mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			544 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Java
		
	
	
	
			
		
		
	
	
			544 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Java
		
	
	
	
| /* Double.java -- object wrapper for double
 | |
|    Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003
 | |
|    Free Software Foundation, Inc.
 | |
| 
 | |
| This file is part of GNU Classpath.
 | |
| 
 | |
| GNU Classpath is free software; you can redistribute it and/or modify
 | |
| it under the terms of the GNU General Public License as published by
 | |
| the Free Software Foundation; either version 2, or (at your option)
 | |
| any later version.
 | |
| 
 | |
| GNU Classpath is distributed in the hope that it will be useful, but
 | |
| WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
| General Public License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License
 | |
| along with GNU Classpath; see the file COPYING.  If not, write to the
 | |
| Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
 | |
| 02111-1307 USA.
 | |
| 
 | |
| Linking this library statically or dynamically with other modules is
 | |
| making a combined work based on this library.  Thus, the terms and
 | |
| conditions of the GNU General Public License cover the whole
 | |
| combination.
 | |
| 
 | |
| As a special exception, the copyright holders of this library give you
 | |
| permission to link this library with independent modules to produce an
 | |
| executable, regardless of the license terms of these independent
 | |
| modules, and to copy and distribute the resulting executable under
 | |
| terms of your choice, provided that you also meet, for each linked
 | |
| independent module, the terms and conditions of the license of that
 | |
| module.  An independent module is a module which is not derived from
 | |
| or based on this library.  If you modify this library, you may extend
 | |
| this exception to your version of the library, but you are not
 | |
| obligated to do so.  If you do not wish to do so, delete this
 | |
| exception statement from your version. */
 | |
| 
 | |
| package java.lang;
 | |
| 
 | |
| import gnu.classpath.Configuration;
 | |
| 
 | |
| /**
 | |
|  * Instances of class <code>Double</code> represent primitive
 | |
|  * <code>double</code> values.
 | |
|  *
 | |
|  * Additionally, this class provides various helper functions and variables
 | |
|  * related to doubles.
 | |
|  *
 | |
|  * @author Paul Fisher
 | |
|  * @author Andrew Haley <aph@cygnus.com>
 | |
|  * @author Eric Blake <ebb9@email.byu.edu>
 | |
|  * @since 1.0
 | |
|  * @status updated to 1.4
 | |
|  */
 | |
| public final class Double extends Number implements Comparable
 | |
| {
 | |
|   /**
 | |
|    * Compatible with JDK 1.0+.
 | |
|    */
 | |
|   private static final long serialVersionUID = -9172774392245257468L;
 | |
| 
 | |
|   /**
 | |
|    * The maximum positive value a <code>double</code> may represent
 | |
|    * is 1.7976931348623157e+308.
 | |
|    */
 | |
|   public static final double MAX_VALUE = 1.7976931348623157e+308;
 | |
| 
 | |
|   /**
 | |
|    * The minimum positive value a <code>double</code> may represent
 | |
|    * is 5e-324.
 | |
|    */
 | |
|   public static final double MIN_VALUE = 5e-324;
 | |
| 
 | |
|   /**
 | |
|    * The value of a double representation -1.0/0.0, negative
 | |
|    * infinity.
 | |
|    */
 | |
|   public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
 | |
| 
 | |
|   /**
 | |
|    * The value of a double representing 1.0/0.0, positive infinity.
 | |
|    */
 | |
|   public static final double POSITIVE_INFINITY = 1.0 / 0.0;
 | |
| 
 | |
|   /**
 | |
|    * All IEEE 754 values of NaN have the same value in Java.
 | |
|    */
 | |
|   public static final double NaN = 0.0 / 0.0;
 | |
| 
 | |
|   /**
 | |
|    * The primitive type <code>double</code> is represented by this
 | |
|    * <code>Class</code> object.
 | |
|    * @since 1.1
 | |
|    */
 | |
|   public static final Class TYPE = VMClassLoader.getPrimitiveClass('D');
 | |
| 
 | |
|   /**
 | |
|    * The immutable value of this Double.
 | |
|    *
 | |
|    * @serial the wrapped double
 | |
|    */
 | |
|   private final double value;
 | |
| 
 | |
|   /**
 | |
|    * Load native routines necessary for this class.
 | |
|    */
 | |
|   static
 | |
|   {
 | |
|     if (Configuration.INIT_LOAD_LIBRARY)
 | |
|       {
 | |
| 	System.loadLibrary("javalang");
 | |
| 	initIDs();
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Create a <code>Double</code> from the primitive <code>double</code>
 | |
|    * specified.
 | |
|    *
 | |
|    * @param value the <code>double</code> argument
 | |
|    */
 | |
|   public Double(double value)
 | |
|   {
 | |
|     this.value = value;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Create a <code>Double</code> from the specified <code>String</code>.
 | |
|    * This method calls <code>Double.parseDouble()</code>.
 | |
|    *
 | |
|    * @param s the <code>String</code> to convert
 | |
|    * @throws NumberFormatException if <code>s</code> cannot be parsed as a
 | |
|    *         <code>double</code>
 | |
|    * @throws NullPointerException if <code>s</code> is null
 | |
|    * @see #parseDouble(String)
 | |
|    */
 | |
|   public Double(String s)
 | |
|   {
 | |
|     value = parseDouble(s);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Convert the <code>double</code> to a <code>String</code>.
 | |
|    * Floating-point string representation is fairly complex: here is a
 | |
|    * rundown of the possible values.  "<code>[-]</code>" indicates that a
 | |
|    * negative sign will be printed if the value (or exponent) is negative.
 | |
|    * "<code><number></code>" means a string of digits ('0' to '9').
 | |
|    * "<code><digit></code>" means a single digit ('0' to '9').<br>
 | |
|    *
 | |
|    * <table border=1>
 | |
|    * <tr><th>Value of Double</th><th>String Representation</th></tr>
 | |
|    * <tr><td>[+-] 0</td> <td><code>[-]0.0</code></td></tr>
 | |
|    * <tr><td>Between [+-] 10<sup>-3</sup> and 10<sup>7</sup>, exclusive</td>
 | |
|    *     <td><code>[-]number.number</code></td></tr>
 | |
|    * <tr><td>Other numeric value</td>
 | |
|    *     <td><code>[-]<digit>.<number>
 | |
|    *          E[-]<number></code></td></tr>
 | |
|    * <tr><td>[+-] infinity</td> <td><code>[-]Infinity</code></td></tr>
 | |
|    * <tr><td>NaN</td> <td><code>NaN</code></td></tr>
 | |
|    * </table>
 | |
|    *
 | |
|    * Yes, negative zero <em>is</em> a possible value.  Note that there is
 | |
|    * <em>always</em> a <code>.</code> and at least one digit printed after
 | |
|    * it: even if the number is 3, it will be printed as <code>3.0</code>.
 | |
|    * After the ".", all digits will be printed except trailing zeros. The
 | |
|    * result is rounded to the shortest decimal number which will parse back
 | |
|    * to the same double.
 | |
|    *
 | |
|    * <p>To create other output formats, use {@link java.text.NumberFormat}.
 | |
|    *
 | |
|    * @XXX specify where we are not in accord with the spec.
 | |
|    *
 | |
|    * @param d the <code>double</code> to convert
 | |
|    * @return the <code>String</code> representing the <code>double</code>
 | |
|    */
 | |
|   public static String toString(double d)
 | |
|   {
 | |
|     return toString(d, false);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Create a new <code>Double</code> object using the <code>String</code>.
 | |
|    *
 | |
|    * @param s the <code>String</code> to convert
 | |
|    * @return the new <code>Double</code>
 | |
|    * @throws NumberFormatException if <code>s</code> cannot be parsed as a
 | |
|    *         <code>double</code>
 | |
|    * @throws NullPointerException if <code>s</code> is null.
 | |
|    * @see #parseDouble(String)
 | |
|    */
 | |
|   public static Double valueOf(String s)
 | |
|   {
 | |
|     return new Double(parseDouble(s));
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Parse the specified <code>String</code> as a <code>double</code>. The
 | |
|    * extended BNF grammar is as follows:<br>
 | |
|    * <pre>
 | |
|    * <em>DecodableString</em>:
 | |
|    *      ( [ <code>-</code> | <code>+</code> ] <code>NaN</code> )
 | |
|    *    | ( [ <code>-</code> | <code>+</code> ] <code>Infinity</code> )
 | |
|    *    | ( [ <code>-</code> | <code>+</code> ] <em>FloatingPoint</em>
 | |
|    *              [ <code>f</code> | <code>F</code> | <code>d</code>
 | |
|    *                | <code>D</code>] )
 | |
|    * <em>FloatingPoint</em>:
 | |
|    *      ( { <em>Digit</em> }+ [ <code>.</code> { <em>Digit</em> } ]
 | |
|    *              [ <em>Exponent</em> ] )
 | |
|    *    | ( <code>.</code> { <em>Digit</em> }+ [ <em>Exponent</em> ] )
 | |
|    * <em>Exponent</em>:
 | |
|    *      ( ( <code>e</code> | <code>E</code> )
 | |
|    *              [ <code>-</code> | <code>+</code> ] { <em>Digit</em> }+ )
 | |
|    * <em>Digit</em>: <em><code>'0'</code> through <code>'9'</code></em>
 | |
|    * </pre>
 | |
|    *
 | |
|    * <p>NaN and infinity are special cases, to allow parsing of the output
 | |
|    * of toString.  Otherwise, the result is determined by calculating
 | |
|    * <em>n * 10<sup>exponent</sup></em> to infinite precision, then rounding
 | |
|    * to the nearest double. Remember that many numbers cannot be precisely
 | |
|    * represented in floating point. In case of overflow, infinity is used,
 | |
|    * and in case of underflow, signed zero is used. Unlike Integer.parseInt,
 | |
|    * this does not accept Unicode digits outside the ASCII range.
 | |
|    *
 | |
|    * <p>If an unexpected character is found in the <code>String</code>, a
 | |
|    * <code>NumberFormatException</code> will be thrown.  Leading and trailing
 | |
|    * 'whitespace' is ignored via <code>String.trim()</code>, but spaces
 | |
|    * internal to the actual number are not allowed.
 | |
|    *
 | |
|    * <p>To parse numbers according to another format, consider using
 | |
|    * {@link java.text.NumberFormat}.
 | |
|    *
 | |
|    * @XXX specify where/how we are not in accord with the spec.
 | |
|    *
 | |
|    * @param str the <code>String</code> to convert
 | |
|    * @return the <code>double</code> value of <code>s</code>
 | |
|    * @throws NumberFormatException if <code>s</code> cannot be parsed as a
 | |
|    *         <code>double</code>
 | |
|    * @throws NullPointerException if <code>s</code> is null
 | |
|    * @see #MIN_VALUE
 | |
|    * @see #MAX_VALUE
 | |
|    * @see #POSITIVE_INFINITY
 | |
|    * @see #NEGATIVE_INFINITY
 | |
|    * @since 1.2
 | |
|    */
 | |
|   public static native double parseDouble(String str);
 | |
| 
 | |
|   /**
 | |
|    * Return <code>true</code> if the <code>double</code> has the same
 | |
|    * value as <code>NaN</code>, otherwise return <code>false</code>.
 | |
|    *
 | |
|    * @param v the <code>double</code> to compare
 | |
|    * @return whether the argument is <code>NaN</code>.
 | |
|    */
 | |
|   public static boolean isNaN(double v)
 | |
|   {
 | |
|     // This works since NaN != NaN is the only reflexive inequality
 | |
|     // comparison which returns true.
 | |
|     return v != v;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return <code>true</code> if the <code>double</code> has a value
 | |
|    * equal to either <code>NEGATIVE_INFINITY</code> or
 | |
|    * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
 | |
|    *
 | |
|    * @param v the <code>double</code> to compare
 | |
|    * @return whether the argument is (-/+) infinity.
 | |
|    */
 | |
|   public static boolean isInfinite(double v)
 | |
|   {
 | |
|     return v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return <code>true</code> if the value of this <code>Double</code>
 | |
|    * is the same as <code>NaN</code>, otherwise return <code>false</code>.
 | |
|    *
 | |
|    * @return whether this <code>Double</code> is <code>NaN</code>
 | |
|    */
 | |
|   public boolean isNaN()
 | |
|   {
 | |
|     return isNaN(value);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return <code>true</code> if the value of this <code>Double</code>
 | |
|    * is the same as <code>NEGATIVE_INFINITY</code> or
 | |
|    * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
 | |
|    *
 | |
|    * @return whether this <code>Double</code> is (-/+) infinity
 | |
|    */
 | |
|   public boolean isInfinite()
 | |
|   {
 | |
|     return isInfinite(value);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Convert the <code>double</code> value of this <code>Double</code>
 | |
|    * to a <code>String</code>.  This method calls
 | |
|    * <code>Double.toString(double)</code> to do its dirty work.
 | |
|    *
 | |
|    * @return the <code>String</code> representation
 | |
|    * @see #toString(double)
 | |
|    */
 | |
|   public String toString()
 | |
|   {
 | |
|     return toString(value);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the value of this <code>Double</code> as a <code>byte</code>.
 | |
|    *
 | |
|    * @return the byte value
 | |
|    * @since 1.1
 | |
|    */
 | |
|   public byte byteValue()
 | |
|   {
 | |
|     return (byte) value;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the value of this <code>Double</code> as a <code>short</code>.
 | |
|    *
 | |
|    * @return the short value
 | |
|    * @since 1.1
 | |
|    */
 | |
|   public short shortValue()
 | |
|   {
 | |
|     return (short) value;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the value of this <code>Double</code> as an <code>int</code>.
 | |
|    *
 | |
|    * @return the int value
 | |
|    */
 | |
|   public int intValue()
 | |
|   {
 | |
|     return (int) value;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the value of this <code>Double</code> as a <code>long</code>.
 | |
|    *
 | |
|    * @return the long value
 | |
|    */
 | |
|   public long longValue()
 | |
|   {
 | |
|     return (long) value;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the value of this <code>Double</code> as a <code>float</code>.
 | |
|    *
 | |
|    * @return the float value
 | |
|    */
 | |
|   public float floatValue()
 | |
|   {
 | |
|     return (float) value;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the value of this <code>Double</code>.
 | |
|    *
 | |
|    * @return the double value
 | |
|    */
 | |
|   public double doubleValue()
 | |
|   {
 | |
|     return value;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return a hashcode representing this Object. <code>Double</code>'s hash
 | |
|    * code is calculated by:<br>
 | |
|    * <code>long v = Double.doubleToLongBits(doubleValue());<br>
 | |
|    *    int hash = (int)(v^(v>>32))</code>.
 | |
|    *
 | |
|    * @return this Object's hash code
 | |
|    * @see #doubleToLongBits(double)
 | |
|    */
 | |
|   public int hashCode()
 | |
|   {
 | |
|     long v = doubleToLongBits(value);
 | |
|     return (int) (v ^ (v >>> 32));
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns <code>true</code> if <code>obj</code> is an instance of
 | |
|    * <code>Double</code> and represents the same double value. Unlike comparing
 | |
|    * two doubles with <code>==</code>, this treats two instances of
 | |
|    * <code>Double.NaN</code> as equal, but treats <code>0.0</code> and
 | |
|    * <code>-0.0</code> as unequal.
 | |
|    *
 | |
|    * <p>Note that <code>d1.equals(d2)</code> is identical to
 | |
|    * <code>doubleToLongBits(d1.doubleValue()) ==
 | |
|    *    doubleToLongBits(d2.doubleValue())</code>.
 | |
|    *
 | |
|    * @param obj the object to compare
 | |
|    * @return whether the objects are semantically equal
 | |
|    */
 | |
|   public boolean equals(Object obj)
 | |
|   {
 | |
|     if (! (obj instanceof Double))
 | |
|       return false;
 | |
| 
 | |
|     double d = ((Double) obj).value;
 | |
| 
 | |
|     // Avoid call to native method. However, some implementations, like gcj,
 | |
|     // are better off using floatToIntBits(value) == floatToIntBits(f).
 | |
|     // Check common case first, then check NaN and 0.
 | |
|     if (value == d)
 | |
|       return (value != 0) || (1 / value == 1 / d);
 | |
|     return isNaN(value) && isNaN(d);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Convert the double to the IEEE 754 floating-point "double format" bit
 | |
|    * layout. Bit 63 (the most significant) is the sign bit, bits 62-52
 | |
|    * (masked by 0x7ff0000000000000L) represent the exponent, and bits 51-0
 | |
|    * (masked by 0x000fffffffffffffL) are the mantissa. This function
 | |
|    * collapses all versions of NaN to 0x7ff8000000000000L. The result of this
 | |
|    * function can be used as the argument to
 | |
|    * <code>Double.longBitsToDouble(long)</code> to obtain the original
 | |
|    * <code>double</code> value.
 | |
|    *
 | |
|    * @param value the <code>double</code> to convert
 | |
|    * @return the bits of the <code>double</code>
 | |
|    * @see #longBitsToDouble(long)
 | |
|    */
 | |
|   // GCJ LOCAL: We diverge from Classpath for efficiency.
 | |
|   public static native long doubleToLongBits(double value);
 | |
|   // END GCJ LOCAL
 | |
| 
 | |
|   /**
 | |
|    * Convert the double to the IEEE 754 floating-point "double format" bit
 | |
|    * layout. Bit 63 (the most significant) is the sign bit, bits 62-52
 | |
|    * (masked by 0x7ff0000000000000L) represent the exponent, and bits 51-0
 | |
|    * (masked by 0x000fffffffffffffL) are the mantissa. This function
 | |
|    * leaves NaN alone, rather than collapsing to a canonical value. The
 | |
|    * result of this function can be used as the argument to
 | |
|    * <code>Double.longBitsToDouble(long)</code> to obtain the original
 | |
|    * <code>double</code> value.
 | |
|    *
 | |
|    * @param value the <code>double</code> to convert
 | |
|    * @return the bits of the <code>double</code>
 | |
|    * @see #longBitsToDouble(long)
 | |
|    */
 | |
|   // GCJ LOCAL: We diverge from Classpath for efficiency.
 | |
|   public static native long doubleToRawLongBits(double value);
 | |
|   // END GCJ LOCAL
 | |
| 
 | |
|   /**
 | |
|    * Convert the argument in IEEE 754 floating-point "double format" bit
 | |
|    * layout to the corresponding float. Bit 63 (the most significant) is the
 | |
|    * sign bit, bits 62-52 (masked by 0x7ff0000000000000L) represent the
 | |
|    * exponent, and bits 51-0 (masked by 0x000fffffffffffffL) are the mantissa.
 | |
|    * This function leaves NaN alone, so that you can recover the bit pattern
 | |
|    * with <code>Double.doubleToRawLongBits(double)</code>.
 | |
|    *
 | |
|    * @param bits the bits to convert
 | |
|    * @return the <code>double</code> represented by the bits
 | |
|    * @see #doubleToLongBits(double)
 | |
|    * @see #doubleToRawLongBits(double)
 | |
|    */
 | |
|   // GCJ LOCAL: We diverge from Classpath for efficiency.
 | |
|   public static native double longBitsToDouble(long bits);
 | |
|   // END GCJ LOCAL
 | |
| 
 | |
|   /**
 | |
|    * Compare two Doubles numerically by comparing their <code>double</code>
 | |
|    * values. The result is positive if the first is greater, negative if the
 | |
|    * second is greater, and 0 if the two are equal. However, this special
 | |
|    * cases NaN and signed zero as follows: NaN is considered greater than
 | |
|    * all other doubles, including <code>POSITIVE_INFINITY</code>, and positive
 | |
|    * zero is considered greater than negative zero.
 | |
|    *
 | |
|    * @param d the Double to compare
 | |
|    * @return the comparison
 | |
|    * @since 1.2
 | |
|    */
 | |
|   public int compareTo(Double d)
 | |
|   {
 | |
|     return compare(value, d.value);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Behaves like <code>compareTo(Double)</code> unless the Object
 | |
|    * is not an <code>Double</code>.
 | |
|    *
 | |
|    * @param o the object to compare
 | |
|    * @return the comparison
 | |
|    * @throws ClassCastException if the argument is not a <code>Double</code>
 | |
|    * @see #compareTo(Double)
 | |
|    * @see Comparable
 | |
|    * @since 1.2
 | |
|    */
 | |
|   public int compareTo(Object o)
 | |
|   {
 | |
|     return compare(value, ((Double) o).value);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Behaves like <code>new Double(x).compareTo(new Double(y))</code>; in
 | |
|    * other words this compares two doubles, special casing NaN and zero,
 | |
|    * without the overhead of objects.
 | |
|    *
 | |
|    * @param x the first double to compare
 | |
|    * @param y the second double to compare
 | |
|    * @return the comparison
 | |
|    * @since 1.4
 | |
|    */
 | |
|   public static int compare(double x, double y)
 | |
|   {
 | |
|     if (isNaN(x))
 | |
|       return isNaN(y) ? 0 : 1;
 | |
|     if (isNaN(y))
 | |
|       return -1;
 | |
|     // recall that 0.0 == -0.0, so we convert to infinites and try again
 | |
|     if (x == 0 && y == 0)
 | |
|       return (int) (1 / x - 1 / y);
 | |
|     if (x == y)
 | |
|       return 0;
 | |
| 
 | |
|     return x > y ? 1 : -1;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Helper method to convert to string.
 | |
|    *
 | |
|    * @param d the double to convert
 | |
|    * @param isFloat true if the conversion is requested by Float (results in
 | |
|    *        fewer digits)
 | |
|    */
 | |
|   // Package visible for use by Float.
 | |
|   static native String toString(double d, boolean isFloat);
 | |
| 
 | |
|   /**
 | |
|    * Initialize JNI cache.  This method is called only by the
 | |
|    * static initializer when using JNI.
 | |
|    */
 | |
|   private static native void initIDs();
 | |
| }
 |