mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			674 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			674 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Go
		
	
	
	
| // Copyright 2009 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package rand
 | |
| 
 | |
| import (
 | |
| 	"bytes"
 | |
| 	"errors"
 | |
| 	"fmt"
 | |
| 	"internal/testenv"
 | |
| 	"io"
 | |
| 	"math"
 | |
| 	"os"
 | |
| 	"runtime"
 | |
| 	"testing"
 | |
| 	"testing/iotest"
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	numTestSamples = 10000
 | |
| )
 | |
| 
 | |
| type statsResults struct {
 | |
| 	mean        float64
 | |
| 	stddev      float64
 | |
| 	closeEnough float64
 | |
| 	maxError    float64
 | |
| }
 | |
| 
 | |
| func max(a, b float64) float64 {
 | |
| 	if a > b {
 | |
| 		return a
 | |
| 	}
 | |
| 	return b
 | |
| }
 | |
| 
 | |
| func nearEqual(a, b, closeEnough, maxError float64) bool {
 | |
| 	absDiff := math.Abs(a - b)
 | |
| 	if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero.
 | |
| 		return true
 | |
| 	}
 | |
| 	return absDiff/max(math.Abs(a), math.Abs(b)) < maxError
 | |
| }
 | |
| 
 | |
| var testSeeds = []int64{1, 1754801282, 1698661970, 1550503961}
 | |
| 
 | |
| // checkSimilarDistribution returns success if the mean and stddev of the
 | |
| // two statsResults are similar.
 | |
| func (this *statsResults) checkSimilarDistribution(expected *statsResults) error {
 | |
| 	if !nearEqual(this.mean, expected.mean, expected.closeEnough, expected.maxError) {
 | |
| 		s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", this.mean, expected.mean, expected.closeEnough, expected.maxError)
 | |
| 		fmt.Println(s)
 | |
| 		return errors.New(s)
 | |
| 	}
 | |
| 	if !nearEqual(this.stddev, expected.stddev, expected.closeEnough, expected.maxError) {
 | |
| 		s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", this.stddev, expected.stddev, expected.closeEnough, expected.maxError)
 | |
| 		fmt.Println(s)
 | |
| 		return errors.New(s)
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| func getStatsResults(samples []float64) *statsResults {
 | |
| 	res := new(statsResults)
 | |
| 	var sum, squaresum float64
 | |
| 	for _, s := range samples {
 | |
| 		sum += s
 | |
| 		squaresum += s * s
 | |
| 	}
 | |
| 	res.mean = sum / float64(len(samples))
 | |
| 	res.stddev = math.Sqrt(squaresum/float64(len(samples)) - res.mean*res.mean)
 | |
| 	return res
 | |
| }
 | |
| 
 | |
| func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) {
 | |
| 	t.Helper()
 | |
| 	actual := getStatsResults(samples)
 | |
| 	err := actual.checkSimilarDistribution(expected)
 | |
| 	if err != nil {
 | |
| 		t.Errorf(err.Error())
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) {
 | |
| 	t.Helper()
 | |
| 	chunk := len(samples) / nslices
 | |
| 	for i := 0; i < nslices; i++ {
 | |
| 		low := i * chunk
 | |
| 		var high int
 | |
| 		if i == nslices-1 {
 | |
| 			high = len(samples) - 1
 | |
| 		} else {
 | |
| 			high = (i + 1) * chunk
 | |
| 		}
 | |
| 		checkSampleDistribution(t, samples[low:high], expected)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| //
 | |
| // Normal distribution tests
 | |
| //
 | |
| 
 | |
| func generateNormalSamples(nsamples int, mean, stddev float64, seed int64) []float64 {
 | |
| 	r := New(NewSource(seed))
 | |
| 	samples := make([]float64, nsamples)
 | |
| 	for i := range samples {
 | |
| 		samples[i] = r.NormFloat64()*stddev + mean
 | |
| 	}
 | |
| 	return samples
 | |
| }
 | |
| 
 | |
| func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed int64) {
 | |
| 	//fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed);
 | |
| 
 | |
| 	samples := generateNormalSamples(nsamples, mean, stddev, seed)
 | |
| 	errorScale := max(1.0, stddev) // Error scales with stddev
 | |
| 	expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}
 | |
| 
 | |
| 	// Make sure that the entire set matches the expected distribution.
 | |
| 	checkSampleDistribution(t, samples, expected)
 | |
| 
 | |
| 	// Make sure that each half of the set matches the expected distribution.
 | |
| 	checkSampleSliceDistributions(t, samples, 2, expected)
 | |
| 
 | |
| 	// Make sure that each 7th of the set matches the expected distribution.
 | |
| 	checkSampleSliceDistributions(t, samples, 7, expected)
 | |
| }
 | |
| 
 | |
| // Actual tests
 | |
| 
 | |
| func TestStandardNormalValues(t *testing.T) {
 | |
| 	for _, seed := range testSeeds {
 | |
| 		testNormalDistribution(t, numTestSamples, 0, 1, seed)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestNonStandardNormalValues(t *testing.T) {
 | |
| 	sdmax := 1000.0
 | |
| 	mmax := 1000.0
 | |
| 	if testing.Short() {
 | |
| 		sdmax = 5
 | |
| 		mmax = 5
 | |
| 	}
 | |
| 	for sd := 0.5; sd < sdmax; sd *= 2 {
 | |
| 		for m := 0.5; m < mmax; m *= 2 {
 | |
| 			for _, seed := range testSeeds {
 | |
| 				testNormalDistribution(t, numTestSamples, m, sd, seed)
 | |
| 				if testing.Short() {
 | |
| 					break
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| //
 | |
| // Exponential distribution tests
 | |
| //
 | |
| 
 | |
| func generateExponentialSamples(nsamples int, rate float64, seed int64) []float64 {
 | |
| 	r := New(NewSource(seed))
 | |
| 	samples := make([]float64, nsamples)
 | |
| 	for i := range samples {
 | |
| 		samples[i] = r.ExpFloat64() / rate
 | |
| 	}
 | |
| 	return samples
 | |
| }
 | |
| 
 | |
| func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed int64) {
 | |
| 	//fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed);
 | |
| 
 | |
| 	mean := 1 / rate
 | |
| 	stddev := mean
 | |
| 
 | |
| 	samples := generateExponentialSamples(nsamples, rate, seed)
 | |
| 	errorScale := max(1.0, 1/rate) // Error scales with the inverse of the rate
 | |
| 	expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale}
 | |
| 
 | |
| 	// Make sure that the entire set matches the expected distribution.
 | |
| 	checkSampleDistribution(t, samples, expected)
 | |
| 
 | |
| 	// Make sure that each half of the set matches the expected distribution.
 | |
| 	checkSampleSliceDistributions(t, samples, 2, expected)
 | |
| 
 | |
| 	// Make sure that each 7th of the set matches the expected distribution.
 | |
| 	checkSampleSliceDistributions(t, samples, 7, expected)
 | |
| }
 | |
| 
 | |
| // Actual tests
 | |
| 
 | |
| func TestStandardExponentialValues(t *testing.T) {
 | |
| 	for _, seed := range testSeeds {
 | |
| 		testExponentialDistribution(t, numTestSamples, 1, seed)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestNonStandardExponentialValues(t *testing.T) {
 | |
| 	for rate := 0.05; rate < 10; rate *= 2 {
 | |
| 		for _, seed := range testSeeds {
 | |
| 			testExponentialDistribution(t, numTestSamples, rate, seed)
 | |
| 			if testing.Short() {
 | |
| 				break
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| //
 | |
| // Table generation tests
 | |
| //
 | |
| 
 | |
| func initNorm() (testKn []uint32, testWn, testFn []float32) {
 | |
| 	const m1 = 1 << 31
 | |
| 	var (
 | |
| 		dn float64 = rn
 | |
| 		tn         = dn
 | |
| 		vn float64 = 9.91256303526217e-3
 | |
| 	)
 | |
| 
 | |
| 	testKn = make([]uint32, 128)
 | |
| 	testWn = make([]float32, 128)
 | |
| 	testFn = make([]float32, 128)
 | |
| 
 | |
| 	q := vn / math.Exp(-0.5*dn*dn)
 | |
| 	testKn[0] = uint32((dn / q) * m1)
 | |
| 	testKn[1] = 0
 | |
| 	testWn[0] = float32(q / m1)
 | |
| 	testWn[127] = float32(dn / m1)
 | |
| 	testFn[0] = 1.0
 | |
| 	testFn[127] = float32(math.Exp(-0.5 * dn * dn))
 | |
| 	for i := 126; i >= 1; i-- {
 | |
| 		dn = math.Sqrt(-2.0 * math.Log(vn/dn+math.Exp(-0.5*dn*dn)))
 | |
| 		testKn[i+1] = uint32((dn / tn) * m1)
 | |
| 		tn = dn
 | |
| 		testFn[i] = float32(math.Exp(-0.5 * dn * dn))
 | |
| 		testWn[i] = float32(dn / m1)
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func initExp() (testKe []uint32, testWe, testFe []float32) {
 | |
| 	const m2 = 1 << 32
 | |
| 	var (
 | |
| 		de float64 = re
 | |
| 		te         = de
 | |
| 		ve float64 = 3.9496598225815571993e-3
 | |
| 	)
 | |
| 
 | |
| 	testKe = make([]uint32, 256)
 | |
| 	testWe = make([]float32, 256)
 | |
| 	testFe = make([]float32, 256)
 | |
| 
 | |
| 	q := ve / math.Exp(-de)
 | |
| 	testKe[0] = uint32((de / q) * m2)
 | |
| 	testKe[1] = 0
 | |
| 	testWe[0] = float32(q / m2)
 | |
| 	testWe[255] = float32(de / m2)
 | |
| 	testFe[0] = 1.0
 | |
| 	testFe[255] = float32(math.Exp(-de))
 | |
| 	for i := 254; i >= 1; i-- {
 | |
| 		de = -math.Log(ve/de + math.Exp(-de))
 | |
| 		testKe[i+1] = uint32((de / te) * m2)
 | |
| 		te = de
 | |
| 		testFe[i] = float32(math.Exp(-de))
 | |
| 		testWe[i] = float32(de / m2)
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // compareUint32Slices returns the first index where the two slices
 | |
| // disagree, or <0 if the lengths are the same and all elements
 | |
| // are identical.
 | |
| func compareUint32Slices(s1, s2 []uint32) int {
 | |
| 	if len(s1) != len(s2) {
 | |
| 		if len(s1) > len(s2) {
 | |
| 			return len(s2) + 1
 | |
| 		}
 | |
| 		return len(s1) + 1
 | |
| 	}
 | |
| 	for i := range s1 {
 | |
| 		if s1[i] != s2[i] {
 | |
| 			return i
 | |
| 		}
 | |
| 	}
 | |
| 	return -1
 | |
| }
 | |
| 
 | |
| // compareFloat32Slices returns the first index where the two slices
 | |
| // disagree, or <0 if the lengths are the same and all elements
 | |
| // are identical.
 | |
| func compareFloat32Slices(s1, s2 []float32) int {
 | |
| 	if len(s1) != len(s2) {
 | |
| 		if len(s1) > len(s2) {
 | |
| 			return len(s2) + 1
 | |
| 		}
 | |
| 		return len(s1) + 1
 | |
| 	}
 | |
| 	for i := range s1 {
 | |
| 		if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) {
 | |
| 			return i
 | |
| 		}
 | |
| 	}
 | |
| 	return -1
 | |
| }
 | |
| 
 | |
| func TestNormTables(t *testing.T) {
 | |
| 	testKn, testWn, testFn := initNorm()
 | |
| 	if i := compareUint32Slices(kn[0:], testKn); i >= 0 {
 | |
| 		t.Errorf("kn disagrees at index %v; %v != %v", i, kn[i], testKn[i])
 | |
| 	}
 | |
| 	if i := compareFloat32Slices(wn[0:], testWn); i >= 0 {
 | |
| 		t.Errorf("wn disagrees at index %v; %v != %v", i, wn[i], testWn[i])
 | |
| 	}
 | |
| 	if i := compareFloat32Slices(fn[0:], testFn); i >= 0 {
 | |
| 		t.Errorf("fn disagrees at index %v; %v != %v", i, fn[i], testFn[i])
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestExpTables(t *testing.T) {
 | |
| 	testKe, testWe, testFe := initExp()
 | |
| 	if i := compareUint32Slices(ke[0:], testKe); i >= 0 {
 | |
| 		t.Errorf("ke disagrees at index %v; %v != %v", i, ke[i], testKe[i])
 | |
| 	}
 | |
| 	if i := compareFloat32Slices(we[0:], testWe); i >= 0 {
 | |
| 		t.Errorf("we disagrees at index %v; %v != %v", i, we[i], testWe[i])
 | |
| 	}
 | |
| 	if i := compareFloat32Slices(fe[0:], testFe); i >= 0 {
 | |
| 		t.Errorf("fe disagrees at index %v; %v != %v", i, fe[i], testFe[i])
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func hasSlowFloatingPoint() bool {
 | |
| 	switch runtime.GOARCH {
 | |
| 	case "arm":
 | |
| 		return os.Getenv("GOARM") == "5"
 | |
| 	case "mips", "mipsle", "mips64", "mips64le":
 | |
| 		// Be conservative and assume that all mips boards
 | |
| 		// have emulated floating point.
 | |
| 		// TODO: detect what it actually has.
 | |
| 		return true
 | |
| 	}
 | |
| 	return false
 | |
| }
 | |
| 
 | |
| func TestFloat32(t *testing.T) {
 | |
| 	// For issue 6721, the problem came after 7533753 calls, so check 10e6.
 | |
| 	num := int(10e6)
 | |
| 	// But do the full amount only on builders (not locally).
 | |
| 	// But ARM5 floating point emulation is slow (Issue 10749), so
 | |
| 	// do less for that builder:
 | |
| 	if testing.Short() && (testenv.Builder() == "" || hasSlowFloatingPoint()) {
 | |
| 		num /= 100 // 1.72 seconds instead of 172 seconds
 | |
| 	}
 | |
| 
 | |
| 	r := New(NewSource(1))
 | |
| 	for ct := 0; ct < num; ct++ {
 | |
| 		f := r.Float32()
 | |
| 		if f >= 1 {
 | |
| 			t.Fatal("Float32() should be in range [0,1). ct:", ct, "f:", f)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func testReadUniformity(t *testing.T, n int, seed int64) {
 | |
| 	r := New(NewSource(seed))
 | |
| 	buf := make([]byte, n)
 | |
| 	nRead, err := r.Read(buf)
 | |
| 	if err != nil {
 | |
| 		t.Errorf("Read err %v", err)
 | |
| 	}
 | |
| 	if nRead != n {
 | |
| 		t.Errorf("Read returned unexpected n; %d != %d", nRead, n)
 | |
| 	}
 | |
| 
 | |
| 	// Expect a uniform distribution of byte values, which lie in [0, 255].
 | |
| 	var (
 | |
| 		mean       = 255.0 / 2
 | |
| 		stddev     = 256.0 / math.Sqrt(12.0)
 | |
| 		errorScale = stddev / math.Sqrt(float64(n))
 | |
| 	)
 | |
| 
 | |
| 	expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}
 | |
| 
 | |
| 	// Cast bytes as floats to use the common distribution-validity checks.
 | |
| 	samples := make([]float64, n)
 | |
| 	for i, val := range buf {
 | |
| 		samples[i] = float64(val)
 | |
| 	}
 | |
| 	// Make sure that the entire set matches the expected distribution.
 | |
| 	checkSampleDistribution(t, samples, expected)
 | |
| }
 | |
| 
 | |
| func TestReadUniformity(t *testing.T) {
 | |
| 	testBufferSizes := []int{
 | |
| 		2, 4, 7, 64, 1024, 1 << 16, 1 << 20,
 | |
| 	}
 | |
| 	for _, seed := range testSeeds {
 | |
| 		for _, n := range testBufferSizes {
 | |
| 			testReadUniformity(t, n, seed)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestReadEmpty(t *testing.T) {
 | |
| 	r := New(NewSource(1))
 | |
| 	buf := make([]byte, 0)
 | |
| 	n, err := r.Read(buf)
 | |
| 	if err != nil {
 | |
| 		t.Errorf("Read err into empty buffer; %v", err)
 | |
| 	}
 | |
| 	if n != 0 {
 | |
| 		t.Errorf("Read into empty buffer returned unexpected n of %d", n)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestReadByOneByte(t *testing.T) {
 | |
| 	r := New(NewSource(1))
 | |
| 	b1 := make([]byte, 100)
 | |
| 	_, err := io.ReadFull(iotest.OneByteReader(r), b1)
 | |
| 	if err != nil {
 | |
| 		t.Errorf("read by one byte: %v", err)
 | |
| 	}
 | |
| 	r = New(NewSource(1))
 | |
| 	b2 := make([]byte, 100)
 | |
| 	_, err = r.Read(b2)
 | |
| 	if err != nil {
 | |
| 		t.Errorf("read: %v", err)
 | |
| 	}
 | |
| 	if !bytes.Equal(b1, b2) {
 | |
| 		t.Errorf("read by one byte vs single read:\n%x\n%x", b1, b2)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestReadSeedReset(t *testing.T) {
 | |
| 	r := New(NewSource(42))
 | |
| 	b1 := make([]byte, 128)
 | |
| 	_, err := r.Read(b1)
 | |
| 	if err != nil {
 | |
| 		t.Errorf("read: %v", err)
 | |
| 	}
 | |
| 	r.Seed(42)
 | |
| 	b2 := make([]byte, 128)
 | |
| 	_, err = r.Read(b2)
 | |
| 	if err != nil {
 | |
| 		t.Errorf("read: %v", err)
 | |
| 	}
 | |
| 	if !bytes.Equal(b1, b2) {
 | |
| 		t.Errorf("mismatch after re-seed:\n%x\n%x", b1, b2)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestShuffleSmall(t *testing.T) {
 | |
| 	// Check that Shuffle allows n=0 and n=1, but that swap is never called for them.
 | |
| 	r := New(NewSource(1))
 | |
| 	for n := 0; n <= 1; n++ {
 | |
| 		r.Shuffle(n, func(i, j int) { t.Fatalf("swap called, n=%d i=%d j=%d", n, i, j) })
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // encodePerm converts from a permuted slice of length n, such as Perm generates, to an int in [0, n!).
 | |
| // See https://en.wikipedia.org/wiki/Lehmer_code.
 | |
| // encodePerm modifies the input slice.
 | |
| func encodePerm(s []int) int {
 | |
| 	// Convert to Lehmer code.
 | |
| 	for i, x := range s {
 | |
| 		r := s[i+1:]
 | |
| 		for j, y := range r {
 | |
| 			if y > x {
 | |
| 				r[j]--
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	// Convert to int in [0, n!).
 | |
| 	m := 0
 | |
| 	fact := 1
 | |
| 	for i := len(s) - 1; i >= 0; i-- {
 | |
| 		m += s[i] * fact
 | |
| 		fact *= len(s) - i
 | |
| 	}
 | |
| 	return m
 | |
| }
 | |
| 
 | |
| // TestUniformFactorial tests several ways of generating a uniform value in [0, n!).
 | |
| func TestUniformFactorial(t *testing.T) {
 | |
| 	r := New(NewSource(testSeeds[0]))
 | |
| 	top := 6
 | |
| 	if testing.Short() {
 | |
| 		top = 4
 | |
| 	}
 | |
| 	for n := 3; n <= top; n++ {
 | |
| 		t.Run(fmt.Sprintf("n=%d", n), func(t *testing.T) {
 | |
| 			// Calculate n!.
 | |
| 			nfact := 1
 | |
| 			for i := 2; i <= n; i++ {
 | |
| 				nfact *= i
 | |
| 			}
 | |
| 
 | |
| 			// Test a few different ways to generate a uniform distribution.
 | |
| 			p := make([]int, n) // re-usable slice for Shuffle generator
 | |
| 			tests := [...]struct {
 | |
| 				name string
 | |
| 				fn   func() int
 | |
| 			}{
 | |
| 				{name: "Int31n", fn: func() int { return int(r.Int31n(int32(nfact))) }},
 | |
| 				{name: "int31n", fn: func() int { return int(r.int31n(int32(nfact))) }},
 | |
| 				{name: "Perm", fn: func() int { return encodePerm(r.Perm(n)) }},
 | |
| 				{name: "Shuffle", fn: func() int {
 | |
| 					// Generate permutation using Shuffle.
 | |
| 					for i := range p {
 | |
| 						p[i] = i
 | |
| 					}
 | |
| 					r.Shuffle(n, func(i, j int) { p[i], p[j] = p[j], p[i] })
 | |
| 					return encodePerm(p)
 | |
| 				}},
 | |
| 			}
 | |
| 
 | |
| 			for _, test := range tests {
 | |
| 				t.Run(test.name, func(t *testing.T) {
 | |
| 					// Gather chi-squared values and check that they follow
 | |
| 					// the expected normal distribution given n!-1 degrees of freedom.
 | |
| 					// See https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test and
 | |
| 					// https://www.johndcook.com/Beautiful_Testing_ch10.pdf.
 | |
| 					nsamples := 10 * nfact
 | |
| 					if nsamples < 200 {
 | |
| 						nsamples = 200
 | |
| 					}
 | |
| 					samples := make([]float64, nsamples)
 | |
| 					for i := range samples {
 | |
| 						// Generate some uniformly distributed values and count their occurrences.
 | |
| 						const iters = 1000
 | |
| 						counts := make([]int, nfact)
 | |
| 						for i := 0; i < iters; i++ {
 | |
| 							counts[test.fn()]++
 | |
| 						}
 | |
| 						// Calculate chi-squared and add to samples.
 | |
| 						want := iters / float64(nfact)
 | |
| 						var χ2 float64
 | |
| 						for _, have := range counts {
 | |
| 							err := float64(have) - want
 | |
| 							χ2 += err * err
 | |
| 						}
 | |
| 						χ2 /= want
 | |
| 						samples[i] = χ2
 | |
| 					}
 | |
| 
 | |
| 					// Check that our samples approximate the appropriate normal distribution.
 | |
| 					dof := float64(nfact - 1)
 | |
| 					expected := &statsResults{mean: dof, stddev: math.Sqrt(2 * dof)}
 | |
| 					errorScale := max(1.0, expected.stddev)
 | |
| 					expected.closeEnough = 0.10 * errorScale
 | |
| 					expected.maxError = 0.08 // TODO: What is the right value here? See issue 21211.
 | |
| 					checkSampleDistribution(t, samples, expected)
 | |
| 				})
 | |
| 			}
 | |
| 		})
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Benchmarks
 | |
| 
 | |
| func BenchmarkInt63Threadsafe(b *testing.B) {
 | |
| 	for n := b.N; n > 0; n-- {
 | |
| 		Int63()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func BenchmarkInt63Unthreadsafe(b *testing.B) {
 | |
| 	r := New(NewSource(1))
 | |
| 	for n := b.N; n > 0; n-- {
 | |
| 		r.Int63()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func BenchmarkIntn1000(b *testing.B) {
 | |
| 	r := New(NewSource(1))
 | |
| 	for n := b.N; n > 0; n-- {
 | |
| 		r.Intn(1000)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func BenchmarkInt63n1000(b *testing.B) {
 | |
| 	r := New(NewSource(1))
 | |
| 	for n := b.N; n > 0; n-- {
 | |
| 		r.Int63n(1000)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func BenchmarkInt31n1000(b *testing.B) {
 | |
| 	r := New(NewSource(1))
 | |
| 	for n := b.N; n > 0; n-- {
 | |
| 		r.Int31n(1000)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func BenchmarkFloat32(b *testing.B) {
 | |
| 	r := New(NewSource(1))
 | |
| 	for n := b.N; n > 0; n-- {
 | |
| 		r.Float32()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func BenchmarkFloat64(b *testing.B) {
 | |
| 	r := New(NewSource(1))
 | |
| 	for n := b.N; n > 0; n-- {
 | |
| 		r.Float64()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func BenchmarkPerm3(b *testing.B) {
 | |
| 	r := New(NewSource(1))
 | |
| 	for n := b.N; n > 0; n-- {
 | |
| 		r.Perm(3)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func BenchmarkPerm30(b *testing.B) {
 | |
| 	r := New(NewSource(1))
 | |
| 	for n := b.N; n > 0; n-- {
 | |
| 		r.Perm(30)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func BenchmarkPerm30ViaShuffle(b *testing.B) {
 | |
| 	r := New(NewSource(1))
 | |
| 	for n := b.N; n > 0; n-- {
 | |
| 		p := make([]int, 30)
 | |
| 		for i := range p {
 | |
| 			p[i] = i
 | |
| 		}
 | |
| 		r.Shuffle(30, func(i, j int) { p[i], p[j] = p[j], p[i] })
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // BenchmarkShuffleOverhead uses a minimal swap function
 | |
| // to measure just the shuffling overhead.
 | |
| func BenchmarkShuffleOverhead(b *testing.B) {
 | |
| 	r := New(NewSource(1))
 | |
| 	for n := b.N; n > 0; n-- {
 | |
| 		r.Shuffle(52, func(i, j int) {
 | |
| 			if i < 0 || i >= 52 || j < 0 || j >= 52 {
 | |
| 				b.Fatalf("bad swap(%d, %d)", i, j)
 | |
| 			}
 | |
| 		})
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func BenchmarkRead3(b *testing.B) {
 | |
| 	r := New(NewSource(1))
 | |
| 	buf := make([]byte, 3)
 | |
| 	b.ResetTimer()
 | |
| 	for n := b.N; n > 0; n-- {
 | |
| 		r.Read(buf)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func BenchmarkRead64(b *testing.B) {
 | |
| 	r := New(NewSource(1))
 | |
| 	buf := make([]byte, 64)
 | |
| 	b.ResetTimer()
 | |
| 	for n := b.N; n > 0; n-- {
 | |
| 		r.Read(buf)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func BenchmarkRead1000(b *testing.B) {
 | |
| 	r := New(NewSource(1))
 | |
| 	buf := make([]byte, 1000)
 | |
| 	b.ResetTimer()
 | |
| 	for n := b.N; n > 0; n-- {
 | |
| 		r.Read(buf)
 | |
| 	}
 | |
| }
 |