mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			1141 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			1141 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Go
		
	
	
	
| // Copyright 2009 The Go Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| // This file implements signed multi-precision integers.
 | ||
| 
 | ||
| package big
 | ||
| 
 | ||
| import (
 | ||
| 	"fmt"
 | ||
| 	"io"
 | ||
| 	"math/rand"
 | ||
| 	"strings"
 | ||
| )
 | ||
| 
 | ||
| // An Int represents a signed multi-precision integer.
 | ||
| // The zero value for an Int represents the value 0.
 | ||
| type Int struct {
 | ||
| 	neg bool // sign
 | ||
| 	abs nat  // absolute value of the integer
 | ||
| }
 | ||
| 
 | ||
| var intOne = &Int{false, natOne}
 | ||
| 
 | ||
| // Sign returns:
 | ||
| //
 | ||
| //	-1 if x <  0
 | ||
| //	 0 if x == 0
 | ||
| //	+1 if x >  0
 | ||
| //
 | ||
| func (x *Int) Sign() int {
 | ||
| 	if len(x.abs) == 0 {
 | ||
| 		return 0
 | ||
| 	}
 | ||
| 	if x.neg {
 | ||
| 		return -1
 | ||
| 	}
 | ||
| 	return 1
 | ||
| }
 | ||
| 
 | ||
| // SetInt64 sets z to x and returns z.
 | ||
| func (z *Int) SetInt64(x int64) *Int {
 | ||
| 	neg := false
 | ||
| 	if x < 0 {
 | ||
| 		neg = true
 | ||
| 		x = -x
 | ||
| 	}
 | ||
| 	z.abs = z.abs.setUint64(uint64(x))
 | ||
| 	z.neg = neg
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // SetUint64 sets z to x and returns z.
 | ||
| func (z *Int) SetUint64(x uint64) *Int {
 | ||
| 	z.abs = z.abs.setUint64(x)
 | ||
| 	z.neg = false
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // NewInt allocates and returns a new Int set to x.
 | ||
| func NewInt(x int64) *Int {
 | ||
| 	return new(Int).SetInt64(x)
 | ||
| }
 | ||
| 
 | ||
| // Set sets z to x and returns z.
 | ||
| func (z *Int) Set(x *Int) *Int {
 | ||
| 	if z != x {
 | ||
| 		z.abs = z.abs.set(x.abs)
 | ||
| 		z.neg = x.neg
 | ||
| 	}
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // Bits provides raw (unchecked but fast) access to x by returning its
 | ||
| // absolute value as a little-endian Word slice. The result and x share
 | ||
| // the same underlying array.
 | ||
| // Bits is intended to support implementation of missing low-level Int
 | ||
| // functionality outside this package; it should be avoided otherwise.
 | ||
| func (x *Int) Bits() []Word {
 | ||
| 	return x.abs
 | ||
| }
 | ||
| 
 | ||
| // SetBits provides raw (unchecked but fast) access to z by setting its
 | ||
| // value to abs, interpreted as a little-endian Word slice, and returning
 | ||
| // z. The result and abs share the same underlying array.
 | ||
| // SetBits is intended to support implementation of missing low-level Int
 | ||
| // functionality outside this package; it should be avoided otherwise.
 | ||
| func (z *Int) SetBits(abs []Word) *Int {
 | ||
| 	z.abs = nat(abs).norm()
 | ||
| 	z.neg = false
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // Abs sets z to |x| (the absolute value of x) and returns z.
 | ||
| func (z *Int) Abs(x *Int) *Int {
 | ||
| 	z.Set(x)
 | ||
| 	z.neg = false
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // Neg sets z to -x and returns z.
 | ||
| func (z *Int) Neg(x *Int) *Int {
 | ||
| 	z.Set(x)
 | ||
| 	z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // Add sets z to the sum x+y and returns z.
 | ||
| func (z *Int) Add(x, y *Int) *Int {
 | ||
| 	neg := x.neg
 | ||
| 	if x.neg == y.neg {
 | ||
| 		// x + y == x + y
 | ||
| 		// (-x) + (-y) == -(x + y)
 | ||
| 		z.abs = z.abs.add(x.abs, y.abs)
 | ||
| 	} else {
 | ||
| 		// x + (-y) == x - y == -(y - x)
 | ||
| 		// (-x) + y == y - x == -(x - y)
 | ||
| 		if x.abs.cmp(y.abs) >= 0 {
 | ||
| 			z.abs = z.abs.sub(x.abs, y.abs)
 | ||
| 		} else {
 | ||
| 			neg = !neg
 | ||
| 			z.abs = z.abs.sub(y.abs, x.abs)
 | ||
| 		}
 | ||
| 	}
 | ||
| 	z.neg = len(z.abs) > 0 && neg // 0 has no sign
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // Sub sets z to the difference x-y and returns z.
 | ||
| func (z *Int) Sub(x, y *Int) *Int {
 | ||
| 	neg := x.neg
 | ||
| 	if x.neg != y.neg {
 | ||
| 		// x - (-y) == x + y
 | ||
| 		// (-x) - y == -(x + y)
 | ||
| 		z.abs = z.abs.add(x.abs, y.abs)
 | ||
| 	} else {
 | ||
| 		// x - y == x - y == -(y - x)
 | ||
| 		// (-x) - (-y) == y - x == -(x - y)
 | ||
| 		if x.abs.cmp(y.abs) >= 0 {
 | ||
| 			z.abs = z.abs.sub(x.abs, y.abs)
 | ||
| 		} else {
 | ||
| 			neg = !neg
 | ||
| 			z.abs = z.abs.sub(y.abs, x.abs)
 | ||
| 		}
 | ||
| 	}
 | ||
| 	z.neg = len(z.abs) > 0 && neg // 0 has no sign
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // Mul sets z to the product x*y and returns z.
 | ||
| func (z *Int) Mul(x, y *Int) *Int {
 | ||
| 	// x * y == x * y
 | ||
| 	// x * (-y) == -(x * y)
 | ||
| 	// (-x) * y == -(x * y)
 | ||
| 	// (-x) * (-y) == x * y
 | ||
| 	if x == y {
 | ||
| 		z.abs = z.abs.sqr(x.abs)
 | ||
| 		z.neg = false
 | ||
| 		return z
 | ||
| 	}
 | ||
| 	z.abs = z.abs.mul(x.abs, y.abs)
 | ||
| 	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // MulRange sets z to the product of all integers
 | ||
| // in the range [a, b] inclusively and returns z.
 | ||
| // If a > b (empty range), the result is 1.
 | ||
| func (z *Int) MulRange(a, b int64) *Int {
 | ||
| 	switch {
 | ||
| 	case a > b:
 | ||
| 		return z.SetInt64(1) // empty range
 | ||
| 	case a <= 0 && b >= 0:
 | ||
| 		return z.SetInt64(0) // range includes 0
 | ||
| 	}
 | ||
| 	// a <= b && (b < 0 || a > 0)
 | ||
| 
 | ||
| 	neg := false
 | ||
| 	if a < 0 {
 | ||
| 		neg = (b-a)&1 == 0
 | ||
| 		a, b = -b, -a
 | ||
| 	}
 | ||
| 
 | ||
| 	z.abs = z.abs.mulRange(uint64(a), uint64(b))
 | ||
| 	z.neg = neg
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // Binomial sets z to the binomial coefficient of (n, k) and returns z.
 | ||
| func (z *Int) Binomial(n, k int64) *Int {
 | ||
| 	// reduce the number of multiplications by reducing k
 | ||
| 	if n/2 < k && k <= n {
 | ||
| 		k = n - k // Binomial(n, k) == Binomial(n, n-k)
 | ||
| 	}
 | ||
| 	var a, b Int
 | ||
| 	a.MulRange(n-k+1, n)
 | ||
| 	b.MulRange(1, k)
 | ||
| 	return z.Quo(&a, &b)
 | ||
| }
 | ||
| 
 | ||
| // Quo sets z to the quotient x/y for y != 0 and returns z.
 | ||
| // If y == 0, a division-by-zero run-time panic occurs.
 | ||
| // Quo implements truncated division (like Go); see QuoRem for more details.
 | ||
| func (z *Int) Quo(x, y *Int) *Int {
 | ||
| 	z.abs, _ = z.abs.div(nil, x.abs, y.abs)
 | ||
| 	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // Rem sets z to the remainder x%y for y != 0 and returns z.
 | ||
| // If y == 0, a division-by-zero run-time panic occurs.
 | ||
| // Rem implements truncated modulus (like Go); see QuoRem for more details.
 | ||
| func (z *Int) Rem(x, y *Int) *Int {
 | ||
| 	_, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
 | ||
| 	z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // QuoRem sets z to the quotient x/y and r to the remainder x%y
 | ||
| // and returns the pair (z, r) for y != 0.
 | ||
| // If y == 0, a division-by-zero run-time panic occurs.
 | ||
| //
 | ||
| // QuoRem implements T-division and modulus (like Go):
 | ||
| //
 | ||
| //	q = x/y      with the result truncated to zero
 | ||
| //	r = x - y*q
 | ||
| //
 | ||
| // (See Daan Leijen, ``Division and Modulus for Computer Scientists''.)
 | ||
| // See DivMod for Euclidean division and modulus (unlike Go).
 | ||
| //
 | ||
| func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
 | ||
| 	z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
 | ||
| 	z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign
 | ||
| 	return z, r
 | ||
| }
 | ||
| 
 | ||
| // Div sets z to the quotient x/y for y != 0 and returns z.
 | ||
| // If y == 0, a division-by-zero run-time panic occurs.
 | ||
| // Div implements Euclidean division (unlike Go); see DivMod for more details.
 | ||
| func (z *Int) Div(x, y *Int) *Int {
 | ||
| 	y_neg := y.neg // z may be an alias for y
 | ||
| 	var r Int
 | ||
| 	z.QuoRem(x, y, &r)
 | ||
| 	if r.neg {
 | ||
| 		if y_neg {
 | ||
| 			z.Add(z, intOne)
 | ||
| 		} else {
 | ||
| 			z.Sub(z, intOne)
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // Mod sets z to the modulus x%y for y != 0 and returns z.
 | ||
| // If y == 0, a division-by-zero run-time panic occurs.
 | ||
| // Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
 | ||
| func (z *Int) Mod(x, y *Int) *Int {
 | ||
| 	y0 := y // save y
 | ||
| 	if z == y || alias(z.abs, y.abs) {
 | ||
| 		y0 = new(Int).Set(y)
 | ||
| 	}
 | ||
| 	var q Int
 | ||
| 	q.QuoRem(x, y, z)
 | ||
| 	if z.neg {
 | ||
| 		if y0.neg {
 | ||
| 			z.Sub(z, y0)
 | ||
| 		} else {
 | ||
| 			z.Add(z, y0)
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // DivMod sets z to the quotient x div y and m to the modulus x mod y
 | ||
| // and returns the pair (z, m) for y != 0.
 | ||
| // If y == 0, a division-by-zero run-time panic occurs.
 | ||
| //
 | ||
| // DivMod implements Euclidean division and modulus (unlike Go):
 | ||
| //
 | ||
| //	q = x div y  such that
 | ||
| //	m = x - y*q  with 0 <= m < |y|
 | ||
| //
 | ||
| // (See Raymond T. Boute, ``The Euclidean definition of the functions
 | ||
| // div and mod''. ACM Transactions on Programming Languages and
 | ||
| // Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
 | ||
| // ACM press.)
 | ||
| // See QuoRem for T-division and modulus (like Go).
 | ||
| //
 | ||
| func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
 | ||
| 	y0 := y // save y
 | ||
| 	if z == y || alias(z.abs, y.abs) {
 | ||
| 		y0 = new(Int).Set(y)
 | ||
| 	}
 | ||
| 	z.QuoRem(x, y, m)
 | ||
| 	if m.neg {
 | ||
| 		if y0.neg {
 | ||
| 			z.Add(z, intOne)
 | ||
| 			m.Sub(m, y0)
 | ||
| 		} else {
 | ||
| 			z.Sub(z, intOne)
 | ||
| 			m.Add(m, y0)
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return z, m
 | ||
| }
 | ||
| 
 | ||
| // Cmp compares x and y and returns:
 | ||
| //
 | ||
| //   -1 if x <  y
 | ||
| //    0 if x == y
 | ||
| //   +1 if x >  y
 | ||
| //
 | ||
| func (x *Int) Cmp(y *Int) (r int) {
 | ||
| 	// x cmp y == x cmp y
 | ||
| 	// x cmp (-y) == x
 | ||
| 	// (-x) cmp y == y
 | ||
| 	// (-x) cmp (-y) == -(x cmp y)
 | ||
| 	switch {
 | ||
| 	case x.neg == y.neg:
 | ||
| 		r = x.abs.cmp(y.abs)
 | ||
| 		if x.neg {
 | ||
| 			r = -r
 | ||
| 		}
 | ||
| 	case x.neg:
 | ||
| 		r = -1
 | ||
| 	default:
 | ||
| 		r = 1
 | ||
| 	}
 | ||
| 	return
 | ||
| }
 | ||
| 
 | ||
| // CmpAbs compares the absolute values of x and y and returns:
 | ||
| //
 | ||
| //   -1 if |x| <  |y|
 | ||
| //    0 if |x| == |y|
 | ||
| //   +1 if |x| >  |y|
 | ||
| //
 | ||
| func (x *Int) CmpAbs(y *Int) int {
 | ||
| 	return x.abs.cmp(y.abs)
 | ||
| }
 | ||
| 
 | ||
| // low32 returns the least significant 32 bits of x.
 | ||
| func low32(x nat) uint32 {
 | ||
| 	if len(x) == 0 {
 | ||
| 		return 0
 | ||
| 	}
 | ||
| 	return uint32(x[0])
 | ||
| }
 | ||
| 
 | ||
| // low64 returns the least significant 64 bits of x.
 | ||
| func low64(x nat) uint64 {
 | ||
| 	if len(x) == 0 {
 | ||
| 		return 0
 | ||
| 	}
 | ||
| 	v := uint64(x[0])
 | ||
| 	if _W == 32 && len(x) > 1 {
 | ||
| 		return uint64(x[1])<<32 | v
 | ||
| 	}
 | ||
| 	return v
 | ||
| }
 | ||
| 
 | ||
| // Int64 returns the int64 representation of x.
 | ||
| // If x cannot be represented in an int64, the result is undefined.
 | ||
| func (x *Int) Int64() int64 {
 | ||
| 	v := int64(low64(x.abs))
 | ||
| 	if x.neg {
 | ||
| 		v = -v
 | ||
| 	}
 | ||
| 	return v
 | ||
| }
 | ||
| 
 | ||
| // Uint64 returns the uint64 representation of x.
 | ||
| // If x cannot be represented in a uint64, the result is undefined.
 | ||
| func (x *Int) Uint64() uint64 {
 | ||
| 	return low64(x.abs)
 | ||
| }
 | ||
| 
 | ||
| // IsInt64 reports whether x can be represented as an int64.
 | ||
| func (x *Int) IsInt64() bool {
 | ||
| 	if len(x.abs) <= 64/_W {
 | ||
| 		w := int64(low64(x.abs))
 | ||
| 		return w >= 0 || x.neg && w == -w
 | ||
| 	}
 | ||
| 	return false
 | ||
| }
 | ||
| 
 | ||
| // IsUint64 reports whether x can be represented as a uint64.
 | ||
| func (x *Int) IsUint64() bool {
 | ||
| 	return !x.neg && len(x.abs) <= 64/_W
 | ||
| }
 | ||
| 
 | ||
| // SetString sets z to the value of s, interpreted in the given base,
 | ||
| // and returns z and a boolean indicating success. The entire string
 | ||
| // (not just a prefix) must be valid for success. If SetString fails,
 | ||
| // the value of z is undefined but the returned value is nil.
 | ||
| //
 | ||
| // The base argument must be 0 or a value between 2 and MaxBase. If the base
 | ||
| // is 0, the string prefix determines the actual conversion base. A prefix of
 | ||
| // ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
 | ||
| // ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
 | ||
| //
 | ||
| // For bases <= 36, lower and upper case letters are considered the same:
 | ||
| // The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35.
 | ||
| // For bases > 36, the upper case letters 'A' to 'Z' represent the digit
 | ||
| // values 36 to 61.
 | ||
| //
 | ||
| func (z *Int) SetString(s string, base int) (*Int, bool) {
 | ||
| 	return z.setFromScanner(strings.NewReader(s), base)
 | ||
| }
 | ||
| 
 | ||
| // setFromScanner implements SetString given an io.BytesScanner.
 | ||
| // For documentation see comments of SetString.
 | ||
| func (z *Int) setFromScanner(r io.ByteScanner, base int) (*Int, bool) {
 | ||
| 	if _, _, err := z.scan(r, base); err != nil {
 | ||
| 		return nil, false
 | ||
| 	}
 | ||
| 	// entire content must have been consumed
 | ||
| 	if _, err := r.ReadByte(); err != io.EOF {
 | ||
| 		return nil, false
 | ||
| 	}
 | ||
| 	return z, true // err == io.EOF => scan consumed all content of r
 | ||
| }
 | ||
| 
 | ||
| // SetBytes interprets buf as the bytes of a big-endian unsigned
 | ||
| // integer, sets z to that value, and returns z.
 | ||
| func (z *Int) SetBytes(buf []byte) *Int {
 | ||
| 	z.abs = z.abs.setBytes(buf)
 | ||
| 	z.neg = false
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // Bytes returns the absolute value of x as a big-endian byte slice.
 | ||
| func (x *Int) Bytes() []byte {
 | ||
| 	buf := make([]byte, len(x.abs)*_S)
 | ||
| 	return buf[x.abs.bytes(buf):]
 | ||
| }
 | ||
| 
 | ||
| // BitLen returns the length of the absolute value of x in bits.
 | ||
| // The bit length of 0 is 0.
 | ||
| func (x *Int) BitLen() int {
 | ||
| 	return x.abs.bitLen()
 | ||
| }
 | ||
| 
 | ||
| // Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
 | ||
| // If m == nil or m == 0, z = x**y unless y <= 0 then z = 1.
 | ||
| //
 | ||
| // Modular exponentation of inputs of a particular size is not a
 | ||
| // cryptographically constant-time operation.
 | ||
| func (z *Int) Exp(x, y, m *Int) *Int {
 | ||
| 	// See Knuth, volume 2, section 4.6.3.
 | ||
| 	xWords := x.abs
 | ||
| 	if y.neg {
 | ||
| 		if m == nil || len(m.abs) == 0 {
 | ||
| 			return z.SetInt64(1)
 | ||
| 		}
 | ||
| 		// for y < 0: x**y mod m == (x**(-1))**|y| mod m
 | ||
| 		xWords = new(Int).ModInverse(x, m).abs
 | ||
| 	}
 | ||
| 	yWords := y.abs
 | ||
| 
 | ||
| 	var mWords nat
 | ||
| 	if m != nil {
 | ||
| 		mWords = m.abs // m.abs may be nil for m == 0
 | ||
| 	}
 | ||
| 
 | ||
| 	z.abs = z.abs.expNN(xWords, yWords, mWords)
 | ||
| 	z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign
 | ||
| 	if z.neg && len(mWords) > 0 {
 | ||
| 		// make modulus result positive
 | ||
| 		z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m|
 | ||
| 		z.neg = false
 | ||
| 	}
 | ||
| 
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // GCD sets z to the greatest common divisor of a and b, which both must
 | ||
| // be > 0, and returns z.
 | ||
| // If x or y are not nil, GCD sets their value such that z = a*x + b*y.
 | ||
| // If either a or b is <= 0, GCD sets z = x = y = 0.
 | ||
| func (z *Int) GCD(x, y, a, b *Int) *Int {
 | ||
| 	if a.Sign() <= 0 || b.Sign() <= 0 {
 | ||
| 		z.SetInt64(0)
 | ||
| 		if x != nil {
 | ||
| 			x.SetInt64(0)
 | ||
| 		}
 | ||
| 		if y != nil {
 | ||
| 			y.SetInt64(0)
 | ||
| 		}
 | ||
| 		return z
 | ||
| 	}
 | ||
| 
 | ||
| 	return z.lehmerGCD(x, y, a, b)
 | ||
| }
 | ||
| 
 | ||
| // lehmerSimulate attempts to simulate several Euclidean update steps
 | ||
| // using the leading digits of A and B.  It returns u0, u1, v0, v1
 | ||
| // such that A and B can be updated as:
 | ||
| //		A = u0*A + v0*B
 | ||
| //		B = u1*A + v1*B
 | ||
| // Requirements: A >= B and len(B.abs) >= 2
 | ||
| // Since we are calculating with full words to avoid overflow,
 | ||
| // we use 'even' to track the sign of the cosequences.
 | ||
| // For even iterations: u0, v1 >= 0 && u1, v0 <= 0
 | ||
| // For odd  iterations: u0, v1 <= 0 && u1, v0 >= 0
 | ||
| func lehmerSimulate(A, B *Int) (u0, u1, v0, v1 Word, even bool) {
 | ||
| 	// initialize the digits
 | ||
| 	var a1, a2, u2, v2 Word
 | ||
| 
 | ||
| 	m := len(B.abs) // m >= 2
 | ||
| 	n := len(A.abs) // n >= m >= 2
 | ||
| 
 | ||
| 	// extract the top Word of bits from A and B
 | ||
| 	h := nlz(A.abs[n-1])
 | ||
| 	a1 = A.abs[n-1]<<h | A.abs[n-2]>>(_W-h)
 | ||
| 	// B may have implicit zero words in the high bits if the lengths differ
 | ||
| 	switch {
 | ||
| 	case n == m:
 | ||
| 		a2 = B.abs[n-1]<<h | B.abs[n-2]>>(_W-h)
 | ||
| 	case n == m+1:
 | ||
| 		a2 = B.abs[n-2] >> (_W - h)
 | ||
| 	default:
 | ||
| 		a2 = 0
 | ||
| 	}
 | ||
| 
 | ||
| 	// Since we are calculating with full words to avoid overflow,
 | ||
| 	// we use 'even' to track the sign of the cosequences.
 | ||
| 	// For even iterations: u0, v1 >= 0 && u1, v0 <= 0
 | ||
| 	// For odd  iterations: u0, v1 <= 0 && u1, v0 >= 0
 | ||
| 	// The first iteration starts with k=1 (odd).
 | ||
| 	even = false
 | ||
| 	// variables to track the cosequences
 | ||
| 	u0, u1, u2 = 0, 1, 0
 | ||
| 	v0, v1, v2 = 0, 0, 1
 | ||
| 
 | ||
| 	// Calculate the quotient and cosequences using Collins' stopping condition.
 | ||
| 	// Note that overflow of a Word is not possible when computing the remainder
 | ||
| 	// sequence and cosequences since the cosequence size is bounded by the input size.
 | ||
| 	// See section 4.2 of Jebelean for details.
 | ||
| 	for a2 >= v2 && a1-a2 >= v1+v2 {
 | ||
| 		q, r := a1/a2, a1%a2
 | ||
| 		a1, a2 = a2, r
 | ||
| 		u0, u1, u2 = u1, u2, u1+q*u2
 | ||
| 		v0, v1, v2 = v1, v2, v1+q*v2
 | ||
| 		even = !even
 | ||
| 	}
 | ||
| 	return
 | ||
| }
 | ||
| 
 | ||
| // lehmerUpdate updates the inputs A and B such that:
 | ||
| //		A = u0*A + v0*B
 | ||
| //		B = u1*A + v1*B
 | ||
| // where the signs of u0, u1, v0, v1 are given by even
 | ||
| // For even == true: u0, v1 >= 0 && u1, v0 <= 0
 | ||
| // For even == false: u0, v1 <= 0 && u1, v0 >= 0
 | ||
| // q, r, s, t are temporary variables to avoid allocations in the multiplication
 | ||
| func lehmerUpdate(A, B, q, r, s, t *Int, u0, u1, v0, v1 Word, even bool) {
 | ||
| 
 | ||
| 	t.abs = t.abs.setWord(u0)
 | ||
| 	s.abs = s.abs.setWord(v0)
 | ||
| 	t.neg = !even
 | ||
| 	s.neg = even
 | ||
| 
 | ||
| 	t.Mul(A, t)
 | ||
| 	s.Mul(B, s)
 | ||
| 
 | ||
| 	r.abs = r.abs.setWord(u1)
 | ||
| 	q.abs = q.abs.setWord(v1)
 | ||
| 	r.neg = even
 | ||
| 	q.neg = !even
 | ||
| 
 | ||
| 	r.Mul(A, r)
 | ||
| 	q.Mul(B, q)
 | ||
| 
 | ||
| 	A.Add(t, s)
 | ||
| 	B.Add(r, q)
 | ||
| }
 | ||
| 
 | ||
| // euclidUpdate performs a single step of the Euclidean GCD algorithm
 | ||
| // if extended is true, it also updates the cosequence Ua, Ub
 | ||
| func euclidUpdate(A, B, Ua, Ub, q, r, s, t *Int, extended bool) {
 | ||
| 	q, r = q.QuoRem(A, B, r)
 | ||
| 
 | ||
| 	*A, *B, *r = *B, *r, *A
 | ||
| 
 | ||
| 	if extended {
 | ||
| 		// Ua, Ub = Ub, Ua - q*Ub
 | ||
| 		t.Set(Ub)
 | ||
| 		s.Mul(Ub, q)
 | ||
| 		Ub.Sub(Ua, s)
 | ||
| 		Ua.Set(t)
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // lehmerGCD sets z to the greatest common divisor of a and b,
 | ||
| // which both must be > 0, and returns z.
 | ||
| // If x or y are not nil, their values are set such that z = a*x + b*y.
 | ||
| // See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm L.
 | ||
| // This implementation uses the improved condition by Collins requiring only one
 | ||
| // quotient and avoiding the possibility of single Word overflow.
 | ||
| // See Jebelean, "Improving the multiprecision Euclidean algorithm",
 | ||
| // Design and Implementation of Symbolic Computation Systems, pp 45-58.
 | ||
| // The cosequences are updated according to Algorithm 10.45 from
 | ||
| // Cohen et al. "Handbook of Elliptic and Hyperelliptic Curve Cryptography" pp 192.
 | ||
| func (z *Int) lehmerGCD(x, y, a, b *Int) *Int {
 | ||
| 	var A, B, Ua, Ub *Int
 | ||
| 
 | ||
| 	A = new(Int).Set(a)
 | ||
| 	B = new(Int).Set(b)
 | ||
| 
 | ||
| 	extended := x != nil || y != nil
 | ||
| 
 | ||
| 	if extended {
 | ||
| 		// Ua (Ub) tracks how many times input a has been accumulated into A (B).
 | ||
| 		Ua = new(Int).SetInt64(1)
 | ||
| 		Ub = new(Int)
 | ||
| 	}
 | ||
| 
 | ||
| 	// temp variables for multiprecision update
 | ||
| 	q := new(Int)
 | ||
| 	r := new(Int)
 | ||
| 	s := new(Int)
 | ||
| 	t := new(Int)
 | ||
| 
 | ||
| 	// ensure A >= B
 | ||
| 	if A.abs.cmp(B.abs) < 0 {
 | ||
| 		A, B = B, A
 | ||
| 		Ub, Ua = Ua, Ub
 | ||
| 	}
 | ||
| 
 | ||
| 	// loop invariant A >= B
 | ||
| 	for len(B.abs) > 1 {
 | ||
| 		// Attempt to calculate in single-precision using leading words of A and B.
 | ||
| 		u0, u1, v0, v1, even := lehmerSimulate(A, B)
 | ||
| 
 | ||
| 		// multiprecision Step
 | ||
| 		if v0 != 0 {
 | ||
| 			// Simulate the effect of the single-precision steps using the cosequences.
 | ||
| 			// A = u0*A + v0*B
 | ||
| 			// B = u1*A + v1*B
 | ||
| 			lehmerUpdate(A, B, q, r, s, t, u0, u1, v0, v1, even)
 | ||
| 
 | ||
| 			if extended {
 | ||
| 				// Ua = u0*Ua + v0*Ub
 | ||
| 				// Ub = u1*Ua + v1*Ub
 | ||
| 				lehmerUpdate(Ua, Ub, q, r, s, t, u0, u1, v0, v1, even)
 | ||
| 			}
 | ||
| 
 | ||
| 		} else {
 | ||
| 			// Single-digit calculations failed to simulate any quotients.
 | ||
| 			// Do a standard Euclidean step.
 | ||
| 			euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended)
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if len(B.abs) > 0 {
 | ||
| 		// extended Euclidean algorithm base case if B is a single Word
 | ||
| 		if len(A.abs) > 1 {
 | ||
| 			// A is longer than a single Word, so one update is needed.
 | ||
| 			euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended)
 | ||
| 		}
 | ||
| 		if len(B.abs) > 0 {
 | ||
| 			// A and B are both a single Word.
 | ||
| 			aWord, bWord := A.abs[0], B.abs[0]
 | ||
| 			if extended {
 | ||
| 				var ua, ub, va, vb Word
 | ||
| 				ua, ub = 1, 0
 | ||
| 				va, vb = 0, 1
 | ||
| 				even := true
 | ||
| 				for bWord != 0 {
 | ||
| 					q, r := aWord/bWord, aWord%bWord
 | ||
| 					aWord, bWord = bWord, r
 | ||
| 					ua, ub = ub, ua+q*ub
 | ||
| 					va, vb = vb, va+q*vb
 | ||
| 					even = !even
 | ||
| 				}
 | ||
| 
 | ||
| 				t.abs = t.abs.setWord(ua)
 | ||
| 				s.abs = s.abs.setWord(va)
 | ||
| 				t.neg = !even
 | ||
| 				s.neg = even
 | ||
| 
 | ||
| 				t.Mul(Ua, t)
 | ||
| 				s.Mul(Ub, s)
 | ||
| 
 | ||
| 				Ua.Add(t, s)
 | ||
| 			} else {
 | ||
| 				for bWord != 0 {
 | ||
| 					aWord, bWord = bWord, aWord%bWord
 | ||
| 				}
 | ||
| 			}
 | ||
| 			A.abs[0] = aWord
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if x != nil {
 | ||
| 		*x = *Ua
 | ||
| 	}
 | ||
| 
 | ||
| 	if y != nil {
 | ||
| 		// y = (z - a*x)/b
 | ||
| 		y.Mul(a, Ua)
 | ||
| 		y.Sub(A, y)
 | ||
| 		y.Div(y, b)
 | ||
| 	}
 | ||
| 
 | ||
| 	*z = *A
 | ||
| 
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // Rand sets z to a pseudo-random number in [0, n) and returns z.
 | ||
| //
 | ||
| // As this uses the math/rand package, it must not be used for
 | ||
| // security-sensitive work. Use crypto/rand.Int instead.
 | ||
| func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
 | ||
| 	z.neg = false
 | ||
| 	if n.neg || len(n.abs) == 0 {
 | ||
| 		z.abs = nil
 | ||
| 		return z
 | ||
| 	}
 | ||
| 	z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ
 | ||
| // and returns z. If g and n are not relatively prime, g has no multiplicative
 | ||
| // inverse in the ring ℤ/nℤ.  In this case, z is unchanged and the return value
 | ||
| // is nil.
 | ||
| func (z *Int) ModInverse(g, n *Int) *Int {
 | ||
| 	// GCD expects parameters a and b to be > 0.
 | ||
| 	if n.neg {
 | ||
| 		var n2 Int
 | ||
| 		n = n2.Neg(n)
 | ||
| 	}
 | ||
| 	if g.neg {
 | ||
| 		var g2 Int
 | ||
| 		g = g2.Mod(g, n)
 | ||
| 	}
 | ||
| 	var d, x Int
 | ||
| 	d.GCD(&x, nil, g, n)
 | ||
| 
 | ||
| 	// if and only if d==1, g and n are relatively prime
 | ||
| 	if d.Cmp(intOne) != 0 {
 | ||
| 		return nil
 | ||
| 	}
 | ||
| 
 | ||
| 	// x and y are such that g*x + n*y = 1, therefore x is the inverse element,
 | ||
| 	// but it may be negative, so convert to the range 0 <= z < |n|
 | ||
| 	if x.neg {
 | ||
| 		z.Add(&x, n)
 | ||
| 	} else {
 | ||
| 		z.Set(&x)
 | ||
| 	}
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
 | ||
| // The y argument must be an odd integer.
 | ||
| func Jacobi(x, y *Int) int {
 | ||
| 	if len(y.abs) == 0 || y.abs[0]&1 == 0 {
 | ||
| 		panic(fmt.Sprintf("big: invalid 2nd argument to Int.Jacobi: need odd integer but got %s", y))
 | ||
| 	}
 | ||
| 
 | ||
| 	// We use the formulation described in chapter 2, section 2.4,
 | ||
| 	// "The Yacas Book of Algorithms":
 | ||
| 	// http://yacas.sourceforge.net/Algo.book.pdf
 | ||
| 
 | ||
| 	var a, b, c Int
 | ||
| 	a.Set(x)
 | ||
| 	b.Set(y)
 | ||
| 	j := 1
 | ||
| 
 | ||
| 	if b.neg {
 | ||
| 		if a.neg {
 | ||
| 			j = -1
 | ||
| 		}
 | ||
| 		b.neg = false
 | ||
| 	}
 | ||
| 
 | ||
| 	for {
 | ||
| 		if b.Cmp(intOne) == 0 {
 | ||
| 			return j
 | ||
| 		}
 | ||
| 		if len(a.abs) == 0 {
 | ||
| 			return 0
 | ||
| 		}
 | ||
| 		a.Mod(&a, &b)
 | ||
| 		if len(a.abs) == 0 {
 | ||
| 			return 0
 | ||
| 		}
 | ||
| 		// a > 0
 | ||
| 
 | ||
| 		// handle factors of 2 in 'a'
 | ||
| 		s := a.abs.trailingZeroBits()
 | ||
| 		if s&1 != 0 {
 | ||
| 			bmod8 := b.abs[0] & 7
 | ||
| 			if bmod8 == 3 || bmod8 == 5 {
 | ||
| 				j = -j
 | ||
| 			}
 | ||
| 		}
 | ||
| 		c.Rsh(&a, s) // a = 2^s*c
 | ||
| 
 | ||
| 		// swap numerator and denominator
 | ||
| 		if b.abs[0]&3 == 3 && c.abs[0]&3 == 3 {
 | ||
| 			j = -j
 | ||
| 		}
 | ||
| 		a.Set(&b)
 | ||
| 		b.Set(&c)
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // modSqrt3Mod4 uses the identity
 | ||
| //      (a^((p+1)/4))^2  mod p
 | ||
| //   == u^(p+1)          mod p
 | ||
| //   == u^2              mod p
 | ||
| // to calculate the square root of any quadratic residue mod p quickly for 3
 | ||
| // mod 4 primes.
 | ||
| func (z *Int) modSqrt3Mod4Prime(x, p *Int) *Int {
 | ||
| 	e := new(Int).Add(p, intOne) // e = p + 1
 | ||
| 	e.Rsh(e, 2)                  // e = (p + 1) / 4
 | ||
| 	z.Exp(x, e, p)               // z = x^e mod p
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // modSqrt5Mod8 uses Atkin's observation that 2 is not a square mod p
 | ||
| //   alpha ==  (2*a)^((p-5)/8)    mod p
 | ||
| //   beta  ==  2*a*alpha^2        mod p  is a square root of -1
 | ||
| //   b     ==  a*alpha*(beta-1)   mod p  is a square root of a
 | ||
| // to calculate the square root of any quadratic residue mod p quickly for 5
 | ||
| // mod 8 primes.
 | ||
| func (z *Int) modSqrt5Mod8Prime(x, p *Int) *Int {
 | ||
| 	// p == 5 mod 8 implies p = e*8 + 5
 | ||
| 	// e is the quotient and 5 the remainder on division by 8
 | ||
| 	e := new(Int).Rsh(p, 3)  // e = (p - 5) / 8
 | ||
| 	tx := new(Int).Lsh(x, 1) // tx = 2*x
 | ||
| 	alpha := new(Int).Exp(tx, e, p)
 | ||
| 	beta := new(Int).Mul(alpha, alpha)
 | ||
| 	beta.Mod(beta, p)
 | ||
| 	beta.Mul(beta, tx)
 | ||
| 	beta.Mod(beta, p)
 | ||
| 	beta.Sub(beta, intOne)
 | ||
| 	beta.Mul(beta, x)
 | ||
| 	beta.Mod(beta, p)
 | ||
| 	beta.Mul(beta, alpha)
 | ||
| 	z.Mod(beta, p)
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // modSqrtTonelliShanks uses the Tonelli-Shanks algorithm to find the square
 | ||
| // root of a quadratic residue modulo any prime.
 | ||
| func (z *Int) modSqrtTonelliShanks(x, p *Int) *Int {
 | ||
| 	// Break p-1 into s*2^e such that s is odd.
 | ||
| 	var s Int
 | ||
| 	s.Sub(p, intOne)
 | ||
| 	e := s.abs.trailingZeroBits()
 | ||
| 	s.Rsh(&s, e)
 | ||
| 
 | ||
| 	// find some non-square n
 | ||
| 	var n Int
 | ||
| 	n.SetInt64(2)
 | ||
| 	for Jacobi(&n, p) != -1 {
 | ||
| 		n.Add(&n, intOne)
 | ||
| 	}
 | ||
| 
 | ||
| 	// Core of the Tonelli-Shanks algorithm. Follows the description in
 | ||
| 	// section 6 of "Square roots from 1; 24, 51, 10 to Dan Shanks" by Ezra
 | ||
| 	// Brown:
 | ||
| 	// https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
 | ||
| 	var y, b, g, t Int
 | ||
| 	y.Add(&s, intOne)
 | ||
| 	y.Rsh(&y, 1)
 | ||
| 	y.Exp(x, &y, p)  // y = x^((s+1)/2)
 | ||
| 	b.Exp(x, &s, p)  // b = x^s
 | ||
| 	g.Exp(&n, &s, p) // g = n^s
 | ||
| 	r := e
 | ||
| 	for {
 | ||
| 		// find the least m such that ord_p(b) = 2^m
 | ||
| 		var m uint
 | ||
| 		t.Set(&b)
 | ||
| 		for t.Cmp(intOne) != 0 {
 | ||
| 			t.Mul(&t, &t).Mod(&t, p)
 | ||
| 			m++
 | ||
| 		}
 | ||
| 
 | ||
| 		if m == 0 {
 | ||
| 			return z.Set(&y)
 | ||
| 		}
 | ||
| 
 | ||
| 		t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p)
 | ||
| 		// t = g^(2^(r-m-1)) mod p
 | ||
| 		g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p
 | ||
| 		y.Mul(&y, &t).Mod(&y, p)
 | ||
| 		b.Mul(&b, &g).Mod(&b, p)
 | ||
| 		r = m
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // ModSqrt sets z to a square root of x mod p if such a square root exists, and
 | ||
| // returns z. The modulus p must be an odd prime. If x is not a square mod p,
 | ||
| // ModSqrt leaves z unchanged and returns nil. This function panics if p is
 | ||
| // not an odd integer.
 | ||
| func (z *Int) ModSqrt(x, p *Int) *Int {
 | ||
| 	switch Jacobi(x, p) {
 | ||
| 	case -1:
 | ||
| 		return nil // x is not a square mod p
 | ||
| 	case 0:
 | ||
| 		return z.SetInt64(0) // sqrt(0) mod p = 0
 | ||
| 	case 1:
 | ||
| 		break
 | ||
| 	}
 | ||
| 	if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p
 | ||
| 		x = new(Int).Mod(x, p)
 | ||
| 	}
 | ||
| 
 | ||
| 	switch {
 | ||
| 	case p.abs[0]%4 == 3:
 | ||
| 		// Check whether p is 3 mod 4, and if so, use the faster algorithm.
 | ||
| 		return z.modSqrt3Mod4Prime(x, p)
 | ||
| 	case p.abs[0]%8 == 5:
 | ||
| 		// Check whether p is 5 mod 8, use Atkin's algorithm.
 | ||
| 		return z.modSqrt5Mod8Prime(x, p)
 | ||
| 	default:
 | ||
| 		// Otherwise, use Tonelli-Shanks.
 | ||
| 		return z.modSqrtTonelliShanks(x, p)
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // Lsh sets z = x << n and returns z.
 | ||
| func (z *Int) Lsh(x *Int, n uint) *Int {
 | ||
| 	z.abs = z.abs.shl(x.abs, n)
 | ||
| 	z.neg = x.neg
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // Rsh sets z = x >> n and returns z.
 | ||
| func (z *Int) Rsh(x *Int, n uint) *Int {
 | ||
| 	if x.neg {
 | ||
| 		// (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
 | ||
| 		t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0
 | ||
| 		t = t.shr(t, n)
 | ||
| 		z.abs = t.add(t, natOne)
 | ||
| 		z.neg = true // z cannot be zero if x is negative
 | ||
| 		return z
 | ||
| 	}
 | ||
| 
 | ||
| 	z.abs = z.abs.shr(x.abs, n)
 | ||
| 	z.neg = false
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // Bit returns the value of the i'th bit of x. That is, it
 | ||
| // returns (x>>i)&1. The bit index i must be >= 0.
 | ||
| func (x *Int) Bit(i int) uint {
 | ||
| 	if i == 0 {
 | ||
| 		// optimization for common case: odd/even test of x
 | ||
| 		if len(x.abs) > 0 {
 | ||
| 			return uint(x.abs[0] & 1) // bit 0 is same for -x
 | ||
| 		}
 | ||
| 		return 0
 | ||
| 	}
 | ||
| 	if i < 0 {
 | ||
| 		panic("negative bit index")
 | ||
| 	}
 | ||
| 	if x.neg {
 | ||
| 		t := nat(nil).sub(x.abs, natOne)
 | ||
| 		return t.bit(uint(i)) ^ 1
 | ||
| 	}
 | ||
| 
 | ||
| 	return x.abs.bit(uint(i))
 | ||
| }
 | ||
| 
 | ||
| // SetBit sets z to x, with x's i'th bit set to b (0 or 1).
 | ||
| // That is, if b is 1 SetBit sets z = x | (1 << i);
 | ||
| // if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
 | ||
| // SetBit will panic.
 | ||
| func (z *Int) SetBit(x *Int, i int, b uint) *Int {
 | ||
| 	if i < 0 {
 | ||
| 		panic("negative bit index")
 | ||
| 	}
 | ||
| 	if x.neg {
 | ||
| 		t := z.abs.sub(x.abs, natOne)
 | ||
| 		t = t.setBit(t, uint(i), b^1)
 | ||
| 		z.abs = t.add(t, natOne)
 | ||
| 		z.neg = len(z.abs) > 0
 | ||
| 		return z
 | ||
| 	}
 | ||
| 	z.abs = z.abs.setBit(x.abs, uint(i), b)
 | ||
| 	z.neg = false
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // And sets z = x & y and returns z.
 | ||
| func (z *Int) And(x, y *Int) *Int {
 | ||
| 	if x.neg == y.neg {
 | ||
| 		if x.neg {
 | ||
| 			// (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
 | ||
| 			x1 := nat(nil).sub(x.abs, natOne)
 | ||
| 			y1 := nat(nil).sub(y.abs, natOne)
 | ||
| 			z.abs = z.abs.add(z.abs.or(x1, y1), natOne)
 | ||
| 			z.neg = true // z cannot be zero if x and y are negative
 | ||
| 			return z
 | ||
| 		}
 | ||
| 
 | ||
| 		// x & y == x & y
 | ||
| 		z.abs = z.abs.and(x.abs, y.abs)
 | ||
| 		z.neg = false
 | ||
| 		return z
 | ||
| 	}
 | ||
| 
 | ||
| 	// x.neg != y.neg
 | ||
| 	if x.neg {
 | ||
| 		x, y = y, x // & is symmetric
 | ||
| 	}
 | ||
| 
 | ||
| 	// x & (-y) == x & ^(y-1) == x &^ (y-1)
 | ||
| 	y1 := nat(nil).sub(y.abs, natOne)
 | ||
| 	z.abs = z.abs.andNot(x.abs, y1)
 | ||
| 	z.neg = false
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // AndNot sets z = x &^ y and returns z.
 | ||
| func (z *Int) AndNot(x, y *Int) *Int {
 | ||
| 	if x.neg == y.neg {
 | ||
| 		if x.neg {
 | ||
| 			// (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
 | ||
| 			x1 := nat(nil).sub(x.abs, natOne)
 | ||
| 			y1 := nat(nil).sub(y.abs, natOne)
 | ||
| 			z.abs = z.abs.andNot(y1, x1)
 | ||
| 			z.neg = false
 | ||
| 			return z
 | ||
| 		}
 | ||
| 
 | ||
| 		// x &^ y == x &^ y
 | ||
| 		z.abs = z.abs.andNot(x.abs, y.abs)
 | ||
| 		z.neg = false
 | ||
| 		return z
 | ||
| 	}
 | ||
| 
 | ||
| 	if x.neg {
 | ||
| 		// (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
 | ||
| 		x1 := nat(nil).sub(x.abs, natOne)
 | ||
| 		z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)
 | ||
| 		z.neg = true // z cannot be zero if x is negative and y is positive
 | ||
| 		return z
 | ||
| 	}
 | ||
| 
 | ||
| 	// x &^ (-y) == x &^ ^(y-1) == x & (y-1)
 | ||
| 	y1 := nat(nil).sub(y.abs, natOne)
 | ||
| 	z.abs = z.abs.and(x.abs, y1)
 | ||
| 	z.neg = false
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // Or sets z = x | y and returns z.
 | ||
| func (z *Int) Or(x, y *Int) *Int {
 | ||
| 	if x.neg == y.neg {
 | ||
| 		if x.neg {
 | ||
| 			// (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
 | ||
| 			x1 := nat(nil).sub(x.abs, natOne)
 | ||
| 			y1 := nat(nil).sub(y.abs, natOne)
 | ||
| 			z.abs = z.abs.add(z.abs.and(x1, y1), natOne)
 | ||
| 			z.neg = true // z cannot be zero if x and y are negative
 | ||
| 			return z
 | ||
| 		}
 | ||
| 
 | ||
| 		// x | y == x | y
 | ||
| 		z.abs = z.abs.or(x.abs, y.abs)
 | ||
| 		z.neg = false
 | ||
| 		return z
 | ||
| 	}
 | ||
| 
 | ||
| 	// x.neg != y.neg
 | ||
| 	if x.neg {
 | ||
| 		x, y = y, x // | is symmetric
 | ||
| 	}
 | ||
| 
 | ||
| 	// x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
 | ||
| 	y1 := nat(nil).sub(y.abs, natOne)
 | ||
| 	z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)
 | ||
| 	z.neg = true // z cannot be zero if one of x or y is negative
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // Xor sets z = x ^ y and returns z.
 | ||
| func (z *Int) Xor(x, y *Int) *Int {
 | ||
| 	if x.neg == y.neg {
 | ||
| 		if x.neg {
 | ||
| 			// (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
 | ||
| 			x1 := nat(nil).sub(x.abs, natOne)
 | ||
| 			y1 := nat(nil).sub(y.abs, natOne)
 | ||
| 			z.abs = z.abs.xor(x1, y1)
 | ||
| 			z.neg = false
 | ||
| 			return z
 | ||
| 		}
 | ||
| 
 | ||
| 		// x ^ y == x ^ y
 | ||
| 		z.abs = z.abs.xor(x.abs, y.abs)
 | ||
| 		z.neg = false
 | ||
| 		return z
 | ||
| 	}
 | ||
| 
 | ||
| 	// x.neg != y.neg
 | ||
| 	if x.neg {
 | ||
| 		x, y = y, x // ^ is symmetric
 | ||
| 	}
 | ||
| 
 | ||
| 	// x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
 | ||
| 	y1 := nat(nil).sub(y.abs, natOne)
 | ||
| 	z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)
 | ||
| 	z.neg = true // z cannot be zero if only one of x or y is negative
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // Not sets z = ^x and returns z.
 | ||
| func (z *Int) Not(x *Int) *Int {
 | ||
| 	if x.neg {
 | ||
| 		// ^(-x) == ^(^(x-1)) == x-1
 | ||
| 		z.abs = z.abs.sub(x.abs, natOne)
 | ||
| 		z.neg = false
 | ||
| 		return z
 | ||
| 	}
 | ||
| 
 | ||
| 	// ^x == -x-1 == -(x+1)
 | ||
| 	z.abs = z.abs.add(x.abs, natOne)
 | ||
| 	z.neg = true // z cannot be zero if x is positive
 | ||
| 	return z
 | ||
| }
 | ||
| 
 | ||
| // Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z.
 | ||
| // It panics if x is negative.
 | ||
| func (z *Int) Sqrt(x *Int) *Int {
 | ||
| 	if x.neg {
 | ||
| 		panic("square root of negative number")
 | ||
| 	}
 | ||
| 	z.neg = false
 | ||
| 	z.abs = z.abs.sqrt(x.abs)
 | ||
| 	return z
 | ||
| }
 |