mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			130 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			130 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Go
		
	
	
	
| // Copyright 2009 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package math
 | |
| 
 | |
| /*
 | |
| 	Floating-point logarithm.
 | |
| */
 | |
| 
 | |
| // The original C code, the long comment, and the constants
 | |
| // below are from FreeBSD's /usr/src/lib/msun/src/e_log.c
 | |
| // and came with this notice. The go code is a simpler
 | |
| // version of the original C.
 | |
| //
 | |
| // ====================================================
 | |
| // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
| //
 | |
| // Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
| // Permission to use, copy, modify, and distribute this
 | |
| // software is freely granted, provided that this notice
 | |
| // is preserved.
 | |
| // ====================================================
 | |
| //
 | |
| // __ieee754_log(x)
 | |
| // Return the logarithm of x
 | |
| //
 | |
| // Method :
 | |
| //   1. Argument Reduction: find k and f such that
 | |
| //			x = 2**k * (1+f),
 | |
| //	   where  sqrt(2)/2 < 1+f < sqrt(2) .
 | |
| //
 | |
| //   2. Approximation of log(1+f).
 | |
| //	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
 | |
| //		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
 | |
| //	     	 = 2s + s*R
 | |
| //      We use a special Reme algorithm on [0,0.1716] to generate
 | |
| //	a polynomial of degree 14 to approximate R.  The maximum error
 | |
| //	of this polynomial approximation is bounded by 2**-58.45. In
 | |
| //	other words,
 | |
| //		        2      4      6      8      10      12      14
 | |
| //	    R(z) ~ L1*s +L2*s +L3*s +L4*s +L5*s  +L6*s  +L7*s
 | |
| //	(the values of L1 to L7 are listed in the program) and
 | |
| //	    |      2          14          |     -58.45
 | |
| //	    | L1*s +...+L7*s    -  R(z) | <= 2
 | |
| //	    |                             |
 | |
| //	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
 | |
| //	In order to guarantee error in log below 1ulp, we compute log by
 | |
| //		log(1+f) = f - s*(f - R)		(if f is not too large)
 | |
| //		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
 | |
| //
 | |
| //	3. Finally,  log(x) = k*Ln2 + log(1+f).
 | |
| //			    = k*Ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*Ln2_lo)))
 | |
| //	   Here Ln2 is split into two floating point number:
 | |
| //			Ln2_hi + Ln2_lo,
 | |
| //	   where n*Ln2_hi is always exact for |n| < 2000.
 | |
| //
 | |
| // Special cases:
 | |
| //	log(x) is NaN with signal if x < 0 (including -INF) ;
 | |
| //	log(+INF) is +INF; log(0) is -INF with signal;
 | |
| //	log(NaN) is that NaN with no signal.
 | |
| //
 | |
| // Accuracy:
 | |
| //	according to an error analysis, the error is always less than
 | |
| //	1 ulp (unit in the last place).
 | |
| //
 | |
| // Constants:
 | |
| // The hexadecimal values are the intended ones for the following
 | |
| // constants. The decimal values may be used, provided that the
 | |
| // compiler will convert from decimal to binary accurately enough
 | |
| // to produce the hexadecimal values shown.
 | |
| 
 | |
| // Log returns the natural logarithm of x.
 | |
| //
 | |
| // Special cases are:
 | |
| //	Log(+Inf) = +Inf
 | |
| //	Log(0) = -Inf
 | |
| //	Log(x < 0) = NaN
 | |
| //	Log(NaN) = NaN
 | |
| 
 | |
| //extern log
 | |
| func libc_log(float64) float64
 | |
| 
 | |
| func Log(x float64) float64 {
 | |
| 	return libc_log(x)
 | |
| }
 | |
| 
 | |
| func log(x float64) float64 {
 | |
| 	const (
 | |
| 		Ln2Hi = 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */
 | |
| 		Ln2Lo = 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */
 | |
| 		L1    = 6.666666666666735130e-01   /* 3FE55555 55555593 */
 | |
| 		L2    = 3.999999999940941908e-01   /* 3FD99999 9997FA04 */
 | |
| 		L3    = 2.857142874366239149e-01   /* 3FD24924 94229359 */
 | |
| 		L4    = 2.222219843214978396e-01   /* 3FCC71C5 1D8E78AF */
 | |
| 		L5    = 1.818357216161805012e-01   /* 3FC74664 96CB03DE */
 | |
| 		L6    = 1.531383769920937332e-01   /* 3FC39A09 D078C69F */
 | |
| 		L7    = 1.479819860511658591e-01   /* 3FC2F112 DF3E5244 */
 | |
| 	)
 | |
| 
 | |
| 	// special cases
 | |
| 	switch {
 | |
| 	case IsNaN(x) || IsInf(x, 1):
 | |
| 		return x
 | |
| 	case x < 0:
 | |
| 		return NaN()
 | |
| 	case x == 0:
 | |
| 		return Inf(-1)
 | |
| 	}
 | |
| 
 | |
| 	// reduce
 | |
| 	f1, ki := Frexp(x)
 | |
| 	if f1 < Sqrt2/2 {
 | |
| 		f1 *= 2
 | |
| 		ki--
 | |
| 	}
 | |
| 	f := f1 - 1
 | |
| 	k := float64(ki)
 | |
| 
 | |
| 	// compute
 | |
| 	s := f / (2 + f)
 | |
| 	s2 := s * s
 | |
| 	s4 := s2 * s2
 | |
| 	t1 := s2 * (L1 + s4*(L3+s4*(L5+s4*L7)))
 | |
| 	t2 := s4 * (L2 + s4*(L4+s4*L6))
 | |
| 	R := t1 + t2
 | |
| 	hfsq := 0.5 * f * f
 | |
| 	return k*Ln2Hi - ((hfsq - (s*(hfsq+R) + k*Ln2Lo)) - f)
 | |
| }
 |