mirror of git://gcc.gnu.org/git/gcc.git
293 lines
10 KiB
Java
293 lines
10 KiB
Java
/* TripleDESKeyWrap.java -- FIXME: briefly describe file purpose
|
|
Copyright (C) 2006 Free Software Foundation, Inc.
|
|
|
|
This file is part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
02110-1301 USA.
|
|
|
|
Linking this library statically or dynamically with other modules is
|
|
making a combined work based on this library. Thus, the terms and
|
|
conditions of the GNU General Public License cover the whole
|
|
combination.
|
|
|
|
As a special exception, the copyright holders of this library give you
|
|
permission to link this library with independent modules to produce an
|
|
executable, regardless of the license terms of these independent
|
|
modules, and to copy and distribute the resulting executable under
|
|
terms of your choice, provided that you also meet, for each linked
|
|
independent module, the terms and conditions of the license of that
|
|
module. An independent module is a module which is not derived from
|
|
or based on this library. If you modify this library, you may extend
|
|
this exception to your version of the library, but you are not
|
|
obligated to do so. If you do not wish to do so, delete this
|
|
exception statement from your version. */
|
|
|
|
|
|
package gnu.javax.crypto.kwa;
|
|
|
|
import gnu.java.security.Registry;
|
|
import gnu.java.security.hash.Sha160;
|
|
import gnu.javax.crypto.assembly.Assembly;
|
|
import gnu.javax.crypto.assembly.Cascade;
|
|
import gnu.javax.crypto.assembly.Direction;
|
|
import gnu.javax.crypto.assembly.Stage;
|
|
import gnu.javax.crypto.assembly.Transformer;
|
|
import gnu.javax.crypto.assembly.TransformerException;
|
|
import gnu.javax.crypto.cipher.IBlockCipher;
|
|
import gnu.javax.crypto.cipher.TripleDES;
|
|
import gnu.javax.crypto.mode.IMode;
|
|
import gnu.javax.crypto.mode.ModeFactory;
|
|
|
|
import java.security.InvalidKeyException;
|
|
import java.security.SecureRandom;
|
|
import java.util.Arrays;
|
|
import java.util.HashMap;
|
|
import java.util.Map;
|
|
|
|
/**
|
|
* The GNU implementation of the Triple DES Key Wrap Algorithm as described in
|
|
* [1].
|
|
* <p>
|
|
* <b>IMPORTANT</b>: This class is NOT thread safe.
|
|
* <p>
|
|
* References:
|
|
* <ol>
|
|
* <li><a href="http://www.rfc-archive.org/getrfc.php?rfc=3217">Triple-DES and
|
|
* RC2 Key Wrapping</a>.</li>
|
|
* <li><a href="http://www.w3.org/TR/xmlenc-core/">XML Encryption Syntax and
|
|
* Processing</a>.</li>
|
|
* </ol>
|
|
*/
|
|
public class TripleDESKeyWrap
|
|
extends BaseKeyWrappingAlgorithm
|
|
{
|
|
private static final byte[] DEFAULT_IV = new byte[] {
|
|
(byte) 0x4A, (byte) 0xDD, (byte) 0xA2, (byte) 0x2C,
|
|
(byte) 0x79, (byte) 0xE8, (byte) 0x21, (byte) 0x05 };
|
|
|
|
private Assembly asm;
|
|
private HashMap asmAttributes = new HashMap();
|
|
private HashMap modeAttributes = new HashMap();
|
|
private Sha160 sha = new Sha160();
|
|
private SecureRandom rnd;
|
|
|
|
public TripleDESKeyWrap()
|
|
{
|
|
super(Registry.TRIPLEDES_KWA);
|
|
}
|
|
|
|
protected void engineInit(Map attributes) throws InvalidKeyException
|
|
{
|
|
rnd = (SecureRandom) attributes.get(IKeyWrappingAlgorithm.SOURCE_OF_RANDOMNESS);
|
|
IMode des3CBC = ModeFactory.getInstance(Registry.CBC_MODE, new TripleDES(), 8);
|
|
Stage des3CBCStage = Stage.getInstance(des3CBC, Direction.FORWARD);
|
|
Cascade cascade = new Cascade();
|
|
Object modeNdx = cascade.append(des3CBCStage);
|
|
|
|
asmAttributes.put(modeNdx, modeAttributes);
|
|
|
|
asm = new Assembly();
|
|
asm.addPreTransformer(Transformer.getCascadeTransformer(cascade));
|
|
|
|
modeAttributes.put(IBlockCipher.KEY_MATERIAL,
|
|
attributes.get(KEY_ENCRYPTION_KEY_MATERIAL));
|
|
asmAttributes.put(Assembly.DIRECTION, Direction.FORWARD);
|
|
}
|
|
|
|
protected byte[] engineWrap(byte[] in, int inOffset, int length)
|
|
{
|
|
// The same key wrap algorithm is used for both Two-key Triple-DES and
|
|
// Three-key Triple-DES keys. When a Two-key Triple-DES key is to be
|
|
// wrapped, a third DES key with the same value as the first DES key is
|
|
// created. Thus, all wrapped Triple-DES keys include three DES keys.
|
|
if (length != 16 && length != 24)
|
|
throw new IllegalArgumentException("Only 2- and 3-key Triple DES keys are alowed");
|
|
|
|
byte[] CEK = new byte[24];
|
|
if (length == 16)
|
|
{
|
|
System.arraycopy(in, inOffset, CEK, 0, 16);
|
|
System.arraycopy(in, inOffset, CEK, 16, 8);
|
|
}
|
|
else
|
|
System.arraycopy(in, inOffset, CEK, 0, 24);
|
|
|
|
// TODO: check for the following:
|
|
// However, a Two-key Triple-DES key MUST NOT be used to wrap a Three-
|
|
// key Triple-DES key that is comprised of three unique DES keys.
|
|
|
|
// 1. Set odd parity for each of the DES key octets comprising the
|
|
// Three-Key Triple-DES key that is to be wrapped, call the result
|
|
// CEK.
|
|
TripleDES.adjustParity(CEK, 0);
|
|
|
|
// 2. Compute an 8 octet key checksum value on CEK as described above in
|
|
// Section 2, call the result ICV.
|
|
sha.update(CEK);
|
|
byte[] hash = sha.digest();
|
|
byte[] ICV = new byte[8];
|
|
System.arraycopy(hash, 0, ICV, 0, 8);
|
|
|
|
// 3. Let CEKICV = CEK || ICV.
|
|
byte[] CEKICV = new byte[CEK.length + ICV.length];
|
|
System.arraycopy(CEK, 0, CEKICV, 0, CEK.length);
|
|
System.arraycopy(ICV, 0, CEKICV, CEK.length, ICV.length);
|
|
|
|
// 4. Generate 8 octets at random, call the result IV.
|
|
byte[] IV = new byte[8];
|
|
nextRandomBytes(IV);
|
|
|
|
// 5. Encrypt CEKICV in CBC mode using the key-encryption key. Use the
|
|
// random value generated in the previous step as the initialization
|
|
// vector (IV). Call the ciphertext TEMP1.
|
|
modeAttributes.put(IMode.IV, IV);
|
|
asmAttributes.put(Assembly.DIRECTION, Direction.FORWARD);
|
|
byte[] TEMP1;
|
|
try
|
|
{
|
|
asm.init(asmAttributes);
|
|
TEMP1 = asm.lastUpdate(CEKICV);
|
|
}
|
|
catch (TransformerException x)
|
|
{
|
|
throw new RuntimeException(x);
|
|
}
|
|
|
|
// 6. Let TEMP2 = IV || TEMP1.
|
|
byte[] TEMP2 = new byte[IV.length + TEMP1.length];
|
|
System.arraycopy(IV, 0, TEMP2, 0, IV.length);
|
|
System.arraycopy(TEMP1, 0, TEMP2, IV.length, TEMP1.length);
|
|
|
|
// 7. Reverse the order of the octets in TEMP2. That is, the most
|
|
// significant (first) octet is swapped with the least significant
|
|
// (last) octet, and so on. Call the result TEMP3.
|
|
byte[] TEMP3 = new byte[TEMP2.length];
|
|
for (int i = 0, j = TEMP2.length - 1; i < TEMP2.length; i++, j--)
|
|
TEMP3[j] = TEMP2[i];
|
|
|
|
// 8. Encrypt TEMP3 in CBC mode using the key-encryption key. Use an
|
|
// initialization vector (IV) of 0x4adda22c79e82105. The ciphertext
|
|
// is 40 octets long.
|
|
modeAttributes.put(IMode.IV, DEFAULT_IV);
|
|
asmAttributes.put(Assembly.DIRECTION, Direction.FORWARD);
|
|
byte[] result;
|
|
try
|
|
{
|
|
asm.init(asmAttributes);
|
|
result = asm.lastUpdate(TEMP3);
|
|
}
|
|
catch (TransformerException x)
|
|
{
|
|
throw new RuntimeException(x);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
protected byte[] engineUnwrap(byte[] in, int inOffset, int length)
|
|
throws KeyUnwrappingException
|
|
{
|
|
// 1. If the wrapped key is not 40 octets, then error.
|
|
if (length != 40)
|
|
throw new IllegalArgumentException("length MUST be 40");
|
|
|
|
// 2. Decrypt the wrapped key in CBC mode using the key-encryption key.
|
|
// Use an initialization vector (IV) of 0x4adda22c79e82105. Call the
|
|
// output TEMP3.
|
|
modeAttributes.put(IMode.IV, DEFAULT_IV);
|
|
asmAttributes.put(Assembly.DIRECTION, Direction.REVERSED);
|
|
byte[] TEMP3;
|
|
try
|
|
{
|
|
asm.init(asmAttributes);
|
|
TEMP3 = asm.lastUpdate(in, inOffset, 40);
|
|
}
|
|
catch (TransformerException x)
|
|
{
|
|
throw new RuntimeException(x);
|
|
}
|
|
|
|
// 3. Reverse the order of the octets in TEMP3. That is, the most
|
|
// significant (first) octet is swapped with the least significant
|
|
// (last) octet, and so on. Call the result TEMP2.
|
|
byte[] TEMP2 = new byte[40];
|
|
for (int i = 0, j = 40 - 1; i < 40; i++, j--)
|
|
TEMP2[j] = TEMP3[i];
|
|
|
|
// 4. Decompose TEMP2 into IV and TEMP1. IV is the most significant
|
|
// (first) 8 octets, and TEMP1 is the least significant (last) 32
|
|
// octets.
|
|
byte[] IV = new byte[8];
|
|
byte[] TEMP1 = new byte[32];
|
|
System.arraycopy(TEMP2, 0, IV, 0, 8);
|
|
System.arraycopy(TEMP2, 8, TEMP1, 0, 32);
|
|
|
|
// 5. Decrypt TEMP1 in CBC mode using the key-encryption key. Use the
|
|
// IV value from the previous step as the initialization vector.
|
|
// Call the ciphertext CEKICV.
|
|
modeAttributes.put(IMode.IV, IV);
|
|
asmAttributes.put(Assembly.DIRECTION, Direction.REVERSED);
|
|
byte[] CEKICV;
|
|
try
|
|
{
|
|
asm.init(asmAttributes);
|
|
CEKICV = asm.lastUpdate(TEMP1, 0, 32);
|
|
}
|
|
catch (TransformerException x)
|
|
{
|
|
throw new RuntimeException(x);
|
|
}
|
|
|
|
// 6. Decompose CEKICV into CEK and ICV. CEK is the most significant
|
|
// (first) 24 octets, and ICV is the least significant (last) 8
|
|
// octets.
|
|
byte[] CEK = new byte[24];
|
|
byte[] ICV = new byte[8];
|
|
System.arraycopy(CEKICV, 0, CEK, 0, 24);
|
|
System.arraycopy(CEKICV, 24, ICV, 0, 8);
|
|
|
|
// 7. Compute an 8 octet key checksum value on CEK as described above in
|
|
// Section 2. If the computed key checksum value does not match the
|
|
// decrypted key checksum value, ICV, then error.
|
|
sha.update(CEK);
|
|
byte[] hash = sha.digest();
|
|
byte[] computedICV = new byte[8];
|
|
System.arraycopy(hash, 0, computedICV, 0, 8);
|
|
if (! Arrays.equals(ICV, computedICV))
|
|
throw new KeyUnwrappingException("ICV and computed ICV MUST match");
|
|
|
|
// 8. Check for odd parity each of the DES key octets comprising CEK.
|
|
// If parity is incorrect, then error.
|
|
if (! TripleDES.isParityAdjusted(CEK, 0))
|
|
throw new KeyUnwrappingException("Triple-DES key parity MUST be adjusted");
|
|
|
|
// 9. Use CEK as a Triple-DES key.
|
|
return CEK;
|
|
}
|
|
|
|
/**
|
|
* Fills the designated byte array with random data.
|
|
*
|
|
* @param buffer the byte array to fill with random data.
|
|
*/
|
|
private void nextRandomBytes(byte[] buffer)
|
|
{
|
|
if (rnd != null)
|
|
rnd.nextBytes(buffer);
|
|
else
|
|
getDefaultPRNG().nextBytes(buffer);
|
|
}
|
|
}
|