mirror of git://gcc.gnu.org/git/gcc.git
1113 lines
35 KiB
Go
1113 lines
35 KiB
Go
package ssa
|
|
|
|
// This package defines a high-level intermediate representation for
|
|
// Go programs using static single-assignment (SSA) form.
|
|
|
|
import (
|
|
"fmt"
|
|
"go/ast"
|
|
"go/token"
|
|
"go/types"
|
|
)
|
|
|
|
// A Program is a partial or complete Go program converted to SSA form.
|
|
// Each Builder creates and populates a single Program during its
|
|
// lifetime.
|
|
//
|
|
// TODO(adonovan): synthetic methods for promoted methods and for
|
|
// standalone interface methods do not belong to any package. Make
|
|
// them enumerable here.
|
|
//
|
|
// TODO(adonovan): MethodSets of types other than named types
|
|
// (i.e. anon structs) are not currently accessible, nor are they
|
|
// memoized. Add a method: MethodSetForType() which looks in the
|
|
// appropriate Package (for methods of named types) or in
|
|
// Program.AnonStructMethods (for methods of anon structs).
|
|
//
|
|
type Program struct {
|
|
Files *token.FileSet // position information for the files of this Program
|
|
Packages map[string]*Package // all loaded Packages, keyed by import path
|
|
Builtins map[types.Object]*Builtin // all built-in functions, keyed by typechecker objects.
|
|
}
|
|
|
|
// A Package is a single analyzed Go package, containing Members for
|
|
// all package-level functions, variables, constants and types it
|
|
// declares. These may be accessed directly via Members, or via the
|
|
// type-specific accessor methods Func, Type, Var and Const.
|
|
//
|
|
type Package struct {
|
|
Prog *Program // the owning program
|
|
Types *types.Package // the type checker's package object for this package.
|
|
ImportPath string // e.g. "sync/atomic"
|
|
Pos token.Pos // position of an arbitrary file in the package
|
|
Members map[string]Member // all exported and unexported members of the package
|
|
AnonFuncs []*Function // all anonymous functions in this package
|
|
Init *Function // the package's (concatenated) init function
|
|
|
|
// The following fields are set transiently during building,
|
|
// then cleared.
|
|
files []*ast.File // the abstract syntax tree for the files of the package
|
|
}
|
|
|
|
// A Member is a member of a Go package, implemented by *Literal,
|
|
// *Global, *Function, or *Type; they are created by package-level
|
|
// const, var, func and type declarations respectively.
|
|
//
|
|
type Member interface {
|
|
Name() string // the declared name of the package member
|
|
String() string // human-readable information about the value
|
|
Type() types.Type // the type of the package member
|
|
ImplementsMember() // dummy method to indicate the "implements" relation.
|
|
}
|
|
|
|
// An Id identifies the name of a field of a struct type, or the name
|
|
// of a method of an interface or a named type.
|
|
//
|
|
// For exported names, i.e. those beginning with a Unicode upper-case
|
|
// letter, a simple string is unambiguous.
|
|
//
|
|
// However, a method set or struct may contain multiple unexported
|
|
// names with identical spelling that are logically distinct because
|
|
// they originate in different packages. Unexported names must
|
|
// therefore be disambiguated by their package too.
|
|
//
|
|
// The Pkg field of an Id is therefore nil iff the name is exported.
|
|
//
|
|
// This type is suitable for use as a map key because the equivalence
|
|
// relation == is consistent with identifier equality.
|
|
type Id struct {
|
|
Pkg *types.Package
|
|
Name string
|
|
}
|
|
|
|
// A MethodSet contains all the methods whose receiver is either T or
|
|
// *T, for some named or struct type T.
|
|
//
|
|
// TODO(adonovan): the client is required to adapt T<=>*T, e.g. when
|
|
// invoking an interface method. (This could be simplified for the
|
|
// client by having distinct method sets for T and *T, with the SSA
|
|
// Builder generating wrappers as needed, but probably the client is
|
|
// able to do a better job.) Document the precise rules the client
|
|
// must follow.
|
|
//
|
|
type MethodSet map[Id]*Function
|
|
|
|
// A Type is a Member of a Package representing the name, underlying
|
|
// type and method set of a named type declared at package scope.
|
|
//
|
|
// The method set contains only concrete methods; it is empty for
|
|
// interface types.
|
|
//
|
|
type Type struct {
|
|
NamedType *types.NamedType
|
|
Methods MethodSet
|
|
}
|
|
|
|
// An SSA value that can be referenced by an instruction.
|
|
//
|
|
// TODO(adonovan): add methods:
|
|
// - Referrers() []*Instruction // all instructions that refer to this value.
|
|
//
|
|
type Value interface {
|
|
// Name returns the name of this value, and determines how
|
|
// this Value appears when used as an operand of an
|
|
// Instruction.
|
|
//
|
|
// This is the same as the source name for Parameters,
|
|
// Builtins, Functions, Captures, Globals and some Allocs.
|
|
// For literals, it is a representation of the literal's value
|
|
// and type. For all other Values this is the name of the
|
|
// virtual register defined by the instruction.
|
|
//
|
|
// The name of an SSA Value is not semantically significant,
|
|
// and may not even be unique within a function.
|
|
Name() string
|
|
|
|
// If this value is an Instruction, String returns its
|
|
// disassembled form; otherwise it returns unspecified
|
|
// human-readable information about the Value, such as its
|
|
// kind, name and type.
|
|
String() string
|
|
|
|
// Type returns the type of this value. Many instructions
|
|
// (e.g. IndexAddr) change the behaviour depending on the
|
|
// types of their operands.
|
|
//
|
|
// Documented type invariants below (e.g. "Alloc.Type()
|
|
// returns a *types.Pointer") refer to the underlying type in
|
|
// the case of NamedTypes.
|
|
Type() types.Type
|
|
|
|
// Dummy method to indicate the "implements" relation.
|
|
ImplementsValue()
|
|
}
|
|
|
|
// An Instruction is an SSA instruction that computes a new Value or
|
|
// has some effect.
|
|
//
|
|
// An Instruction that defines a value (e.g. BinOp) also implements
|
|
// the Value interface; an Instruction that only has an effect (e.g. Store)
|
|
// does not.
|
|
//
|
|
// TODO(adonovan): add method:
|
|
// - Operands() []Value // all Values referenced by this instruction.
|
|
//
|
|
type Instruction interface {
|
|
// String returns the disassembled form of this value. e.g.
|
|
//
|
|
// Examples of Instructions that define a Value:
|
|
// e.g. "x + y" (BinOp)
|
|
// "len([])" (Call)
|
|
// Note that the name of the Value is not printed.
|
|
//
|
|
// Examples of Instructions that do define (are) Values:
|
|
// e.g. "ret x" (Ret)
|
|
// "*y = x" (Store)
|
|
//
|
|
// (This separation is useful for some analyses which
|
|
// distinguish the operation from the value it
|
|
// defines. e.g. 'y = local int' is both an allocation of
|
|
// memory 'local int' and a definition of a pointer y.)
|
|
String() string
|
|
|
|
// Block returns the basic block to which this instruction
|
|
// belongs.
|
|
Block() *BasicBlock
|
|
|
|
// SetBlock sets the basic block to which this instruction
|
|
// belongs.
|
|
SetBlock(*BasicBlock)
|
|
|
|
// Dummy method to indicate the "implements" relation.
|
|
ImplementsInstruction()
|
|
}
|
|
|
|
// Function represents the parameters, results and code of a function
|
|
// or method.
|
|
//
|
|
// If Blocks is nil, this indicates an external function for which no
|
|
// Go source code is available. In this case, Captures and Locals
|
|
// will be nil too. Clients performing whole-program analysis must
|
|
// handle external functions specially.
|
|
//
|
|
// Functions are immutable values; they do not have addresses.
|
|
//
|
|
// Blocks[0] is the function entry point; block order is not otherwise
|
|
// semantically significant, though it may affect the readability of
|
|
// the disassembly.
|
|
//
|
|
// A nested function that refers to one or more lexically enclosing
|
|
// local variables ("free variables") has Capture parameters. Such
|
|
// functions cannot be called directly but require a value created by
|
|
// MakeClosure which, via its Bindings, supplies values for these
|
|
// parameters. Captures are always addresses.
|
|
//
|
|
// If the function is a method (Signature.Recv != nil) then the first
|
|
// element of Params is the receiver parameter.
|
|
//
|
|
// Type() returns the function's Signature.
|
|
//
|
|
type Function struct {
|
|
Name_ string
|
|
Signature *types.Signature
|
|
|
|
Pos token.Pos // location of the definition
|
|
Enclosing *Function // enclosing function if anon; nil if global
|
|
Pkg *Package // enclosing package; nil for some synthetic methods
|
|
Prog *Program // enclosing program
|
|
Params []*Parameter
|
|
FreeVars []*Capture // free variables whose values must be supplied by closure
|
|
Locals []*Alloc
|
|
Blocks []*BasicBlock // basic blocks of the function; nil => external
|
|
|
|
// The following fields are set transiently during building,
|
|
// then cleared.
|
|
currentBlock *BasicBlock // where to emit code
|
|
objects map[types.Object]Value // addresses of local variables
|
|
results []*Alloc // tuple of named results
|
|
syntax *funcSyntax // abstract syntax trees for Go source functions
|
|
targets *targets // linked stack of branch targets
|
|
lblocks map[*ast.Object]*lblock // labelled blocks
|
|
}
|
|
|
|
// An SSA basic block.
|
|
//
|
|
// The final element of Instrs is always an explicit transfer of
|
|
// control (If, Jump or Ret).
|
|
//
|
|
// A block may contain no Instructions only if it is unreachable,
|
|
// i.e. Preds is nil. Empty blocks are typically pruned.
|
|
//
|
|
// BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
|
|
// graph independent of the SSA Value graph. It is illegal for
|
|
// multiple edges to exist between the same pair of blocks.
|
|
//
|
|
// The order of Preds and Succs are significant (to Phi and If
|
|
// instructions, respectively).
|
|
//
|
|
type BasicBlock struct {
|
|
Name string // label; no semantic significance
|
|
Func *Function // containing function
|
|
Instrs []Instruction // instructions in order
|
|
Preds, Succs []*BasicBlock // predecessors and successors
|
|
}
|
|
|
|
// Pure values ----------------------------------------
|
|
|
|
// A Capture is a pointer to a lexically enclosing local variable.
|
|
//
|
|
// The referent of a capture is a Parameter, Alloc or another Capture
|
|
// and is always considered potentially escaping, so Captures are
|
|
// always addresses in the heap, and have pointer types.
|
|
//
|
|
type Capture struct {
|
|
Outer Value // the Value captured from the enclosing context.
|
|
}
|
|
|
|
// A Parameter represents an input parameter of a function.
|
|
//
|
|
// Parameters are addresses and thus have pointer types.
|
|
// TODO(adonovan): this will change. We should just spill parameters
|
|
// to ordinary Alloc-style locals if they are ever used in an
|
|
// addressable context. Then we can lose the Heap flag.
|
|
//
|
|
// In the common case where Heap=false, Parameters are pointers into
|
|
// the function's stack frame. If the case where Heap=true because a
|
|
// parameter's address may escape from its function, Parameters are
|
|
// pointers into a space in the heap implicitly allocated during the
|
|
// function call. (See also Alloc, which uses the Heap flag in a
|
|
// similar manner.)
|
|
//
|
|
type Parameter struct {
|
|
Name_ string
|
|
Type_ *types.Pointer
|
|
Heap bool
|
|
}
|
|
|
|
// A Literal represents a literal nil, boolean, string or numeric
|
|
// (integer, fraction or complex) value.
|
|
//
|
|
// A literal's underlying Type() can be a basic type, possibly one of
|
|
// the "untyped" types. A nil literal can have any reference type:
|
|
// interface, map, channel, pointer, slice, or function---but not
|
|
// "untyped nil".
|
|
//
|
|
// All source-level constant expressions are represented by a Literal
|
|
// of equal type and value.
|
|
//
|
|
// Value holds the exact value of the literal, independent of its
|
|
// Type(), using the same representation as package go/types uses for
|
|
// constants.
|
|
//
|
|
// Example printed form:
|
|
// 42:int
|
|
// "hello":untyped string
|
|
// 3+4i:MyComplex
|
|
//
|
|
type Literal struct {
|
|
Type_ types.Type
|
|
Value interface{}
|
|
}
|
|
|
|
// A Global is a named Value holding the address of a package-level
|
|
// variable.
|
|
//
|
|
type Global struct {
|
|
Name_ string
|
|
Type_ types.Type
|
|
Pkg *Package
|
|
|
|
// The following fields are set transiently during building,
|
|
// then cleared.
|
|
spec *ast.ValueSpec // explained at buildGlobal
|
|
}
|
|
|
|
// A built-in function, e.g. len.
|
|
//
|
|
// Builtins are immutable values; they do not have addresses.
|
|
//
|
|
// Type() returns an inscrutable *types.builtin. Built-in functions
|
|
// may have polymorphic or variadic types that are not expressible in
|
|
// Go's type system.
|
|
//
|
|
type Builtin struct {
|
|
Object *types.Func // canonical types.Universe object for this built-in
|
|
}
|
|
|
|
// Value-defining instructions ----------------------------------------
|
|
|
|
// The Alloc instruction reserves space for a value of the given type,
|
|
// zero-initializes it, and yields its address.
|
|
//
|
|
// Alloc values are always addresses, and have pointer types, so the
|
|
// type of the allocated space is actually indirect(Type()).
|
|
//
|
|
// If Heap is false, Alloc allocates space in the function's
|
|
// activation record (frame); we refer to an Alloc(Heap=false) as a
|
|
// "local" alloc. Each local Alloc returns the same address each time
|
|
// it is executed within the same activation; the space is
|
|
// re-initialized to zero.
|
|
//
|
|
// If Heap is true, Alloc allocates space in the heap, and returns; we
|
|
// refer to an Alloc(Heap=true) as a "new" alloc. Each new Alloc
|
|
// returns a different address each time it is executed.
|
|
//
|
|
// When Alloc is applied to a channel, map or slice type, it returns
|
|
// the address of an uninitialized (nil) reference of that kind; store
|
|
// the result of MakeSlice, MakeMap or MakeChan in that location to
|
|
// instantiate these types.
|
|
//
|
|
// Example printed form:
|
|
// t0 = local int
|
|
// t1 = new int
|
|
//
|
|
type Alloc struct {
|
|
anInstruction
|
|
Name_ string
|
|
Type_ types.Type
|
|
Heap bool
|
|
}
|
|
|
|
// Phi represents an SSA φ-node, which combines values that differ
|
|
// across incoming control-flow edges and yields a new value. Within
|
|
// a block, all φ-nodes must appear before all non-φ nodes.
|
|
//
|
|
// Example printed form:
|
|
// t2 = phi [0.start: t0, 1.if.then: t1, ...]
|
|
//
|
|
type Phi struct {
|
|
Register
|
|
Edges []Value // Edges[i] is value for Block().Preds[i]
|
|
}
|
|
|
|
// Call represents a function or method call.
|
|
//
|
|
// The Call instruction yields the function result, if there is
|
|
// exactly one, or a tuple (empty or len>1) whose components are
|
|
// accessed via Extract.
|
|
//
|
|
// See CallCommon for generic function call documentation.
|
|
//
|
|
// Example printed form:
|
|
// t2 = println(t0, t1)
|
|
// t4 = t3()
|
|
// t7 = invoke t5.Println(...t6)
|
|
//
|
|
type Call struct {
|
|
Register
|
|
CallCommon
|
|
}
|
|
|
|
// BinOp yields the result of binary operation X Op Y.
|
|
//
|
|
// Example printed form:
|
|
// t1 = t0 + 1:int
|
|
//
|
|
type BinOp struct {
|
|
Register
|
|
// One of:
|
|
// ADD SUB MUL QUO REM + - * / %
|
|
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &~
|
|
// EQL LSS GTR NEQ LEQ GEQ == != < <= < >=
|
|
Op token.Token
|
|
X, Y Value
|
|
}
|
|
|
|
// UnOp yields the result of Op X.
|
|
// ARROW is channel receive.
|
|
// MUL is pointer indirection (load).
|
|
//
|
|
// If CommaOk and Op=ARROW, the result is a 2-tuple of the value above
|
|
// and a boolean indicating the success of the receive. The
|
|
// components of the tuple are accessed using Extract.
|
|
//
|
|
// Example printed form:
|
|
// t0 = *x
|
|
// t2 = <-t1,ok
|
|
//
|
|
type UnOp struct {
|
|
Register
|
|
Op token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^
|
|
X Value
|
|
CommaOk bool
|
|
}
|
|
|
|
// Conv yields the conversion of X to type Type().
|
|
//
|
|
// A conversion is one of the following kinds. The behaviour of the
|
|
// conversion operator may depend on both Type() and X.Type(), as well
|
|
// as the dynamic value.
|
|
//
|
|
// A '+' indicates that a dynamic representation change may occur.
|
|
// A '-' indicates that the conversion is a value-preserving change
|
|
// to types only.
|
|
//
|
|
// 1. implicit conversions (arising from assignability rules):
|
|
// - adding/removing a name, same underlying types.
|
|
// - channel type restriction, possibly adding/removing a name.
|
|
// 2. explicit conversions (in addition to the above):
|
|
// - changing a name, same underlying types.
|
|
// - between pointers to identical base types.
|
|
// + conversions between real numeric types.
|
|
// + conversions between complex numeric types.
|
|
// + integer/[]byte/[]rune -> string.
|
|
// + string -> []byte/[]rune.
|
|
//
|
|
// TODO(adonovan): split into two cases:
|
|
// - rename value (ChangeType)
|
|
// + value to type with different representation (Conv)
|
|
//
|
|
// Conversions of untyped string/number/bool constants to a specific
|
|
// representation are eliminated during SSA construction.
|
|
//
|
|
// Example printed form:
|
|
// t1 = convert interface{} <- int (t0)
|
|
//
|
|
type Conv struct {
|
|
Register
|
|
X Value
|
|
}
|
|
|
|
// ChangeInterface constructs a value of one interface type from a
|
|
// value of another interface type known to be assignable to it.
|
|
//
|
|
// Example printed form:
|
|
// t1 = change interface interface{} <- I (t0)
|
|
//
|
|
type ChangeInterface struct {
|
|
Register
|
|
X Value
|
|
}
|
|
|
|
// MakeInterface constructs an instance of an interface type from a
|
|
// value and its method-set.
|
|
//
|
|
// To construct the zero value of an interface type T, use:
|
|
// &Literal{types.nilType{}, T}
|
|
//
|
|
// Example printed form:
|
|
// t1 = make interface interface{} <- int (42:int)
|
|
//
|
|
type MakeInterface struct {
|
|
Register
|
|
X Value
|
|
Methods MethodSet // method set of (non-interface) X iff converting to interface
|
|
}
|
|
|
|
// A MakeClosure instruction yields an anonymous function value whose
|
|
// code is Fn and whose lexical capture slots are populated by Bindings.
|
|
//
|
|
// By construction, all captured variables are addresses of variables
|
|
// allocated with 'new', i.e. Alloc(Heap=true).
|
|
//
|
|
// Type() returns a *types.Signature.
|
|
//
|
|
// Example printed form:
|
|
// t0 = make closure anon@1.2 [x y z]
|
|
//
|
|
type MakeClosure struct {
|
|
Register
|
|
Fn *Function
|
|
Bindings []Value // values for each free variable in Fn.FreeVars
|
|
}
|
|
|
|
// The MakeMap instruction creates a new hash-table-based map object
|
|
// and yields a value of kind map.
|
|
//
|
|
// Type() returns a *types.Map.
|
|
//
|
|
// Example printed form:
|
|
// t1 = make map[string]int t0
|
|
//
|
|
type MakeMap struct {
|
|
Register
|
|
Reserve Value // initial space reservation; nil => default
|
|
}
|
|
|
|
// The MakeChan instruction creates a new channel object and yields a
|
|
// value of kind chan.
|
|
//
|
|
// Type() returns a *types.Chan.
|
|
//
|
|
// Example printed form:
|
|
// t0 = make chan int 0
|
|
//
|
|
type MakeChan struct {
|
|
Register
|
|
Size Value // int; size of buffer; zero => synchronous.
|
|
}
|
|
|
|
// MakeSlice yields a slice of length Len backed by a newly allocated
|
|
// array of length Cap.
|
|
//
|
|
// Both Len and Cap must be non-nil Values of integer type.
|
|
//
|
|
// (Alloc(types.Array) followed by Slice will not suffice because
|
|
// Alloc can only create arrays of statically known length.)
|
|
//
|
|
// Type() returns a *types.Slice.
|
|
//
|
|
// Example printed form:
|
|
// t1 = make slice []string 1:int t0
|
|
//
|
|
type MakeSlice struct {
|
|
Register
|
|
Len Value
|
|
Cap Value
|
|
}
|
|
|
|
// Slice yields a slice of an existing string, slice or *array X
|
|
// between optional integer bounds Low and High.
|
|
//
|
|
// Type() returns string if the type of X was string, otherwise a
|
|
// *types.Slice with the same element type as X.
|
|
//
|
|
// Example printed form:
|
|
// t1 = slice t0[1:]
|
|
//
|
|
type Slice struct {
|
|
Register
|
|
X Value // slice, string, or *array
|
|
Low, High Value // either may be nil
|
|
}
|
|
|
|
// FieldAddr yields the address of Field of *struct X.
|
|
//
|
|
// The field is identified by its index within the field list of the
|
|
// struct type of X.
|
|
//
|
|
// Type() returns a *types.Pointer.
|
|
//
|
|
// Example printed form:
|
|
// t1 = &t0.name [#1]
|
|
//
|
|
type FieldAddr struct {
|
|
Register
|
|
X Value // *struct
|
|
Field int // index into X.Type().(*types.Struct).Fields
|
|
}
|
|
|
|
// Field yields the Field of struct X.
|
|
//
|
|
// The field is identified by its index within the field list of the
|
|
// struct type of X; by using numeric indices we avoid ambiguity of
|
|
// package-local identifiers and permit compact representations.
|
|
//
|
|
// Example printed form:
|
|
// t1 = t0.name [#1]
|
|
//
|
|
type Field struct {
|
|
Register
|
|
X Value // struct
|
|
Field int // index into X.Type().(*types.Struct).Fields
|
|
}
|
|
|
|
// IndexAddr yields the address of the element at index Index of
|
|
// collection X. Index is an integer expression.
|
|
//
|
|
// The elements of maps and strings are not addressable; use Lookup or
|
|
// MapUpdate instead.
|
|
//
|
|
// Type() returns a *types.Pointer.
|
|
//
|
|
// Example printed form:
|
|
// t2 = &t0[t1]
|
|
//
|
|
type IndexAddr struct {
|
|
Register
|
|
X Value // slice or *array,
|
|
Index Value // numeric index
|
|
}
|
|
|
|
// Index yields element Index of array X.
|
|
//
|
|
// TODO(adonovan): permit X to have type slice.
|
|
// Currently this requires IndexAddr followed by Load.
|
|
//
|
|
// Example printed form:
|
|
// t2 = t0[t1]
|
|
//
|
|
type Index struct {
|
|
Register
|
|
X Value // array
|
|
Index Value // integer index
|
|
}
|
|
|
|
// Lookup yields element Index of collection X, a map or string.
|
|
// Index is an integer expression if X is a string or the appropriate
|
|
// key type if X is a map.
|
|
//
|
|
// If CommaOk, the result is a 2-tuple of the value above and a
|
|
// boolean indicating the result of a map membership test for the key.
|
|
// The components of the tuple are accessed using Extract.
|
|
//
|
|
// Example printed form:
|
|
// t2 = t0[t1]
|
|
// t5 = t3[t4],ok
|
|
//
|
|
type Lookup struct {
|
|
Register
|
|
X Value // string or map
|
|
Index Value // numeric or key-typed index
|
|
CommaOk bool // return a value,ok pair
|
|
}
|
|
|
|
// SelectState is a helper for Select.
|
|
// It represents one goal state and its corresponding communication.
|
|
//
|
|
type SelectState struct {
|
|
Dir ast.ChanDir // direction of case
|
|
Chan Value // channel to use (for send or receive)
|
|
Send Value // value to send (for send)
|
|
}
|
|
|
|
// Select tests whether (or blocks until) one or more of the specified
|
|
// sent or received states is entered.
|
|
//
|
|
// It returns a triple (index int, recv ?, recvOk bool) whose
|
|
// components, described below, must be accessed via the Extract
|
|
// instruction.
|
|
//
|
|
// If Blocking, select waits until exactly one state holds, i.e. a
|
|
// channel becomes ready for the designated operation of sending or
|
|
// receiving; select chooses one among the ready states
|
|
// pseudorandomly, performs the send or receive operation, and sets
|
|
// 'index' to the index of the chosen channel.
|
|
//
|
|
// If !Blocking, select doesn't block if no states hold; instead it
|
|
// returns immediately with index equal to -1.
|
|
//
|
|
// If the chosen channel was used for a receive, 'recv' is set to the
|
|
// received value; Otherwise it is unspecified. recv has no useful
|
|
// type since it is conceptually the union of all possible received
|
|
// values.
|
|
//
|
|
// The third component of the triple, recvOk, is a boolean whose value
|
|
// is true iff the selected operation was a receive and the receive
|
|
// successfully yielded a value.
|
|
//
|
|
// Example printed form:
|
|
// t3 = select nonblocking [<-t0, t1<-t2, ...]
|
|
// t4 = select blocking []
|
|
//
|
|
type Select struct {
|
|
Register
|
|
States []SelectState
|
|
Blocking bool
|
|
}
|
|
|
|
// Range yields an iterator over the domain and range of X.
|
|
// Elements are accessed via Next.
|
|
//
|
|
// Type() returns a *types.Result (tuple type).
|
|
//
|
|
// Example printed form:
|
|
// t0 = range "hello":string
|
|
//
|
|
type Range struct {
|
|
Register
|
|
X Value // array, *array, slice, string, map or chan
|
|
}
|
|
|
|
// Next reads and advances the iterator Iter and returns a 3-tuple
|
|
// value (ok, k, v). If the iterator is not exhausted, ok is true and
|
|
// k and v are the next elements of the domain and range,
|
|
// respectively. Otherwise ok is false and k and v are undefined.
|
|
//
|
|
// For channel iterators, k is the received value and v is always
|
|
// undefined.
|
|
//
|
|
// Components of the tuple are accessed using Extract.
|
|
//
|
|
// Type() returns a *types.Result (tuple type).
|
|
//
|
|
// Example printed form:
|
|
// t1 = next t0
|
|
//
|
|
type Next struct {
|
|
Register
|
|
Iter Value
|
|
}
|
|
|
|
// TypeAssert tests whether interface value X has type
|
|
// AssertedType.
|
|
//
|
|
// If CommaOk: on success it returns a pair (v, true) where v is a
|
|
// copy of value X; on failure it returns (z, false) where z is the
|
|
// zero value of that type. The components of the pair must be
|
|
// accessed using the Extract instruction.
|
|
//
|
|
// If !CommaOk, on success it returns just the single value v; on
|
|
// failure it panics.
|
|
//
|
|
// Type() reflects the actual type of the result, possibly a pair
|
|
// (types.Result); AssertedType is the asserted type.
|
|
//
|
|
// Example printed form:
|
|
// t1 = typeassert t0.(int)
|
|
// t3 = typeassert,ok t2.(T)
|
|
//
|
|
type TypeAssert struct {
|
|
Register
|
|
X Value
|
|
AssertedType types.Type
|
|
CommaOk bool
|
|
}
|
|
|
|
// Extract yields component Index of Tuple.
|
|
//
|
|
// This is used to access the results of instructions with multiple
|
|
// return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
|
|
// IndexExpr(Map).
|
|
//
|
|
// Example printed form:
|
|
// t1 = extract t0 #1
|
|
//
|
|
type Extract struct {
|
|
Register
|
|
Tuple Value
|
|
Index int
|
|
}
|
|
|
|
// Instructions executed for effect. They do not yield a value. --------------------
|
|
|
|
// Jump transfers control to the sole successor of its owning block.
|
|
//
|
|
// A Jump instruction must be the last instruction of its containing
|
|
// BasicBlock.
|
|
//
|
|
// Example printed form:
|
|
// jump done
|
|
//
|
|
type Jump struct {
|
|
anInstruction
|
|
}
|
|
|
|
// The If instruction transfers control to one of the two successors
|
|
// of its owning block, depending on the boolean Cond: the first if
|
|
// true, the second if false.
|
|
//
|
|
// An If instruction must be the last instruction of its containing
|
|
// BasicBlock.
|
|
//
|
|
// Example printed form:
|
|
// if t0 goto done else body
|
|
//
|
|
type If struct {
|
|
anInstruction
|
|
Cond Value
|
|
}
|
|
|
|
// Ret returns values and control back to the calling function.
|
|
//
|
|
// len(Results) is always equal to the number of results in the
|
|
// function's signature. A source-level 'return' statement with no
|
|
// operands in a multiple-return value function is desugared to make
|
|
// the results explicit.
|
|
//
|
|
// If len(Results) > 1, Ret returns a tuple value with the specified
|
|
// components which the caller must access using Extract instructions.
|
|
//
|
|
// There is no instruction to return a ready-made tuple like those
|
|
// returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or
|
|
// a tail-call to a function with multiple result parameters.
|
|
// TODO(adonovan): consider defining one; but: dis- and re-assembling
|
|
// the tuple is unavoidable if assignability conversions are required
|
|
// on the components.
|
|
//
|
|
// Ret must be the last instruction of its containing BasicBlock.
|
|
// Such a block has no successors.
|
|
//
|
|
// Example printed form:
|
|
// ret
|
|
// ret nil:I, 2:int
|
|
//
|
|
type Ret struct {
|
|
anInstruction
|
|
Results []Value
|
|
}
|
|
|
|
// Go creates a new goroutine and calls the specified function
|
|
// within it.
|
|
//
|
|
// See CallCommon for generic function call documentation.
|
|
//
|
|
// Example printed form:
|
|
// go println(t0, t1)
|
|
// go t3()
|
|
// go invoke t5.Println(...t6)
|
|
//
|
|
type Go struct {
|
|
anInstruction
|
|
CallCommon
|
|
}
|
|
|
|
// Defer pushes the specified call onto a stack of functions
|
|
// to be called immediately prior to returning from the
|
|
// current function.
|
|
//
|
|
// See CallCommon for generic function call documentation.
|
|
//
|
|
// Example printed form:
|
|
// defer println(t0, t1)
|
|
// defer t3()
|
|
// defer invoke t5.Println(...t6)
|
|
//
|
|
type Defer struct {
|
|
anInstruction
|
|
CallCommon
|
|
}
|
|
|
|
// Send sends X on channel Chan.
|
|
//
|
|
// Example printed form:
|
|
// send t0 <- t1
|
|
//
|
|
type Send struct {
|
|
anInstruction
|
|
Chan, X Value
|
|
}
|
|
|
|
// Store stores Val at address Addr.
|
|
// Stores can be of arbitrary types.
|
|
//
|
|
// Example printed form:
|
|
// *x = y
|
|
//
|
|
type Store struct {
|
|
anInstruction
|
|
Addr Value
|
|
Val Value
|
|
}
|
|
|
|
// MapUpdate updates the association of Map[Key] to Value.
|
|
//
|
|
// Example printed form:
|
|
// t0[t1] = t2
|
|
//
|
|
type MapUpdate struct {
|
|
anInstruction
|
|
Map Value
|
|
Key Value
|
|
Value Value
|
|
}
|
|
|
|
// Embeddable mix-ins used for common parts of other structs. --------------------
|
|
|
|
// Register is a mix-in embedded by all SSA values that are also
|
|
// instructions, i.e. virtual registers, and provides implementations
|
|
// of the Value interface's Name() and Type() methods: the name is
|
|
// simply a numbered register (e.g. "t0") and the type is the Type_
|
|
// field.
|
|
//
|
|
// Temporary names are automatically assigned to each Register on
|
|
// completion of building a function in SSA form.
|
|
//
|
|
// Clients must not assume that the 'id' value (and the Name() derived
|
|
// from it) is unique within a function. As always in this API,
|
|
// semantics are determined only by identity; names exist only to
|
|
// facilitate debugging.
|
|
//
|
|
type Register struct {
|
|
anInstruction
|
|
num int // "name" of virtual register, e.g. "t0". Not guaranteed unique.
|
|
Type_ types.Type // type of virtual register
|
|
}
|
|
|
|
// AnInstruction is a mix-in embedded by all Instructions.
|
|
// It provides the implementations of the Block and SetBlock methods.
|
|
type anInstruction struct {
|
|
Block_ *BasicBlock // the basic block of this instruction
|
|
}
|
|
|
|
// CallCommon is a mix-in embedded by Go, Defer and Call to hold the
|
|
// common parts of a function or method call.
|
|
//
|
|
// Each CallCommon exists in one of two modes, function call and
|
|
// interface method invocation, or "call" and "invoke" for short.
|
|
//
|
|
// 1. "call" mode: when Recv is nil, a CallCommon represents an
|
|
// ordinary function call of the value in Func.
|
|
//
|
|
// In the common case in which Func is a *Function, this indicates a
|
|
// statically dispatched call to a package-level function, an
|
|
// anonymous function, or a method of a named type. Also statically
|
|
// dispatched, but less common, Func may be a *MakeClosure, indicating
|
|
// an immediately applied function literal with free variables. Any
|
|
// other Value of Func indicates a dynamically dispatched function
|
|
// call.
|
|
//
|
|
// Args contains the arguments to the call. If Func is a method,
|
|
// Args[0] contains the receiver parameter. Recv and Method are not
|
|
// used in this mode.
|
|
//
|
|
// Example printed form:
|
|
// t2 = println(t0, t1)
|
|
// go t3()
|
|
// defer t5(...t6)
|
|
//
|
|
// 2. "invoke" mode: when Recv is non-nil, a CallCommon represents a
|
|
// dynamically dispatched call to an interface method. In this
|
|
// mode, Recv is the interface value and Method is the index of the
|
|
// method within the interface type of the receiver.
|
|
//
|
|
// Recv is implicitly supplied to the concrete method implementation
|
|
// as the receiver parameter; in other words, Args[0] holds not the
|
|
// receiver but the first true argument. Func is not used in this
|
|
// mode.
|
|
//
|
|
// Example printed form:
|
|
// t1 = invoke t0.String()
|
|
// go invoke t3.Run(t2)
|
|
// defer invoke t4.Handle(...t5)
|
|
//
|
|
// In both modes, HasEllipsis is true iff the last element of Args is
|
|
// a slice value containing zero or more arguments to a variadic
|
|
// function. (This is not semantically significant since the type of
|
|
// the called function is sufficient to determine this, but it aids
|
|
// readability of the printed form.)
|
|
//
|
|
type CallCommon struct {
|
|
Recv Value // receiver, iff interface method invocation
|
|
Method int // index of interface method within Recv.Type().(*types.Interface).Methods
|
|
Func Value // target of call, iff function call
|
|
Args []Value // actual parameters, including receiver in invoke mode
|
|
HasEllipsis bool // true iff last Args is a slice (needed?)
|
|
Pos token.Pos // position of call expression
|
|
}
|
|
|
|
func (v *Builtin) Type() types.Type { return v.Object.GetType() }
|
|
func (v *Builtin) Name() string { return v.Object.GetName() }
|
|
|
|
func (v *Capture) Type() types.Type { return v.Outer.Type() }
|
|
func (v *Capture) Name() string { return v.Outer.Name() }
|
|
|
|
func (v *Global) Type() types.Type { return v.Type_ }
|
|
func (v *Global) Name() string { return v.Name_ }
|
|
|
|
func (v *Function) Name() string { return v.Name_ }
|
|
func (v *Function) Type() types.Type { return v.Signature }
|
|
|
|
func (v *Parameter) Type() types.Type { return v.Type_ }
|
|
func (v *Parameter) Name() string { return v.Name_ }
|
|
|
|
func (v *Alloc) Type() types.Type { return v.Type_ }
|
|
func (v *Alloc) Name() string { return v.Name_ }
|
|
|
|
func (v *Register) Type() types.Type { return v.Type_ }
|
|
func (v *Register) setType(typ types.Type) { v.Type_ = typ }
|
|
func (v *Register) Name() string { return fmt.Sprintf("t%d", v.num) }
|
|
func (v *Register) setNum(num int) { v.num = num }
|
|
|
|
func (v *anInstruction) Block() *BasicBlock { return v.Block_ }
|
|
func (v *anInstruction) SetBlock(block *BasicBlock) { v.Block_ = block }
|
|
|
|
func (ms *Type) Type() types.Type { return ms.NamedType }
|
|
func (ms *Type) String() string { return ms.Name() }
|
|
func (ms *Type) Name() string { return ms.NamedType.Obj.Name }
|
|
|
|
func (p *Package) Name() string { return p.Types.Name }
|
|
|
|
// Func returns the package-level function of the specified name,
|
|
// or nil if not found.
|
|
//
|
|
func (p *Package) Func(name string) (f *Function) {
|
|
f, _ = p.Members[name].(*Function)
|
|
return
|
|
}
|
|
|
|
// Var returns the package-level variable of the specified name,
|
|
// or nil if not found.
|
|
//
|
|
func (p *Package) Var(name string) (g *Global) {
|
|
g, _ = p.Members[name].(*Global)
|
|
return
|
|
}
|
|
|
|
// Const returns the package-level constant of the specified name,
|
|
// or nil if not found.
|
|
//
|
|
func (p *Package) Const(name string) (l *Literal) {
|
|
l, _ = p.Members[name].(*Literal)
|
|
return
|
|
}
|
|
|
|
// Type returns the package-level type of the specified name,
|
|
// or nil if not found.
|
|
//
|
|
func (p *Package) Type(name string) (t *Type) {
|
|
t, _ = p.Members[name].(*Type)
|
|
return
|
|
}
|
|
|
|
// "Implements" relation boilerplate.
|
|
// Don't try to factor this using promotion and mix-ins: the long-hand
|
|
// form serves as better documentation, including in godoc.
|
|
|
|
func (*Alloc) ImplementsValue() {}
|
|
func (*BinOp) ImplementsValue() {}
|
|
func (*Builtin) ImplementsValue() {}
|
|
func (*Call) ImplementsValue() {}
|
|
func (*Capture) ImplementsValue() {}
|
|
func (*ChangeInterface) ImplementsValue() {}
|
|
func (*Conv) ImplementsValue() {}
|
|
func (*Extract) ImplementsValue() {}
|
|
func (*Field) ImplementsValue() {}
|
|
func (*FieldAddr) ImplementsValue() {}
|
|
func (*Function) ImplementsValue() {}
|
|
func (*Global) ImplementsValue() {}
|
|
func (*Index) ImplementsValue() {}
|
|
func (*IndexAddr) ImplementsValue() {}
|
|
func (*Literal) ImplementsValue() {}
|
|
func (*Lookup) ImplementsValue() {}
|
|
func (*MakeChan) ImplementsValue() {}
|
|
func (*MakeClosure) ImplementsValue() {}
|
|
func (*MakeInterface) ImplementsValue() {}
|
|
func (*MakeMap) ImplementsValue() {}
|
|
func (*MakeSlice) ImplementsValue() {}
|
|
func (*Next) ImplementsValue() {}
|
|
func (*Parameter) ImplementsValue() {}
|
|
func (*Phi) ImplementsValue() {}
|
|
func (*Range) ImplementsValue() {}
|
|
func (*Select) ImplementsValue() {}
|
|
func (*Slice) ImplementsValue() {}
|
|
func (*TypeAssert) ImplementsValue() {}
|
|
func (*UnOp) ImplementsValue() {}
|
|
|
|
func (*Function) ImplementsMember() {}
|
|
func (*Global) ImplementsMember() {}
|
|
func (*Literal) ImplementsMember() {}
|
|
func (*Type) ImplementsMember() {}
|
|
|
|
func (*Alloc) ImplementsInstruction() {}
|
|
func (*BinOp) ImplementsInstruction() {}
|
|
func (*Call) ImplementsInstruction() {}
|
|
func (*ChangeInterface) ImplementsInstruction() {}
|
|
func (*Conv) ImplementsInstruction() {}
|
|
func (*Defer) ImplementsInstruction() {}
|
|
func (*Extract) ImplementsInstruction() {}
|
|
func (*Field) ImplementsInstruction() {}
|
|
func (*FieldAddr) ImplementsInstruction() {}
|
|
func (*Go) ImplementsInstruction() {}
|
|
func (*If) ImplementsInstruction() {}
|
|
func (*Index) ImplementsInstruction() {}
|
|
func (*IndexAddr) ImplementsInstruction() {}
|
|
func (*Jump) ImplementsInstruction() {}
|
|
func (*Lookup) ImplementsInstruction() {}
|
|
func (*MakeChan) ImplementsInstruction() {}
|
|
func (*MakeClosure) ImplementsInstruction() {}
|
|
func (*MakeInterface) ImplementsInstruction() {}
|
|
func (*MakeMap) ImplementsInstruction() {}
|
|
func (*MakeSlice) ImplementsInstruction() {}
|
|
func (*MapUpdate) ImplementsInstruction() {}
|
|
func (*Next) ImplementsInstruction() {}
|
|
func (*Phi) ImplementsInstruction() {}
|
|
func (*Range) ImplementsInstruction() {}
|
|
func (*Ret) ImplementsInstruction() {}
|
|
func (*Select) ImplementsInstruction() {}
|
|
func (*Send) ImplementsInstruction() {}
|
|
func (*Slice) ImplementsInstruction() {}
|
|
func (*Store) ImplementsInstruction() {}
|
|
func (*TypeAssert) ImplementsInstruction() {}
|
|
func (*UnOp) ImplementsInstruction() {}
|