const
 | |
|       { return result_type(0); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the least upper bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       max() const
 | |
|       { return std::numeric_limits<result_type>::max(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generating functions.
 | |
|        */
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng)
 | |
|         { return this->operator()(__urng, _M_param); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{
 | |
| 	  __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
 | |
| 	    __aurng(__urng);
 | |
| 	  return -std::log(result_type(1) - __aurng()) / __p.lambda();
 | |
| 	}
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
| 	{ this->__generate(__f, __t, __urng, _M_param); }
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return true if two exponential distributions have the same
 | |
|        *        parameters.
 | |
|        */
 | |
|       friend bool
 | |
|       operator==(const exponential_distribution& __d1,
 | |
| 		 const exponential_distribution& __d2)
 | |
|       { return __d1._M_param == __d2._M_param; }
 | |
| 
 | |
|     private:
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng,
 | |
| 			const param_type& __p);
 | |
| 
 | |
|       param_type _M_param;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|    * @brief Return true if two exponential distributions have different
 | |
|    *        parameters.
 | |
|    */
 | |
|   template<typename _RealType>
 | |
|     inline bool
 | |
|     operator!=(const std::exponential_distribution<_RealType>& __d1,
 | |
| 	       const std::exponential_distribution<_RealType>& __d2)
 | |
|     { return !(__d1 == __d2); }
 | |
| 
 | |
|   /**
 | |
|    * @brief Inserts a %exponential_distribution random number distribution
 | |
|    * @p __x into the output stream @p __os.
 | |
|    *
 | |
|    * @param __os An output stream.
 | |
|    * @param __x  A %exponential_distribution random number distribution.
 | |
|    *
 | |
|    * @returns The output stream with the state of @p __x inserted or in
 | |
|    * an error state.
 | |
|    */
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const std::exponential_distribution<_RealType>& __x);
 | |
| 
 | |
|   /**
 | |
|    * @brief Extracts a %exponential_distribution random number distribution
 | |
|    * @p __x from the input stream @p __is.
 | |
|    *
 | |
|    * @param __is An input stream.
 | |
|    * @param __x A %exponential_distribution random number
 | |
|    *            generator engine.
 | |
|    *
 | |
|    * @returns The input stream with @p __x extracted or in an error state.
 | |
|    */
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       std::exponential_distribution<_RealType>& __x);
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * @brief A weibull_distribution random number distribution.
 | |
|    *
 | |
|    * The formula for the normal probability density function is:
 | |
|    * @f[
 | |
|    *     p(x|\alpha,\beta) = \frac{\alpha}{\beta} (\frac{x}{\beta})^{\alpha-1}
 | |
|    *                         \exp{(-(\frac{x}{\beta})^\alpha)} 
 | |
|    * @f]
 | |
|    */
 | |
|   template<typename _RealType = double>
 | |
|     class weibull_distribution
 | |
|     {
 | |
|       static_assert(std::is_floating_point<_RealType>::value,
 | |
| 		    "result_type must be a floating point type");
 | |
| 
 | |
|     public:
 | |
|       /** The type of the range of the distribution. */
 | |
|       typedef _RealType result_type;
 | |
| 
 | |
|       /** Parameter type. */
 | |
|       struct param_type
 | |
|       {
 | |
| 	typedef weibull_distribution<_RealType> distribution_type;
 | |
| 
 | |
| 	param_type() : param_type(1.0) { }
 | |
| 
 | |
| 	explicit
 | |
| 	param_type(_RealType __a, _RealType __b = _RealType(1.0))
 | |
| 	: _M_a(__a), _M_b(__b)
 | |
| 	{ }
 | |
| 
 | |
| 	_RealType
 | |
| 	a() const
 | |
| 	{ return _M_a; }
 | |
| 
 | |
| 	_RealType
 | |
| 	b() const
 | |
| 	{ return _M_b; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator==(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator!=(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return !(__p1 == __p2); }
 | |
| 
 | |
|       private:
 | |
| 	_RealType _M_a;
 | |
| 	_RealType _M_b;
 | |
|       };
 | |
| 
 | |
|       weibull_distribution() : weibull_distribution(1.0) { }
 | |
| 
 | |
|       explicit
 | |
|       weibull_distribution(_RealType __a, _RealType __b = _RealType(1))
 | |
|       : _M_param(__a, __b)
 | |
|       { }
 | |
| 
 | |
|       explicit
 | |
|       weibull_distribution(const param_type& __p)
 | |
|       : _M_param(__p)
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Resets the distribution state.
 | |
|        */
 | |
|       void
 | |
|       reset()
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return the @f$a@f$ parameter of the distribution.
 | |
|        */
 | |
|       _RealType
 | |
|       a() const
 | |
|       { return _M_param.a(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return the @f$b@f$ parameter of the distribution.
 | |
|        */
 | |
|       _RealType
 | |
|       b() const
 | |
|       { return _M_param.b(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the parameter set of the distribution.
 | |
|        */
 | |
|       param_type
 | |
|       param() const
 | |
|       { return _M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Sets the parameter set of the distribution.
 | |
|        * @param __param The new parameter set of the distribution.
 | |
|        */
 | |
|       void
 | |
|       param(const param_type& __param)
 | |
|       { _M_param = __param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the greatest lower bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       min() const
 | |
|       { return result_type(0); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the least upper bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       max() const
 | |
|       { return std::numeric_limits<result_type>::max(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generating functions.
 | |
|        */
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng)
 | |
| 	{ return this->operator()(__urng, _M_param); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p);
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
| 	{ this->__generate(__f, __t, __urng, _M_param); }
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return true if two Weibull distributions have the same
 | |
|        *        parameters.
 | |
|        */
 | |
|       friend bool
 | |
|       operator==(const weibull_distribution& __d1,
 | |
| 		 const weibull_distribution& __d2)
 | |
|       { return __d1._M_param == __d2._M_param; }
 | |
| 
 | |
|     private:
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng,
 | |
| 			const param_type& __p);
 | |
| 
 | |
|       param_type _M_param;
 | |
|     };
 | |
| 
 | |
|    /**
 | |
|     * @brief Return true if two Weibull distributions have different
 | |
|     *        parameters.
 | |
|     */
 | |
|   template<typename _RealType>
 | |
|     inline bool
 | |
|     operator!=(const std::weibull_distribution<_RealType>& __d1,
 | |
| 	       const std::weibull_distribution<_RealType>& __d2)
 | |
|     { return !(__d1 == __d2); }
 | |
| 
 | |
|   /**
 | |
|    * @brief Inserts a %weibull_distribution random number distribution
 | |
|    * @p __x into the output stream @p __os.
 | |
|    *
 | |
|    * @param __os An output stream.
 | |
|    * @param __x  A %weibull_distribution random number distribution.
 | |
|    *
 | |
|    * @returns The output stream with the state of @p __x inserted or in
 | |
|    * an error state.
 | |
|    */
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const std::weibull_distribution<_RealType>& __x);
 | |
| 
 | |
|   /**
 | |
|    * @brief Extracts a %weibull_distribution random number distribution
 | |
|    * @p __x from the input stream @p __is.
 | |
|    *
 | |
|    * @param __is An input stream.
 | |
|    * @param __x A %weibull_distribution random number
 | |
|    *            generator engine.
 | |
|    *
 | |
|    * @returns The input stream with @p __x extracted or in an error state.
 | |
|    */
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       std::weibull_distribution<_RealType>& __x);
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * @brief A extreme_value_distribution random number distribution.
 | |
|    *
 | |
|    * The formula for the normal probability mass function is
 | |
|    * @f[
 | |
|    *     p(x|a,b) = \frac{1}{b}
 | |
|    *                \exp( \frac{a-x}{b} - \exp(\frac{a-x}{b})) 
 | |
|    * @f]
 | |
|    */
 | |
|   template<typename _RealType = double>
 | |
|     class extreme_value_distribution
 | |
|     {
 | |
|       static_assert(std::is_floating_point<_RealType>::value,
 | |
| 		    "result_type must be a floating point type");
 | |
| 
 | |
|     public:
 | |
|       /** The type of the range of the distribution. */
 | |
|       typedef _RealType result_type;
 | |
| 
 | |
|       /** Parameter type. */
 | |
|       struct param_type
 | |
|       {
 | |
| 	typedef extreme_value_distribution<_RealType> distribution_type;
 | |
| 
 | |
| 	param_type() : param_type(0.0) { }
 | |
| 
 | |
| 	explicit
 | |
| 	param_type(_RealType __a, _RealType __b = _RealType(1.0))
 | |
| 	: _M_a(__a), _M_b(__b)
 | |
| 	{ }
 | |
| 
 | |
| 	_RealType
 | |
| 	a() const
 | |
| 	{ return _M_a; }
 | |
| 
 | |
| 	_RealType
 | |
| 	b() const
 | |
| 	{ return _M_b; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator==(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator!=(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return !(__p1 == __p2); }
 | |
| 
 | |
|       private:
 | |
| 	_RealType _M_a;
 | |
| 	_RealType _M_b;
 | |
|       };
 | |
| 
 | |
|       extreme_value_distribution() : extreme_value_distribution(0.0) { }
 | |
| 
 | |
|       explicit
 | |
|       extreme_value_distribution(_RealType __a, _RealType __b = _RealType(1))
 | |
|       : _M_param(__a, __b)
 | |
|       { }
 | |
| 
 | |
|       explicit
 | |
|       extreme_value_distribution(const param_type& __p)
 | |
|       : _M_param(__p)
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Resets the distribution state.
 | |
|        */
 | |
|       void
 | |
|       reset()
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return the @f$a@f$ parameter of the distribution.
 | |
|        */
 | |
|       _RealType
 | |
|       a() const
 | |
|       { return _M_param.a(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return the @f$b@f$ parameter of the distribution.
 | |
|        */
 | |
|       _RealType
 | |
|       b() const
 | |
|       { return _M_param.b(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the parameter set of the distribution.
 | |
|        */
 | |
|       param_type
 | |
|       param() const
 | |
|       { return _M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Sets the parameter set of the distribution.
 | |
|        * @param __param The new parameter set of the distribution.
 | |
|        */
 | |
|       void
 | |
|       param(const param_type& __param)
 | |
|       { _M_param = __param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the greatest lower bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       min() const
 | |
|       { return std::numeric_limits<result_type>::lowest(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the least upper bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       max() const
 | |
|       { return std::numeric_limits<result_type>::max(); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generating functions.
 | |
|        */
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng)
 | |
| 	{ return this->operator()(__urng, _M_param); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p);
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
| 	{ this->__generate(__f, __t, __urng, _M_param); }
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return true if two extreme value distributions have the same
 | |
|        *        parameters.
 | |
|        */
 | |
|       friend bool
 | |
|       operator==(const extreme_value_distribution& __d1,
 | |
| 		 const extreme_value_distribution& __d2)
 | |
|       { return __d1._M_param == __d2._M_param; }
 | |
| 
 | |
|     private:
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng,
 | |
| 			const param_type& __p);
 | |
| 
 | |
|       param_type _M_param;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|     * @brief Return true if two extreme value distributions have different
 | |
|     *        parameters.
 | |
|    */
 | |
|   template<typename _RealType>
 | |
|     inline bool
 | |
|     operator!=(const std::extreme_value_distribution<_RealType>& __d1,
 | |
| 	       const std::extreme_value_distribution<_RealType>& __d2)
 | |
|     { return !(__d1 == __d2); }
 | |
| 
 | |
|   /**
 | |
|    * @brief Inserts a %extreme_value_distribution random number distribution
 | |
|    * @p __x into the output stream @p __os.
 | |
|    *
 | |
|    * @param __os An output stream.
 | |
|    * @param __x  A %extreme_value_distribution random number distribution.
 | |
|    *
 | |
|    * @returns The output stream with the state of @p __x inserted or in
 | |
|    * an error state.
 | |
|    */
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const std::extreme_value_distribution<_RealType>& __x);
 | |
| 
 | |
|   /**
 | |
|    * @brief Extracts a %extreme_value_distribution random number
 | |
|    *        distribution @p __x from the input stream @p __is.
 | |
|    *
 | |
|    * @param __is An input stream.
 | |
|    * @param __x A %extreme_value_distribution random number
 | |
|    *            generator engine.
 | |
|    *
 | |
|    * @returns The input stream with @p __x extracted or in an error state.
 | |
|    */
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       std::extreme_value_distribution<_RealType>& __x);
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * @brief A discrete_distribution random number distribution.
 | |
|    *
 | |
|    * The formula for the discrete probability mass function is
 | |
|    *
 | |
|    */
 | |
|   template<typename _IntType = int>
 | |
|     class discrete_distribution
 | |
|     {
 | |
|       static_assert(std::is_integral<_IntType>::value,
 | |
| 		    "result_type must be an integral type");
 | |
| 
 | |
|     public:
 | |
|       /** The type of the range of the distribution. */
 | |
|       typedef _IntType result_type;
 | |
| 
 | |
|       /** Parameter type. */
 | |
|       struct param_type
 | |
|       {
 | |
| 	typedef discrete_distribution<_IntType> distribution_type;
 | |
| 	friend class discrete_distribution<_IntType>;
 | |
| 
 | |
| 	param_type()
 | |
| 	: _M_prob(), _M_cp()
 | |
| 	{ }
 | |
| 
 | |
| 	template<typename _InputIterator>
 | |
| 	  param_type(_InputIterator __wbegin,
 | |
| 		     _InputIterator __wend)
 | |
| 	  : _M_prob(__wbegin, __wend), _M_cp()
 | |
| 	  { _M_initialize(); }
 | |
| 
 | |
| 	param_type(initializer_list<double> __wil)
 | |
| 	: _M_prob(__wil.begin(), __wil.end()), _M_cp()
 | |
| 	{ _M_initialize(); }
 | |
| 
 | |
| 	template<typename _Func>
 | |
| 	  param_type(size_t __nw, double __xmin, double __xmax,
 | |
| 		     _Func __fw);
 | |
| 
 | |
| 	// See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/
 | |
| 	param_type(const param_type&) = default;
 | |
| 	param_type& operator=(const param_type&) = default;
 | |
| 
 | |
| 	std::vector<double>
 | |
| 	probabilities() const
 | |
| 	{ return _M_prob.empty() ? std::vector<double>(1, 1.0) : _M_prob; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator==(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return __p1._M_prob == __p2._M_prob; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator!=(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return !(__p1 == __p2); }
 | |
| 
 | |
|       private:
 | |
| 	void
 | |
| 	_M_initialize();
 | |
| 
 | |
| 	std::vector<double> _M_prob;
 | |
| 	std::vector<double> _M_cp;
 | |
|       };
 | |
| 
 | |
|       discrete_distribution()
 | |
|       : _M_param()
 | |
|       { }
 | |
| 
 | |
|       template<typename _InputIterator>
 | |
| 	discrete_distribution(_InputIterator __wbegin,
 | |
| 			      _InputIterator __wend)
 | |
| 	: _M_param(__wbegin, __wend)
 | |
| 	{ }
 | |
| 
 | |
|       discrete_distribution(initializer_list<double> __wl)
 | |
|       : _M_param(__wl)
 | |
|       { }
 | |
| 
 | |
|       template<typename _Func>
 | |
| 	discrete_distribution(size_t __nw, double __xmin, double __xmax,
 | |
| 			      _Func __fw)
 | |
| 	: _M_param(__nw, __xmin, __xmax, __fw)
 | |
| 	{ }
 | |
| 
 | |
|       explicit
 | |
|       discrete_distribution(const param_type& __p)
 | |
|       : _M_param(__p)
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Resets the distribution state.
 | |
|        */
 | |
|       void
 | |
|       reset()
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the probabilities of the distribution.
 | |
|        */
 | |
|       std::vector<double>
 | |
|       probabilities() const
 | |
|       {
 | |
| 	return _M_param._M_prob.empty()
 | |
| 	  ? std::vector<double>(1, 1.0) : _M_param._M_prob;
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the parameter set of the distribution.
 | |
|        */
 | |
|       param_type
 | |
|       param() const
 | |
|       { return _M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Sets the parameter set of the distribution.
 | |
|        * @param __param The new parameter set of the distribution.
 | |
|        */
 | |
|       void
 | |
|       param(const param_type& __param)
 | |
|       { _M_param = __param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the greatest lower bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       min() const
 | |
|       { return result_type(0); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the least upper bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       max() const
 | |
|       {
 | |
| 	return _M_param._M_prob.empty()
 | |
| 	  ? result_type(0) : result_type(_M_param._M_prob.size() - 1);
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generating functions.
 | |
|        */
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng)
 | |
| 	{ return this->operator()(__urng, _M_param); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p);
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
| 	{ this->__generate(__f, __t, __urng, _M_param); }
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return true if two discrete distributions have the same
 | |
|        *        parameters.
 | |
|        */
 | |
|       friend bool
 | |
|       operator==(const discrete_distribution& __d1,
 | |
| 		 const discrete_distribution& __d2)
 | |
|       { return __d1._M_param == __d2._M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Inserts a %discrete_distribution random number distribution
 | |
|        * @p __x into the output stream @p __os.
 | |
|        *
 | |
|        * @param __os An output stream.
 | |
|        * @param __x  A %discrete_distribution random number distribution.
 | |
|        *
 | |
|        * @returns The output stream with the state of @p __x inserted or in
 | |
|        * an error state.
 | |
|        */
 | |
|       template<typename _IntType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_ostream<_CharT, _Traits>&
 | |
| 	operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 		   const std::discrete_distribution<_IntType1>& __x);
 | |
| 
 | |
|       /**
 | |
|        * @brief Extracts a %discrete_distribution random number distribution
 | |
|        * @p __x from the input stream @p __is.
 | |
|        *
 | |
|        * @param __is An input stream.
 | |
|        * @param __x A %discrete_distribution random number
 | |
|        *            generator engine.
 | |
|        *
 | |
|        * @returns The input stream with @p __x extracted or in an error
 | |
|        *          state.
 | |
|        */
 | |
|       template<typename _IntType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_istream<_CharT, _Traits>&
 | |
| 	operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 		   std::discrete_distribution<_IntType1>& __x);
 | |
| 
 | |
|     private:
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng,
 | |
| 			const param_type& __p);
 | |
| 
 | |
|       param_type _M_param;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|     * @brief Return true if two discrete distributions have different
 | |
|     *        parameters.
 | |
|     */
 | |
|   template<typename _IntType>
 | |
|     inline bool
 | |
|     operator!=(const std::discrete_distribution<_IntType>& __d1,
 | |
| 	       const std::discrete_distribution<_IntType>& __d2)
 | |
|     { return !(__d1 == __d2); }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * @brief A piecewise_constant_distribution random number distribution.
 | |
|    *
 | |
|    * The formula for the piecewise constant probability mass function is
 | |
|    *
 | |
|    */
 | |
|   template<typename _RealType = double>
 | |
|     class piecewise_constant_distribution
 | |
|     {
 | |
|       static_assert(std::is_floating_point<_RealType>::value,
 | |
| 		    "result_type must be a floating point type");
 | |
| 
 | |
|     public:
 | |
|       /** The type of the range of the distribution. */
 | |
|       typedef _RealType result_type;
 | |
| 
 | |
|       /** Parameter type. */
 | |
|       struct param_type
 | |
|       {
 | |
| 	typedef piecewise_constant_distribution<_RealType> distribution_type;
 | |
| 	friend class piecewise_constant_distribution<_RealType>;
 | |
| 
 | |
| 	param_type()
 | |
| 	: _M_int(), _M_den(), _M_cp()
 | |
| 	{ }
 | |
| 
 | |
| 	template<typename _InputIteratorB, typename _InputIteratorW>
 | |
| 	  param_type(_InputIteratorB __bfirst,
 | |
| 		     _InputIteratorB __bend,
 | |
| 		     _InputIteratorW __wbegin);
 | |
| 
 | |
| 	template<typename _Func>
 | |
| 	  param_type(initializer_list<_RealType> __bi, _Func __fw);
 | |
| 
 | |
| 	template<typename _Func>
 | |
| 	  param_type(size_t __nw, _RealType __xmin, _RealType __xmax,
 | |
| 		     _Func __fw);
 | |
| 
 | |
| 	// See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/
 | |
| 	param_type(const param_type&) = default;
 | |
| 	param_type& operator=(const param_type&) = default;
 | |
| 
 | |
| 	std::vector<_RealType>
 | |
| 	intervals() const
 | |
| 	{
 | |
| 	  if (_M_int.empty())
 | |
| 	    {
 | |
| 	      std::vector<_RealType> __tmp(2);
 | |
| 	      __tmp[1] = _RealType(1);
 | |
| 	      return __tmp;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    return _M_int;
 | |
| 	}
 | |
| 
 | |
| 	std::vector<double>
 | |
| 	densities() const
 | |
| 	{ return _M_den.empty() ? std::vector<double>(1, 1.0) : _M_den; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator==(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return __p1._M_int == __p2._M_int && __p1._M_den == __p2._M_den; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator!=(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return !(__p1 == __p2); }
 | |
| 
 | |
|       private:
 | |
| 	void
 | |
| 	_M_initialize();
 | |
| 
 | |
| 	std::vector<_RealType> _M_int;
 | |
| 	std::vector<double> _M_den;
 | |
| 	std::vector<double> _M_cp;
 | |
|       };
 | |
| 
 | |
|       piecewise_constant_distribution()
 | |
|       : _M_param()
 | |
|       { }
 | |
| 
 | |
|       template<typename _InputIteratorB, typename _InputIteratorW>
 | |
| 	piecewise_constant_distribution(_InputIteratorB __bfirst,
 | |
| 					_InputIteratorB __bend,
 | |
| 					_InputIteratorW __wbegin)
 | |
| 	: _M_param(__bfirst, __bend, __wbegin)
 | |
| 	{ }
 | |
| 
 | |
|       template<typename _Func>
 | |
| 	piecewise_constant_distribution(initializer_list<_RealType> __bl,
 | |
| 					_Func __fw)
 | |
| 	: _M_param(__bl, __fw)
 | |
| 	{ }
 | |
| 
 | |
|       template<typename _Func>
 | |
| 	piecewise_constant_distribution(size_t __nw,
 | |
| 					_RealType __xmin, _RealType __xmax,
 | |
| 					_Func __fw)
 | |
| 	: _M_param(__nw, __xmin, __xmax, __fw)
 | |
| 	{ }
 | |
| 
 | |
|       explicit
 | |
|       piecewise_constant_distribution(const param_type& __p)
 | |
|       : _M_param(__p)
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Resets the distribution state.
 | |
|        */
 | |
|       void
 | |
|       reset()
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns a vector of the intervals.
 | |
|        */
 | |
|       std::vector<_RealType>
 | |
|       intervals() const
 | |
|       {
 | |
| 	if (_M_param._M_int.empty())
 | |
| 	  {
 | |
| 	    std::vector<_RealType> __tmp(2);
 | |
| 	    __tmp[1] = _RealType(1);
 | |
| 	    return __tmp;
 | |
| 	  }
 | |
| 	else
 | |
| 	  return _M_param._M_int;
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns a vector of the probability densities.
 | |
|        */
 | |
|       std::vector<double>
 | |
|       densities() const
 | |
|       {
 | |
| 	return _M_param._M_den.empty()
 | |
| 	  ? std::vector<double>(1, 1.0) : _M_param._M_den;
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the parameter set of the distribution.
 | |
|        */
 | |
|       param_type
 | |
|       param() const
 | |
|       { return _M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Sets the parameter set of the distribution.
 | |
|        * @param __param The new parameter set of the distribution.
 | |
|        */
 | |
|       void
 | |
|       param(const param_type& __param)
 | |
|       { _M_param = __param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the greatest lower bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       min() const
 | |
|       {
 | |
| 	return _M_param._M_int.empty()
 | |
| 	  ? result_type(0) : _M_param._M_int.front();
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the least upper bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       max() const
 | |
|       {
 | |
| 	return _M_param._M_int.empty()
 | |
| 	  ? result_type(1) : _M_param._M_int.back();
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generating functions.
 | |
|        */
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng)
 | |
| 	{ return this->operator()(__urng, _M_param); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p);
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
| 	{ this->__generate(__f, __t, __urng, _M_param); }
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return true if two piecewise constant distributions have the
 | |
|        *        same parameters.
 | |
|        */
 | |
|       friend bool
 | |
|       operator==(const piecewise_constant_distribution& __d1,
 | |
| 		 const piecewise_constant_distribution& __d2)
 | |
|       { return __d1._M_param == __d2._M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Inserts a %piecewise_constant_distribution random
 | |
|        *        number distribution @p __x into the output stream @p __os.
 | |
|        *
 | |
|        * @param __os An output stream.
 | |
|        * @param __x  A %piecewise_constant_distribution random number
 | |
|        *             distribution.
 | |
|        *
 | |
|        * @returns The output stream with the state of @p __x inserted or in
 | |
|        * an error state.
 | |
|        */
 | |
|       template<typename _RealType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_ostream<_CharT, _Traits>&
 | |
| 	operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 		   const std::piecewise_constant_distribution<_RealType1>& __x);
 | |
| 
 | |
|       /**
 | |
|        * @brief Extracts a %piecewise_constant_distribution random
 | |
|        *        number distribution @p __x from the input stream @p __is.
 | |
|        *
 | |
|        * @param __is An input stream.
 | |
|        * @param __x A %piecewise_constant_distribution random number
 | |
|        *            generator engine.
 | |
|        *
 | |
|        * @returns The input stream with @p __x extracted or in an error
 | |
|        *          state.
 | |
|        */
 | |
|       template<typename _RealType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_istream<_CharT, _Traits>&
 | |
| 	operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 		   std::piecewise_constant_distribution<_RealType1>& __x);
 | |
| 
 | |
|     private:
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng,
 | |
| 			const param_type& __p);
 | |
| 
 | |
|       param_type _M_param;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|     * @brief Return true if two piecewise constant distributions have 
 | |
|     *        different parameters.
 | |
|    */
 | |
|   template<typename _RealType>
 | |
|     inline bool
 | |
|     operator!=(const std::piecewise_constant_distribution<_RealType>& __d1,
 | |
| 	       const std::piecewise_constant_distribution<_RealType>& __d2)
 | |
|     { return !(__d1 == __d2); }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * @brief A piecewise_linear_distribution random number distribution.
 | |
|    *
 | |
|    * The formula for the piecewise linear probability mass function is
 | |
|    *
 | |
|    */
 | |
|   template<typename _RealType = double>
 | |
|     class piecewise_linear_distribution
 | |
|     {
 | |
|       static_assert(std::is_floating_point<_RealType>::value,
 | |
| 		    "result_type must be a floating point type");
 | |
| 
 | |
|     public:
 | |
|       /** The type of the range of the distribution. */
 | |
|       typedef _RealType result_type;
 | |
| 
 | |
|       /** Parameter type. */
 | |
|       struct param_type
 | |
|       {
 | |
| 	typedef piecewise_linear_distribution<_RealType> distribution_type;
 | |
| 	friend class piecewise_linear_distribution<_RealType>;
 | |
| 
 | |
| 	param_type()
 | |
| 	: _M_int(), _M_den(), _M_cp(), _M_m()
 | |
| 	{ }
 | |
| 
 | |
| 	template<typename _InputIteratorB, typename _InputIteratorW>
 | |
| 	  param_type(_InputIteratorB __bfirst,
 | |
| 		     _InputIteratorB __bend,
 | |
| 		     _InputIteratorW __wbegin);
 | |
| 
 | |
| 	template<typename _Func>
 | |
| 	  param_type(initializer_list<_RealType> __bl, _Func __fw);
 | |
| 
 | |
| 	template<typename _Func>
 | |
| 	  param_type(size_t __nw, _RealType __xmin, _RealType __xmax,
 | |
| 		     _Func __fw);
 | |
| 
 | |
| 	// See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/
 | |
| 	param_type(const param_type&) = default;
 | |
| 	param_type& operator=(const param_type&) = default;
 | |
| 
 | |
| 	std::vector<_RealType>
 | |
| 	intervals() const
 | |
| 	{
 | |
| 	  if (_M_int.empty())
 | |
| 	    {
 | |
| 	      std::vector<_RealType> __tmp(2);
 | |
| 	      __tmp[1] = _RealType(1);
 | |
| 	      return __tmp;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    return _M_int;
 | |
| 	}
 | |
| 
 | |
| 	std::vector<double>
 | |
| 	densities() const
 | |
| 	{ return _M_den.empty() ? std::vector<double>(2, 1.0) : _M_den; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator==(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return __p1._M_int == __p2._M_int && __p1._M_den == __p2._M_den; }
 | |
| 
 | |
| 	friend bool
 | |
| 	operator!=(const param_type& __p1, const param_type& __p2)
 | |
| 	{ return !(__p1 == __p2); }
 | |
| 
 | |
|       private:
 | |
| 	void
 | |
| 	_M_initialize();
 | |
| 
 | |
| 	std::vector<_RealType> _M_int;
 | |
| 	std::vector<double> _M_den;
 | |
| 	std::vector<double> _M_cp;
 | |
| 	std::vector<double> _M_m;
 | |
|       };
 | |
| 
 | |
|       piecewise_linear_distribution()
 | |
|       : _M_param()
 | |
|       { }
 | |
| 
 | |
|       template<typename _InputIteratorB, typename _InputIteratorW>
 | |
| 	piecewise_linear_distribution(_InputIteratorB __bfirst,
 | |
| 				      _InputIteratorB __bend,
 | |
| 				      _InputIteratorW __wbegin)
 | |
| 	: _M_param(__bfirst, __bend, __wbegin)
 | |
| 	{ }
 | |
| 
 | |
|       template<typename _Func>
 | |
| 	piecewise_linear_distribution(initializer_list<_RealType> __bl,
 | |
| 				      _Func __fw)
 | |
| 	: _M_param(__bl, __fw)
 | |
| 	{ }
 | |
| 
 | |
|       template<typename _Func>
 | |
| 	piecewise_linear_distribution(size_t __nw,
 | |
| 				      _RealType __xmin, _RealType __xmax,
 | |
| 				      _Func __fw)
 | |
| 	: _M_param(__nw, __xmin, __xmax, __fw)
 | |
| 	{ }
 | |
| 
 | |
|       explicit
 | |
|       piecewise_linear_distribution(const param_type& __p)
 | |
|       : _M_param(__p)
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * Resets the distribution state.
 | |
|        */
 | |
|       void
 | |
|       reset()
 | |
|       { }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return the intervals of the distribution.
 | |
|        */
 | |
|       std::vector<_RealType>
 | |
|       intervals() const
 | |
|       {
 | |
| 	if (_M_param._M_int.empty())
 | |
| 	  {
 | |
| 	    std::vector<_RealType> __tmp(2);
 | |
| 	    __tmp[1] = _RealType(1);
 | |
| 	    return __tmp;
 | |
| 	  }
 | |
| 	else
 | |
| 	  return _M_param._M_int;
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return a vector of the probability densities of the
 | |
|        *        distribution.
 | |
|        */
 | |
|       std::vector<double>
 | |
|       densities() const
 | |
|       {
 | |
| 	return _M_param._M_den.empty()
 | |
| 	  ? std::vector<double>(2, 1.0) : _M_param._M_den;
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the parameter set of the distribution.
 | |
|        */
 | |
|       param_type
 | |
|       param() const
 | |
|       { return _M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Sets the parameter set of the distribution.
 | |
|        * @param __param The new parameter set of the distribution.
 | |
|        */
 | |
|       void
 | |
|       param(const param_type& __param)
 | |
|       { _M_param = __param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the greatest lower bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       min() const
 | |
|       {
 | |
| 	return _M_param._M_int.empty()
 | |
| 	  ? result_type(0) : _M_param._M_int.front();
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * @brief Returns the least upper bound value of the distribution.
 | |
|        */
 | |
|       result_type
 | |
|       max() const
 | |
|       {
 | |
| 	return _M_param._M_int.empty()
 | |
| 	  ? result_type(1) : _M_param._M_int.back();
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * @brief Generating functions.
 | |
|        */
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng)
 | |
| 	{ return this->operator()(__urng, _M_param); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	result_type
 | |
| 	operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p);
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng)
 | |
| 	{ this->__generate(__f, __t, __urng, _M_param); }
 | |
| 
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       template<typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate(result_type* __f, result_type* __t,
 | |
| 		   _UniformRandomNumberGenerator& __urng,
 | |
| 		   const param_type& __p)
 | |
| 	{ this->__generate_impl(__f, __t, __urng, __p); }
 | |
| 
 | |
|       /**
 | |
|        * @brief Return true if two piecewise linear distributions have the
 | |
|        *        same parameters.
 | |
|        */
 | |
|       friend bool
 | |
|       operator==(const piecewise_linear_distribution& __d1,
 | |
| 		 const piecewise_linear_distribution& __d2)
 | |
|       { return __d1._M_param == __d2._M_param; }
 | |
| 
 | |
|       /**
 | |
|        * @brief Inserts a %piecewise_linear_distribution random number
 | |
|        *        distribution @p __x into the output stream @p __os.
 | |
|        *
 | |
|        * @param __os An output stream.
 | |
|        * @param __x  A %piecewise_linear_distribution random number
 | |
|        *             distribution.
 | |
|        *
 | |
|        * @returns The output stream with the state of @p __x inserted or in
 | |
|        *          an error state.
 | |
|        */
 | |
|       template<typename _RealType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_ostream<_CharT, _Traits>&
 | |
| 	operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 		   const std::piecewise_linear_distribution<_RealType1>& __x);
 | |
| 
 | |
|       /**
 | |
|        * @brief Extracts a %piecewise_linear_distribution random number
 | |
|        *        distribution @p __x from the input stream @p __is.
 | |
|        *
 | |
|        * @param __is An input stream.
 | |
|        * @param __x  A %piecewise_linear_distribution random number
 | |
|        *             generator engine.
 | |
|        *
 | |
|        * @returns The input stream with @p __x extracted or in an error
 | |
|        *          state.
 | |
|        */
 | |
|       template<typename _RealType1, typename _CharT, typename _Traits>
 | |
| 	friend std::basic_istream<_CharT, _Traits>&
 | |
| 	operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 		   std::piecewise_linear_distribution<_RealType1>& __x);
 | |
| 
 | |
|     private:
 | |
|       template<typename _ForwardIterator,
 | |
| 	       typename _UniformRandomNumberGenerator>
 | |
| 	void
 | |
| 	__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
 | |
| 			_UniformRandomNumberGenerator& __urng,
 | |
| 			const param_type& __p);
 | |
| 
 | |
|       param_type _M_param;
 | |
|     };
 | |
| 
 | |
|   /**
 | |
|     * @brief Return true if two piecewise linear distributions have
 | |
|     *        different parameters.
 | |
|    */
 | |
|   template<typename _RealType>
 | |
|     inline bool
 | |
|     operator!=(const std::piecewise_linear_distribution<_RealType>& __d1,
 | |
| 	       const std::piecewise_linear_distribution<_RealType>& __d2)
 | |
|     { return !(__d1 == __d2); }
 | |
| 
 | |
| 
 | |
|   /* @} */ // group random_distributions_poisson
 | |
| 
 | |
|   /* @} */ // group random_distributions
 | |
| 
 | |
|   /**
 | |
|    * @addtogroup random_utilities Random Number Utilities
 | |
|    * @ingroup random
 | |
|    * @{
 | |
|    */
 | |
| 
 | |
|   /**
 | |
|    * @brief The seed_seq class generates sequences of seeds for random
 | |
|    *        number generators.
 | |
|    */
 | |
|   class seed_seq
 | |
|   {
 | |
|   public:
 | |
|     /** The type of the seed vales. */
 | |
|     typedef uint_least32_t result_type;
 | |
| 
 | |
|     /** Default constructor. */
 | |
|     seed_seq() noexcept
 | |
|     : _M_v()
 | |
|     { }
 | |
| 
 | |
|     template<typename _IntType>
 | |
|       seed_seq(std::initializer_list<_IntType> il);
 | |
| 
 | |
|     template<typename _InputIterator>
 | |
|       seed_seq(_InputIterator __begin, _InputIterator __end);
 | |
| 
 | |
|     // generating functions
 | |
|     template<typename _RandomAccessIterator>
 | |
|       void
 | |
|       generate(_RandomAccessIterator __begin, _RandomAccessIterator __end);
 | |
| 
 | |
|     // property functions
 | |
|     size_t size() const noexcept
 | |
|     { return _M_v.size(); }
 | |
| 
 | |
|     template<typename OutputIterator>
 | |
|       void
 | |
|       param(OutputIterator __dest) const
 | |
|       { std::copy(_M_v.begin(), _M_v.end(), __dest); }
 | |
| 
 | |
|     // no copy functions
 | |
|     seed_seq(const seed_seq&) = delete;
 | |
|     seed_seq& operator=(const seed_seq&) = delete;
 | |
| 
 | |
|   private:
 | |
|     std::vector<result_type> _M_v;
 | |
|   };
 | |
| 
 | |
|   /* @} */ // group random_utilities
 | |
| 
 | |
|   /* @} */ // group random
 | |
| 
 | |
| _GLIBCXX_END_NAMESPACE_VERSION
 | |
| } // namespace std
 | |
| 
 | |
| #endif
 |