mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			501 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			501 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Implementation of the PRODUCT intrinsic
 | |
|    Copyright (C) 2002-2016 Free Software Foundation, Inc.
 | |
|    Contributed by Paul Brook <paul@nowt.org>
 | |
| 
 | |
| This file is part of the GNU Fortran runtime library (libgfortran).
 | |
| 
 | |
| Libgfortran is free software; you can redistribute it and/or
 | |
| modify it under the terms of the GNU General Public
 | |
| License as published by the Free Software Foundation; either
 | |
| version 3 of the License, or (at your option) any later version.
 | |
| 
 | |
| Libgfortran is distributed in the hope that it will be useful,
 | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| GNU General Public License for more details.
 | |
| 
 | |
| Under Section 7 of GPL version 3, you are granted additional
 | |
| permissions described in the GCC Runtime Library Exception, version
 | |
| 3.1, as published by the Free Software Foundation.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License and
 | |
| a copy of the GCC Runtime Library Exception along with this program;
 | |
| see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | |
| <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include "libgfortran.h"
 | |
| #include <stdlib.h>
 | |
| #include <assert.h>
 | |
| 
 | |
| 
 | |
| #if defined (HAVE_GFC_COMPLEX_10) && defined (HAVE_GFC_COMPLEX_10)
 | |
| 
 | |
| 
 | |
| extern void product_c10 (gfc_array_c10 * const restrict, 
 | |
| 	gfc_array_c10 * const restrict, const index_type * const restrict);
 | |
| export_proto(product_c10);
 | |
| 
 | |
| void
 | |
| product_c10 (gfc_array_c10 * const restrict retarray, 
 | |
| 	gfc_array_c10 * const restrict array, 
 | |
| 	const index_type * const restrict pdim)
 | |
| {
 | |
|   index_type count[GFC_MAX_DIMENSIONS];
 | |
|   index_type extent[GFC_MAX_DIMENSIONS];
 | |
|   index_type sstride[GFC_MAX_DIMENSIONS];
 | |
|   index_type dstride[GFC_MAX_DIMENSIONS];
 | |
|   const GFC_COMPLEX_10 * restrict base;
 | |
|   GFC_COMPLEX_10 * restrict dest;
 | |
|   index_type rank;
 | |
|   index_type n;
 | |
|   index_type len;
 | |
|   index_type delta;
 | |
|   index_type dim;
 | |
|   int continue_loop;
 | |
| 
 | |
|   /* Make dim zero based to avoid confusion.  */
 | |
|   dim = (*pdim) - 1;
 | |
|   rank = GFC_DESCRIPTOR_RANK (array) - 1;
 | |
| 
 | |
|   len = GFC_DESCRIPTOR_EXTENT(array,dim);
 | |
|   if (len < 0)
 | |
|     len = 0;
 | |
|   delta = GFC_DESCRIPTOR_STRIDE(array,dim);
 | |
| 
 | |
|   for (n = 0; n < dim; n++)
 | |
|     {
 | |
|       sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
 | |
|       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
 | |
| 
 | |
|       if (extent[n] < 0)
 | |
| 	extent[n] = 0;
 | |
|     }
 | |
|   for (n = dim; n < rank; n++)
 | |
|     {
 | |
|       sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
 | |
|       extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
 | |
| 
 | |
|       if (extent[n] < 0)
 | |
| 	extent[n] = 0;
 | |
|     }
 | |
| 
 | |
|   if (retarray->base_addr == NULL)
 | |
|     {
 | |
|       size_t alloc_size, str;
 | |
| 
 | |
|       for (n = 0; n < rank; n++)
 | |
| 	{
 | |
| 	  if (n == 0)
 | |
| 	    str = 1;
 | |
| 	  else
 | |
| 	    str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
 | |
| 
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
 | |
| 
 | |
| 	}
 | |
| 
 | |
|       retarray->offset = 0;
 | |
|       retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
 | |
| 
 | |
|       alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
 | |
| 
 | |
|       retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_10));
 | |
|       if (alloc_size == 0)
 | |
| 	{
 | |
| 	  /* Make sure we have a zero-sized array.  */
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
 | |
| 	  return;
 | |
| 
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       if (rank != GFC_DESCRIPTOR_RANK (retarray))
 | |
| 	runtime_error ("rank of return array incorrect in"
 | |
| 		       " PRODUCT intrinsic: is %ld, should be %ld",
 | |
| 		       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
 | |
| 		       (long int) rank);
 | |
| 
 | |
|       if (unlikely (compile_options.bounds_check))
 | |
| 	bounds_ifunction_return ((array_t *) retarray, extent,
 | |
| 				 "return value", "PRODUCT");
 | |
|     }
 | |
| 
 | |
|   for (n = 0; n < rank; n++)
 | |
|     {
 | |
|       count[n] = 0;
 | |
|       dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
 | |
|       if (extent[n] <= 0)
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|   base = array->base_addr;
 | |
|   dest = retarray->base_addr;
 | |
| 
 | |
|   continue_loop = 1;
 | |
|   while (continue_loop)
 | |
|     {
 | |
|       const GFC_COMPLEX_10 * restrict src;
 | |
|       GFC_COMPLEX_10 result;
 | |
|       src = base;
 | |
|       {
 | |
| 
 | |
|   result = 1;
 | |
| 	if (len <= 0)
 | |
| 	  *dest = 1;
 | |
| 	else
 | |
| 	  {
 | |
| 	    for (n = 0; n < len; n++, src += delta)
 | |
| 	      {
 | |
| 
 | |
|   result *= *src;
 | |
| 	      }
 | |
| 	    
 | |
| 	    *dest = result;
 | |
| 	  }
 | |
|       }
 | |
|       /* Advance to the next element.  */
 | |
|       count[0]++;
 | |
|       base += sstride[0];
 | |
|       dest += dstride[0];
 | |
|       n = 0;
 | |
|       while (count[n] == extent[n])
 | |
| 	{
 | |
| 	  /* When we get to the end of a dimension, reset it and increment
 | |
| 	     the next dimension.  */
 | |
| 	  count[n] = 0;
 | |
| 	  /* We could precalculate these products, but this is a less
 | |
| 	     frequently used path so probably not worth it.  */
 | |
| 	  base -= sstride[n] * extent[n];
 | |
| 	  dest -= dstride[n] * extent[n];
 | |
| 	  n++;
 | |
| 	  if (n == rank)
 | |
| 	    {
 | |
| 	      /* Break out of the look.  */
 | |
| 	      continue_loop = 0;
 | |
| 	      break;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      count[n]++;
 | |
| 	      base += sstride[n];
 | |
| 	      dest += dstride[n];
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| extern void mproduct_c10 (gfc_array_c10 * const restrict, 
 | |
| 	gfc_array_c10 * const restrict, const index_type * const restrict,
 | |
| 	gfc_array_l1 * const restrict);
 | |
| export_proto(mproduct_c10);
 | |
| 
 | |
| void
 | |
| mproduct_c10 (gfc_array_c10 * const restrict retarray, 
 | |
| 	gfc_array_c10 * const restrict array, 
 | |
| 	const index_type * const restrict pdim, 
 | |
| 	gfc_array_l1 * const restrict mask)
 | |
| {
 | |
|   index_type count[GFC_MAX_DIMENSIONS];
 | |
|   index_type extent[GFC_MAX_DIMENSIONS];
 | |
|   index_type sstride[GFC_MAX_DIMENSIONS];
 | |
|   index_type dstride[GFC_MAX_DIMENSIONS];
 | |
|   index_type mstride[GFC_MAX_DIMENSIONS];
 | |
|   GFC_COMPLEX_10 * restrict dest;
 | |
|   const GFC_COMPLEX_10 * restrict base;
 | |
|   const GFC_LOGICAL_1 * restrict mbase;
 | |
|   int rank;
 | |
|   int dim;
 | |
|   index_type n;
 | |
|   index_type len;
 | |
|   index_type delta;
 | |
|   index_type mdelta;
 | |
|   int mask_kind;
 | |
| 
 | |
|   dim = (*pdim) - 1;
 | |
|   rank = GFC_DESCRIPTOR_RANK (array) - 1;
 | |
| 
 | |
|   len = GFC_DESCRIPTOR_EXTENT(array,dim);
 | |
|   if (len <= 0)
 | |
|     return;
 | |
| 
 | |
|   mbase = mask->base_addr;
 | |
| 
 | |
|   mask_kind = GFC_DESCRIPTOR_SIZE (mask);
 | |
| 
 | |
|   if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
 | |
| #ifdef HAVE_GFC_LOGICAL_16
 | |
|       || mask_kind == 16
 | |
| #endif
 | |
|       )
 | |
|     mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
 | |
|   else
 | |
|     runtime_error ("Funny sized logical array");
 | |
| 
 | |
|   delta = GFC_DESCRIPTOR_STRIDE(array,dim);
 | |
|   mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
 | |
| 
 | |
|   for (n = 0; n < dim; n++)
 | |
|     {
 | |
|       sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
 | |
|       mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
 | |
|       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
 | |
| 
 | |
|       if (extent[n] < 0)
 | |
| 	extent[n] = 0;
 | |
| 
 | |
|     }
 | |
|   for (n = dim; n < rank; n++)
 | |
|     {
 | |
|       sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
 | |
|       mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
 | |
|       extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
 | |
| 
 | |
|       if (extent[n] < 0)
 | |
| 	extent[n] = 0;
 | |
|     }
 | |
| 
 | |
|   if (retarray->base_addr == NULL)
 | |
|     {
 | |
|       size_t alloc_size, str;
 | |
| 
 | |
|       for (n = 0; n < rank; n++)
 | |
| 	{
 | |
| 	  if (n == 0)
 | |
| 	    str = 1;
 | |
| 	  else
 | |
| 	    str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
 | |
| 
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
 | |
| 
 | |
| 	}
 | |
| 
 | |
|       alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
 | |
| 
 | |
|       retarray->offset = 0;
 | |
|       retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
 | |
| 
 | |
|       if (alloc_size == 0)
 | |
| 	{
 | |
| 	  /* Make sure we have a zero-sized array.  */
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
 | |
| 	  return;
 | |
| 	}
 | |
|       else
 | |
| 	retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_10));
 | |
| 
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       if (rank != GFC_DESCRIPTOR_RANK (retarray))
 | |
| 	runtime_error ("rank of return array incorrect in PRODUCT intrinsic");
 | |
| 
 | |
|       if (unlikely (compile_options.bounds_check))
 | |
| 	{
 | |
| 	  bounds_ifunction_return ((array_t *) retarray, extent,
 | |
| 				   "return value", "PRODUCT");
 | |
| 	  bounds_equal_extents ((array_t *) mask, (array_t *) array,
 | |
| 	  			"MASK argument", "PRODUCT");
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   for (n = 0; n < rank; n++)
 | |
|     {
 | |
|       count[n] = 0;
 | |
|       dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
 | |
|       if (extent[n] <= 0)
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|   dest = retarray->base_addr;
 | |
|   base = array->base_addr;
 | |
| 
 | |
|   while (base)
 | |
|     {
 | |
|       const GFC_COMPLEX_10 * restrict src;
 | |
|       const GFC_LOGICAL_1 * restrict msrc;
 | |
|       GFC_COMPLEX_10 result;
 | |
|       src = base;
 | |
|       msrc = mbase;
 | |
|       {
 | |
| 
 | |
|   result = 1;
 | |
| 	for (n = 0; n < len; n++, src += delta, msrc += mdelta)
 | |
| 	  {
 | |
| 
 | |
|   if (*msrc)
 | |
|     result *= *src;
 | |
| 	  }
 | |
| 	*dest = result;
 | |
|       }
 | |
|       /* Advance to the next element.  */
 | |
|       count[0]++;
 | |
|       base += sstride[0];
 | |
|       mbase += mstride[0];
 | |
|       dest += dstride[0];
 | |
|       n = 0;
 | |
|       while (count[n] == extent[n])
 | |
| 	{
 | |
| 	  /* When we get to the end of a dimension, reset it and increment
 | |
| 	     the next dimension.  */
 | |
| 	  count[n] = 0;
 | |
| 	  /* We could precalculate these products, but this is a less
 | |
| 	     frequently used path so probably not worth it.  */
 | |
| 	  base -= sstride[n] * extent[n];
 | |
| 	  mbase -= mstride[n] * extent[n];
 | |
| 	  dest -= dstride[n] * extent[n];
 | |
| 	  n++;
 | |
| 	  if (n == rank)
 | |
| 	    {
 | |
| 	      /* Break out of the look.  */
 | |
| 	      base = NULL;
 | |
| 	      break;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      count[n]++;
 | |
| 	      base += sstride[n];
 | |
| 	      mbase += mstride[n];
 | |
| 	      dest += dstride[n];
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| extern void sproduct_c10 (gfc_array_c10 * const restrict, 
 | |
| 	gfc_array_c10 * const restrict, const index_type * const restrict,
 | |
| 	GFC_LOGICAL_4 *);
 | |
| export_proto(sproduct_c10);
 | |
| 
 | |
| void
 | |
| sproduct_c10 (gfc_array_c10 * const restrict retarray, 
 | |
| 	gfc_array_c10 * const restrict array, 
 | |
| 	const index_type * const restrict pdim, 
 | |
| 	GFC_LOGICAL_4 * mask)
 | |
| {
 | |
|   index_type count[GFC_MAX_DIMENSIONS];
 | |
|   index_type extent[GFC_MAX_DIMENSIONS];
 | |
|   index_type dstride[GFC_MAX_DIMENSIONS];
 | |
|   GFC_COMPLEX_10 * restrict dest;
 | |
|   index_type rank;
 | |
|   index_type n;
 | |
|   index_type dim;
 | |
| 
 | |
| 
 | |
|   if (*mask)
 | |
|     {
 | |
|       product_c10 (retarray, array, pdim);
 | |
|       return;
 | |
|     }
 | |
|   /* Make dim zero based to avoid confusion.  */
 | |
|   dim = (*pdim) - 1;
 | |
|   rank = GFC_DESCRIPTOR_RANK (array) - 1;
 | |
| 
 | |
|   for (n = 0; n < dim; n++)
 | |
|     {
 | |
|       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
 | |
| 
 | |
|       if (extent[n] <= 0)
 | |
| 	extent[n] = 0;
 | |
|     }
 | |
| 
 | |
|   for (n = dim; n < rank; n++)
 | |
|     {
 | |
|       extent[n] =
 | |
| 	GFC_DESCRIPTOR_EXTENT(array,n + 1);
 | |
| 
 | |
|       if (extent[n] <= 0)
 | |
| 	extent[n] = 0;
 | |
|     }
 | |
| 
 | |
|   if (retarray->base_addr == NULL)
 | |
|     {
 | |
|       size_t alloc_size, str;
 | |
| 
 | |
|       for (n = 0; n < rank; n++)
 | |
| 	{
 | |
| 	  if (n == 0)
 | |
| 	    str = 1;
 | |
| 	  else
 | |
| 	    str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
 | |
| 
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
 | |
| 
 | |
| 	}
 | |
| 
 | |
|       retarray->offset = 0;
 | |
|       retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
 | |
| 
 | |
|       alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
 | |
| 
 | |
|       if (alloc_size == 0)
 | |
| 	{
 | |
| 	  /* Make sure we have a zero-sized array.  */
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
 | |
| 	  return;
 | |
| 	}
 | |
|       else
 | |
| 	retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_10));
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       if (rank != GFC_DESCRIPTOR_RANK (retarray))
 | |
| 	runtime_error ("rank of return array incorrect in"
 | |
| 		       " PRODUCT intrinsic: is %ld, should be %ld",
 | |
| 		       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
 | |
| 		       (long int) rank);
 | |
| 
 | |
|       if (unlikely (compile_options.bounds_check))
 | |
| 	{
 | |
| 	  for (n=0; n < rank; n++)
 | |
| 	    {
 | |
| 	      index_type ret_extent;
 | |
| 
 | |
| 	      ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
 | |
| 	      if (extent[n] != ret_extent)
 | |
| 		runtime_error ("Incorrect extent in return value of"
 | |
| 			       " PRODUCT intrinsic in dimension %ld:"
 | |
| 			       " is %ld, should be %ld", (long int) n + 1,
 | |
| 			       (long int) ret_extent, (long int) extent[n]);
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   for (n = 0; n < rank; n++)
 | |
|     {
 | |
|       count[n] = 0;
 | |
|       dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
 | |
|     }
 | |
| 
 | |
|   dest = retarray->base_addr;
 | |
| 
 | |
|   while(1)
 | |
|     {
 | |
|       *dest = 1;
 | |
|       count[0]++;
 | |
|       dest += dstride[0];
 | |
|       n = 0;
 | |
|       while (count[n] == extent[n])
 | |
| 	{
 | |
| 	  /* When we get to the end of a dimension, reset it and increment
 | |
| 	     the next dimension.  */
 | |
| 	  count[n] = 0;
 | |
| 	  /* We could precalculate these products, but this is a less
 | |
| 	     frequently used path so probably not worth it.  */
 | |
| 	  dest -= dstride[n] * extent[n];
 | |
| 	  n++;
 | |
| 	  if (n == rank)
 | |
| 	    return;
 | |
| 	  else
 | |
| 	    {
 | |
| 	      count[n]++;
 | |
| 	      dest += dstride[n];
 | |
| 	    }
 | |
|       	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 |