mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			4207 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			4207 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Copyright (C) 2002-2016 Free Software Foundation, Inc.
 | |
|    Contributed by Andy Vaught
 | |
|    Namelist transfer functions contributed by Paul Thomas
 | |
|    F2003 I/O support contributed by Jerry DeLisle
 | |
| 
 | |
| This file is part of the GNU Fortran runtime library (libgfortran).
 | |
| 
 | |
| Libgfortran is free software; you can redistribute it and/or modify
 | |
| it under the terms of the GNU General Public License as published by
 | |
| the Free Software Foundation; either version 3, or (at your option)
 | |
| any later version.
 | |
| 
 | |
| Libgfortran is distributed in the hope that it will be useful,
 | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| GNU General Public License for more details.
 | |
| 
 | |
| Under Section 7 of GPL version 3, you are granted additional
 | |
| permissions described in the GCC Runtime Library Exception, version
 | |
| 3.1, as published by the Free Software Foundation.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License and
 | |
| a copy of the GCC Runtime Library Exception along with this program;
 | |
| see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | |
| <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| 
 | |
| /* transfer.c -- Top level handling of data transfer statements.  */
 | |
| 
 | |
| #include "io.h"
 | |
| #include "fbuf.h"
 | |
| #include "format.h"
 | |
| #include "unix.h"
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| #include <stdlib.h>
 | |
| #include <errno.h>
 | |
| 
 | |
| 
 | |
| /* Calling conventions:  Data transfer statements are unlike other
 | |
|    library calls in that they extend over several calls.
 | |
| 
 | |
|    The first call is always a call to st_read() or st_write().  These
 | |
|    subroutines return no status unless a namelist read or write is
 | |
|    being done, in which case there is the usual status.  No further
 | |
|    calls are necessary in this case.
 | |
| 
 | |
|    For other sorts of data transfer, there are zero or more data
 | |
|    transfer statement that depend on the format of the data transfer
 | |
|    statement. For READ (and for backwards compatibily: for WRITE), one has
 | |
| 
 | |
|       transfer_integer
 | |
|       transfer_logical
 | |
|       transfer_character
 | |
|       transfer_character_wide
 | |
|       transfer_real
 | |
|       transfer_complex
 | |
|       transfer_real128
 | |
|       transfer_complex128
 | |
| 
 | |
|     and for WRITE
 | |
| 
 | |
|       transfer_integer_write
 | |
|       transfer_logical_write
 | |
|       transfer_character_write
 | |
|       transfer_character_wide_write
 | |
|       transfer_real_write
 | |
|       transfer_complex_write
 | |
|       transfer_real128_write
 | |
|       transfer_complex128_write
 | |
| 
 | |
|     These subroutines do not return status. The *128 functions
 | |
|     are in the file transfer128.c.
 | |
| 
 | |
|     The last call is a call to st_[read|write]_done().  While
 | |
|     something can easily go wrong with the initial st_read() or
 | |
|     st_write(), an error inhibits any data from actually being
 | |
|     transferred.  */
 | |
| 
 | |
| extern void transfer_integer (st_parameter_dt *, void *, int);
 | |
| export_proto(transfer_integer);
 | |
| 
 | |
| extern void transfer_integer_write (st_parameter_dt *, void *, int);
 | |
| export_proto(transfer_integer_write);
 | |
| 
 | |
| extern void transfer_real (st_parameter_dt *, void *, int);
 | |
| export_proto(transfer_real);
 | |
| 
 | |
| extern void transfer_real_write (st_parameter_dt *, void *, int);
 | |
| export_proto(transfer_real_write);
 | |
| 
 | |
| extern void transfer_logical (st_parameter_dt *, void *, int);
 | |
| export_proto(transfer_logical);
 | |
| 
 | |
| extern void transfer_logical_write (st_parameter_dt *, void *, int);
 | |
| export_proto(transfer_logical_write);
 | |
| 
 | |
| extern void transfer_character (st_parameter_dt *, void *, int);
 | |
| export_proto(transfer_character);
 | |
| 
 | |
| extern void transfer_character_write (st_parameter_dt *, void *, int);
 | |
| export_proto(transfer_character_write);
 | |
| 
 | |
| extern void transfer_character_wide (st_parameter_dt *, void *, int, int);
 | |
| export_proto(transfer_character_wide);
 | |
| 
 | |
| extern void transfer_character_wide_write (st_parameter_dt *,
 | |
| 					   void *, int, int);
 | |
| export_proto(transfer_character_wide_write);
 | |
| 
 | |
| extern void transfer_complex (st_parameter_dt *, void *, int);
 | |
| export_proto(transfer_complex);
 | |
| 
 | |
| extern void transfer_complex_write (st_parameter_dt *, void *, int);
 | |
| export_proto(transfer_complex_write);
 | |
| 
 | |
| extern void transfer_array (st_parameter_dt *, gfc_array_char *, int,
 | |
| 			    gfc_charlen_type);
 | |
| export_proto(transfer_array);
 | |
| 
 | |
| extern void transfer_array_write (st_parameter_dt *, gfc_array_char *, int,
 | |
| 			    gfc_charlen_type);
 | |
| export_proto(transfer_array_write);
 | |
| 
 | |
| /* User defined derived type input/output.  */
 | |
| extern void
 | |
| transfer_derived (st_parameter_dt *dtp, void *dtio_source, void *dtio_proc);
 | |
| export_proto(transfer_derived);
 | |
| 
 | |
| extern void
 | |
| transfer_derived_write (st_parameter_dt *dtp, void *dtio_source, void *dtio_proc);
 | |
| export_proto(transfer_derived_write);
 | |
| 
 | |
| static void us_read (st_parameter_dt *, int);
 | |
| static void us_write (st_parameter_dt *, int);
 | |
| static void next_record_r_unf (st_parameter_dt *, int);
 | |
| static void next_record_w_unf (st_parameter_dt *, int);
 | |
| 
 | |
| static const st_option advance_opt[] = {
 | |
|   {"yes", ADVANCE_YES},
 | |
|   {"no", ADVANCE_NO},
 | |
|   {NULL, 0}
 | |
| };
 | |
| 
 | |
| 
 | |
| static const st_option decimal_opt[] = {
 | |
|   {"point", DECIMAL_POINT},
 | |
|   {"comma", DECIMAL_COMMA},
 | |
|   {NULL, 0}
 | |
| };
 | |
| 
 | |
| static const st_option round_opt[] = {
 | |
|   {"up", ROUND_UP},
 | |
|   {"down", ROUND_DOWN},
 | |
|   {"zero", ROUND_ZERO},
 | |
|   {"nearest", ROUND_NEAREST},
 | |
|   {"compatible", ROUND_COMPATIBLE},
 | |
|   {"processor_defined", ROUND_PROCDEFINED},
 | |
|   {NULL, 0}
 | |
| };
 | |
| 
 | |
| 
 | |
| static const st_option sign_opt[] = {
 | |
|   {"plus", SIGN_SP},
 | |
|   {"suppress", SIGN_SS},
 | |
|   {"processor_defined", SIGN_S},
 | |
|   {NULL, 0}
 | |
| };
 | |
| 
 | |
| static const st_option blank_opt[] = {
 | |
|   {"null", BLANK_NULL},
 | |
|   {"zero", BLANK_ZERO},
 | |
|   {NULL, 0}
 | |
| };
 | |
| 
 | |
| static const st_option delim_opt[] = {
 | |
|   {"apostrophe", DELIM_APOSTROPHE},
 | |
|   {"quote", DELIM_QUOTE},
 | |
|   {"none", DELIM_NONE},
 | |
|   {NULL, 0}
 | |
| };
 | |
| 
 | |
| static const st_option pad_opt[] = {
 | |
|   {"yes", PAD_YES},
 | |
|   {"no", PAD_NO},
 | |
|   {NULL, 0}
 | |
| };
 | |
| 
 | |
| typedef enum
 | |
| { FORMATTED_SEQUENTIAL, UNFORMATTED_SEQUENTIAL,
 | |
|   FORMATTED_DIRECT, UNFORMATTED_DIRECT, FORMATTED_STREAM, UNFORMATTED_STREAM
 | |
| }
 | |
| file_mode;
 | |
| 
 | |
| 
 | |
| static file_mode
 | |
| current_mode (st_parameter_dt *dtp)
 | |
| {
 | |
|   file_mode m;
 | |
| 
 | |
|   m = FORM_UNSPECIFIED;
 | |
| 
 | |
|   if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
 | |
|     {
 | |
|       m = dtp->u.p.current_unit->flags.form == FORM_FORMATTED ?
 | |
| 	FORMATTED_DIRECT : UNFORMATTED_DIRECT;
 | |
|     }
 | |
|   else if (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL)
 | |
|     {
 | |
|       m = dtp->u.p.current_unit->flags.form == FORM_FORMATTED ?
 | |
| 	FORMATTED_SEQUENTIAL : UNFORMATTED_SEQUENTIAL;
 | |
|     }
 | |
|   else if (dtp->u.p.current_unit->flags.access == ACCESS_STREAM)
 | |
|     {
 | |
|       m = dtp->u.p.current_unit->flags.form == FORM_FORMATTED ?
 | |
| 	FORMATTED_STREAM : UNFORMATTED_STREAM;
 | |
|     }
 | |
| 
 | |
|   return m;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Mid level data transfer statements.  */
 | |
| 
 | |
| /* Read sequential file - internal unit  */
 | |
| 
 | |
| static char *
 | |
| read_sf_internal (st_parameter_dt *dtp, int * length)
 | |
| {
 | |
|   static char *empty_string[0];
 | |
|   char *base;
 | |
|   int lorig;
 | |
| 
 | |
|   /* Zero size array gives internal unit len of 0.  Nothing to read. */
 | |
|   if (dtp->internal_unit_len == 0
 | |
|       && dtp->u.p.current_unit->pad_status == PAD_NO)
 | |
|     hit_eof (dtp);
 | |
| 
 | |
|   /* If we have seen an eor previously, return a length of 0.  The
 | |
|      caller is responsible for correctly padding the input field.  */
 | |
|   if (dtp->u.p.sf_seen_eor)
 | |
|     {
 | |
|       *length = 0;
 | |
|       /* Just return something that isn't a NULL pointer, otherwise the
 | |
|          caller thinks an error occurred.  */
 | |
|       return (char*) empty_string;
 | |
|     }
 | |
| 
 | |
|   lorig = *length;
 | |
|   if (is_char4_unit(dtp))
 | |
|     {
 | |
|       int i;
 | |
|       gfc_char4_t *p = (gfc_char4_t *) mem_alloc_r4 (dtp->u.p.current_unit->s,
 | |
| 			length);
 | |
|       base = fbuf_alloc (dtp->u.p.current_unit, lorig);
 | |
|       for (i = 0; i < *length; i++, p++)
 | |
| 	base[i] = *p > 255 ? '?' : (unsigned char) *p;
 | |
|     }
 | |
|   else
 | |
|     base = mem_alloc_r (dtp->u.p.current_unit->s, length);
 | |
| 
 | |
|   if (unlikely (lorig > *length))
 | |
|     {
 | |
|       hit_eof (dtp);
 | |
|       return NULL;
 | |
|     }
 | |
| 
 | |
|   dtp->u.p.current_unit->bytes_left -= *length;
 | |
| 
 | |
|   if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
 | |
|     dtp->u.p.size_used += (GFC_IO_INT) *length;
 | |
| 
 | |
|   return base;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* When reading sequential formatted records we have a problem.  We
 | |
|    don't know how long the line is until we read the trailing newline,
 | |
|    and we don't want to read too much.  If we read too much, we might
 | |
|    have to do a physical seek backwards depending on how much data is
 | |
|    present, and devices like terminals aren't seekable and would cause
 | |
|    an I/O error.
 | |
| 
 | |
|    Given this, the solution is to read a byte at a time, stopping if
 | |
|    we hit the newline.  For small allocations, we use a static buffer.
 | |
|    For larger allocations, we are forced to allocate memory on the
 | |
|    heap.  Hopefully this won't happen very often.  */
 | |
| 
 | |
| /* Read sequential file - external unit */
 | |
| 
 | |
| static char *
 | |
| read_sf (st_parameter_dt *dtp, int * length)
 | |
| {
 | |
|   static char *empty_string[0];
 | |
|   int q, q2;
 | |
|   int n, lorig, seen_comma;
 | |
| 
 | |
|   /* If we have seen an eor previously, return a length of 0.  The
 | |
|      caller is responsible for correctly padding the input field.  */
 | |
|   if (dtp->u.p.sf_seen_eor)
 | |
|     {
 | |
|       *length = 0;
 | |
|       /* Just return something that isn't a NULL pointer, otherwise the
 | |
|          caller thinks an error occurred.  */
 | |
|       return (char*) empty_string;
 | |
|     }
 | |
| 
 | |
|   n = seen_comma = 0;
 | |
| 
 | |
|   /* Read data into format buffer and scan through it.  */
 | |
|   lorig = *length;
 | |
| 
 | |
|   while (n < *length)
 | |
|     {
 | |
|       q = fbuf_getc (dtp->u.p.current_unit);
 | |
|       if (q == EOF)
 | |
| 	break;
 | |
|       else if (q == '\n' || q == '\r')
 | |
| 	{
 | |
| 	  /* Unexpected end of line. Set the position.  */
 | |
| 	  dtp->u.p.sf_seen_eor = 1;
 | |
| 
 | |
| 	  /* If we see an EOR during non-advancing I/O, we need to skip
 | |
| 	     the rest of the I/O statement.  Set the corresponding flag.  */
 | |
| 	  if (dtp->u.p.advance_status == ADVANCE_NO || dtp->u.p.seen_dollar)
 | |
| 	    dtp->u.p.eor_condition = 1;
 | |
| 
 | |
| 	  /* If we encounter a CR, it might be a CRLF.  */
 | |
| 	  if (q == '\r') /* Probably a CRLF */
 | |
| 	    {
 | |
| 	      /* See if there is an LF.  */
 | |
| 	      q2 = fbuf_getc (dtp->u.p.current_unit);
 | |
| 	      if (q2 == '\n')
 | |
| 		dtp->u.p.sf_seen_eor = 2;
 | |
| 	      else if (q2 != EOF) /* Oops, seek back.  */
 | |
| 		fbuf_seek (dtp->u.p.current_unit, -1, SEEK_CUR);
 | |
| 	    }
 | |
| 
 | |
| 	  /* Without padding, terminate the I/O statement without assigning
 | |
| 	     the value.  With padding, the value still needs to be assigned,
 | |
| 	     so we can just continue with a short read.  */
 | |
| 	  if (dtp->u.p.current_unit->pad_status == PAD_NO)
 | |
| 	    {
 | |
| 	      generate_error (&dtp->common, LIBERROR_EOR, NULL);
 | |
| 	      return NULL;
 | |
| 	    }
 | |
| 
 | |
| 	  *length = n;
 | |
| 	  goto done;
 | |
| 	}
 | |
|       /*  Short circuit the read if a comma is found during numeric input.
 | |
| 	  The flag is set to zero during character reads so that commas in
 | |
| 	  strings are not ignored  */
 | |
|       else if (q == ',')
 | |
| 	if (dtp->u.p.sf_read_comma == 1)
 | |
| 	  {
 | |
|             seen_comma = 1;
 | |
| 	    notify_std (&dtp->common, GFC_STD_GNU,
 | |
| 			"Comma in formatted numeric read.");
 | |
| 	    break;
 | |
| 	  }
 | |
|       n++;
 | |
|     }
 | |
| 
 | |
|   *length = n;
 | |
| 
 | |
|   /* A short read implies we hit EOF, unless we hit EOR, a comma, or
 | |
|      some other stuff. Set the relevant flags.  */
 | |
|   if (lorig > *length && !dtp->u.p.sf_seen_eor && !seen_comma)
 | |
|     {
 | |
|       if (n > 0)
 | |
|         {
 | |
| 	  if (dtp->u.p.advance_status == ADVANCE_NO)
 | |
| 	    {
 | |
| 	      if (dtp->u.p.current_unit->pad_status == PAD_NO)
 | |
| 	        {
 | |
| 		  hit_eof (dtp);
 | |
| 		  return NULL;
 | |
| 		}
 | |
| 	      else
 | |
| 		dtp->u.p.eor_condition = 1;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    dtp->u.p.at_eof = 1;
 | |
| 	}
 | |
|       else if (dtp->u.p.advance_status == ADVANCE_NO
 | |
| 	       || dtp->u.p.current_unit->pad_status == PAD_NO
 | |
| 	       || dtp->u.p.current_unit->bytes_left
 | |
| 		    == dtp->u.p.current_unit->recl)
 | |
| 	{
 | |
| 	  hit_eof (dtp);
 | |
| 	  return NULL;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|  done:
 | |
| 
 | |
|   dtp->u.p.current_unit->bytes_left -= n;
 | |
| 
 | |
|   if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
 | |
|     dtp->u.p.size_used += (GFC_IO_INT) n;
 | |
| 
 | |
|   /* We can't call fbuf_getptr before the loop doing fbuf_getc, because
 | |
|      fbuf_getc might reallocate the buffer.  So return current pointer
 | |
|      minus all the advances, which is n plus up to two characters
 | |
|      of newline or comma.  */
 | |
|   return fbuf_getptr (dtp->u.p.current_unit)
 | |
| 	 - n - dtp->u.p.sf_seen_eor - seen_comma;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Function for reading the next couple of bytes from the current
 | |
|    file, advancing the current position. We return NULL on end of record or
 | |
|    end of file. This function is only for formatted I/O, unformatted uses
 | |
|    read_block_direct.
 | |
| 
 | |
|    If the read is short, then it is because the current record does not
 | |
|    have enough data to satisfy the read request and the file was
 | |
|    opened with PAD=YES.  The caller must assume tailing spaces for
 | |
|    short reads.  */
 | |
| 
 | |
| void *
 | |
| read_block_form (st_parameter_dt *dtp, int * nbytes)
 | |
| {
 | |
|   char *source;
 | |
|   int norig;
 | |
| 
 | |
|   if (!is_stream_io (dtp))
 | |
|     {
 | |
|       if (dtp->u.p.current_unit->bytes_left < (gfc_offset) *nbytes)
 | |
| 	{
 | |
| 	  /* For preconnected units with default record length, set bytes left
 | |
| 	   to unit record length and proceed, otherwise error.  */
 | |
| 	  if (dtp->u.p.current_unit->unit_number == options.stdin_unit
 | |
| 	      && dtp->u.p.current_unit->recl == DEFAULT_RECL)
 | |
|             dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
 | |
| 	  else
 | |
| 	    {
 | |
| 	      if (unlikely (dtp->u.p.current_unit->pad_status == PAD_NO)
 | |
| 		  && !is_internal_unit (dtp))
 | |
| 		{
 | |
| 		  /* Not enough data left.  */
 | |
| 		  generate_error (&dtp->common, LIBERROR_EOR, NULL);
 | |
| 		  return NULL;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	  if (unlikely (dtp->u.p.current_unit->bytes_left == 0
 | |
| 	      && !is_internal_unit(dtp)))
 | |
| 	    {
 | |
| 	      hit_eof (dtp);
 | |
| 	      return NULL;
 | |
| 	    }
 | |
| 
 | |
| 	  *nbytes = dtp->u.p.current_unit->bytes_left;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED &&
 | |
|       (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL ||
 | |
|        dtp->u.p.current_unit->flags.access == ACCESS_STREAM))
 | |
|     {
 | |
|       if (is_internal_unit (dtp))
 | |
| 	source = read_sf_internal (dtp, nbytes);
 | |
|       else
 | |
| 	source = read_sf (dtp, nbytes);
 | |
| 
 | |
|       dtp->u.p.current_unit->strm_pos +=
 | |
| 	(gfc_offset) (*nbytes + dtp->u.p.sf_seen_eor);
 | |
|       return source;
 | |
|     }
 | |
| 
 | |
|   /* If we reach here, we can assume it's direct access.  */
 | |
| 
 | |
|   dtp->u.p.current_unit->bytes_left -= (gfc_offset) *nbytes;
 | |
| 
 | |
|   norig = *nbytes;
 | |
|   source = fbuf_read (dtp->u.p.current_unit, nbytes);
 | |
|   fbuf_seek (dtp->u.p.current_unit, *nbytes, SEEK_CUR);
 | |
| 
 | |
|   if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
 | |
|     dtp->u.p.size_used += (GFC_IO_INT) *nbytes;
 | |
| 
 | |
|   if (norig != *nbytes)
 | |
|     {
 | |
|       /* Short read, this shouldn't happen.  */
 | |
|       if (dtp->u.p.current_unit->pad_status == PAD_NO)
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_EOR, NULL);
 | |
| 	  source = NULL;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   dtp->u.p.current_unit->strm_pos += (gfc_offset) *nbytes;
 | |
| 
 | |
|   return source;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Read a block from a character(kind=4) internal unit, to be transferred into
 | |
|    a character(kind=4) variable.  Note: Portions of this code borrowed from
 | |
|    read_sf_internal.  */
 | |
| void *
 | |
| read_block_form4 (st_parameter_dt *dtp, int * nbytes)
 | |
| {
 | |
|   static gfc_char4_t *empty_string[0];
 | |
|   gfc_char4_t *source;
 | |
|   int lorig;
 | |
| 
 | |
|   if (dtp->u.p.current_unit->bytes_left < (gfc_offset) *nbytes)
 | |
|     *nbytes = dtp->u.p.current_unit->bytes_left;
 | |
| 
 | |
|   /* Zero size array gives internal unit len of 0.  Nothing to read. */
 | |
|   if (dtp->internal_unit_len == 0
 | |
|       && dtp->u.p.current_unit->pad_status == PAD_NO)
 | |
|     hit_eof (dtp);
 | |
| 
 | |
|   /* If we have seen an eor previously, return a length of 0.  The
 | |
|      caller is responsible for correctly padding the input field.  */
 | |
|   if (dtp->u.p.sf_seen_eor)
 | |
|     {
 | |
|       *nbytes = 0;
 | |
|       /* Just return something that isn't a NULL pointer, otherwise the
 | |
|          caller thinks an error occurred.  */
 | |
|       return empty_string;
 | |
|     }
 | |
| 
 | |
|   lorig = *nbytes;
 | |
|   source = (gfc_char4_t *) mem_alloc_r4 (dtp->u.p.current_unit->s, nbytes);
 | |
| 
 | |
|   if (unlikely (lorig > *nbytes))
 | |
|     {
 | |
|       hit_eof (dtp);
 | |
|       return NULL;
 | |
|     }
 | |
| 
 | |
|   dtp->u.p.current_unit->bytes_left -= *nbytes;
 | |
| 
 | |
|   if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
 | |
|     dtp->u.p.size_used += (GFC_IO_INT) *nbytes;
 | |
| 
 | |
|   return source;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Reads a block directly into application data space.  This is for
 | |
|    unformatted files.  */
 | |
| 
 | |
| static void
 | |
| read_block_direct (st_parameter_dt *dtp, void *buf, size_t nbytes)
 | |
| {
 | |
|   ssize_t to_read_record;
 | |
|   ssize_t have_read_record;
 | |
|   ssize_t to_read_subrecord;
 | |
|   ssize_t have_read_subrecord;
 | |
|   int short_record;
 | |
| 
 | |
|   if (is_stream_io (dtp))
 | |
|     {
 | |
|       have_read_record = sread (dtp->u.p.current_unit->s, buf,
 | |
| 				nbytes);
 | |
|       if (unlikely (have_read_record < 0))
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_OS, NULL);
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       dtp->u.p.current_unit->strm_pos += (gfc_offset) have_read_record;
 | |
| 
 | |
|       if (unlikely ((ssize_t) nbytes != have_read_record))
 | |
| 	{
 | |
| 	  /* Short read,  e.g. if we hit EOF.  For stream files,
 | |
| 	   we have to set the end-of-file condition.  */
 | |
|           hit_eof (dtp);
 | |
| 	}
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
 | |
|     {
 | |
|       if (dtp->u.p.current_unit->bytes_left < (gfc_offset) nbytes)
 | |
| 	{
 | |
| 	  short_record = 1;
 | |
| 	  to_read_record = dtp->u.p.current_unit->bytes_left;
 | |
| 	  nbytes = to_read_record;
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  short_record = 0;
 | |
| 	  to_read_record = nbytes;
 | |
| 	}
 | |
| 
 | |
|       dtp->u.p.current_unit->bytes_left -= to_read_record;
 | |
| 
 | |
|       to_read_record = sread (dtp->u.p.current_unit->s, buf, to_read_record);
 | |
|       if (unlikely (to_read_record < 0))
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_OS, NULL);
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       if (to_read_record != (ssize_t) nbytes)
 | |
| 	{
 | |
| 	  /* Short read, e.g. if we hit EOF.  Apparently, we read
 | |
| 	   more than was written to the last record.  */
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       if (unlikely (short_record))
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_SHORT_RECORD, NULL);
 | |
| 	}
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   /* Unformatted sequential.  We loop over the subrecords, reading
 | |
|      until the request has been fulfilled or the record has run out
 | |
|      of continuation subrecords.  */
 | |
| 
 | |
|   /* Check whether we exceed the total record length.  */
 | |
| 
 | |
|   if (dtp->u.p.current_unit->flags.has_recl
 | |
|       && ((gfc_offset) nbytes > dtp->u.p.current_unit->bytes_left))
 | |
|     {
 | |
|       to_read_record = dtp->u.p.current_unit->bytes_left;
 | |
|       short_record = 1;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       to_read_record = nbytes;
 | |
|       short_record = 0;
 | |
|     }
 | |
|   have_read_record = 0;
 | |
| 
 | |
|   while(1)
 | |
|     {
 | |
|       if (dtp->u.p.current_unit->bytes_left_subrecord
 | |
| 	  < (gfc_offset) to_read_record)
 | |
| 	{
 | |
| 	  to_read_subrecord = dtp->u.p.current_unit->bytes_left_subrecord;
 | |
| 	  to_read_record -= to_read_subrecord;
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  to_read_subrecord = to_read_record;
 | |
| 	  to_read_record = 0;
 | |
| 	}
 | |
| 
 | |
|       dtp->u.p.current_unit->bytes_left_subrecord -= to_read_subrecord;
 | |
| 
 | |
|       have_read_subrecord = sread (dtp->u.p.current_unit->s,
 | |
| 				   buf + have_read_record, to_read_subrecord);
 | |
|       if (unlikely (have_read_subrecord < 0))
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_OS, NULL);
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       have_read_record += have_read_subrecord;
 | |
| 
 | |
|       if (unlikely (to_read_subrecord != have_read_subrecord))
 | |
| 	{
 | |
| 	  /* Short read, e.g. if we hit EOF.  This means the record
 | |
| 	     structure has been corrupted, or the trailing record
 | |
| 	     marker would still be present.  */
 | |
| 
 | |
| 	  generate_error (&dtp->common, LIBERROR_CORRUPT_FILE, NULL);
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       if (to_read_record > 0)
 | |
| 	{
 | |
| 	  if (likely (dtp->u.p.current_unit->continued))
 | |
| 	    {
 | |
| 	      next_record_r_unf (dtp, 0);
 | |
| 	      us_read (dtp, 1);
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      /* Let's make sure the file position is correctly pre-positioned
 | |
| 		 for the next read statement.  */
 | |
| 
 | |
| 	      dtp->u.p.current_unit->current_record = 0;
 | |
| 	      next_record_r_unf (dtp, 0);
 | |
| 	      generate_error (&dtp->common, LIBERROR_SHORT_RECORD, NULL);
 | |
| 	      return;
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  /* Normal exit, the read request has been fulfilled.  */
 | |
| 	  break;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   dtp->u.p.current_unit->bytes_left -= have_read_record;
 | |
|   if (unlikely (short_record))
 | |
|     {
 | |
|       generate_error (&dtp->common, LIBERROR_SHORT_RECORD, NULL);
 | |
|       return;
 | |
|     }
 | |
|   return;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Function for writing a block of bytes to the current file at the
 | |
|    current position, advancing the file pointer. We are given a length
 | |
|    and return a pointer to a buffer that the caller must (completely)
 | |
|    fill in.  Returns NULL on error.  */
 | |
| 
 | |
| void *
 | |
| write_block (st_parameter_dt *dtp, int length)
 | |
| {
 | |
|   char *dest;
 | |
| 
 | |
|   if (!is_stream_io (dtp))
 | |
|     {
 | |
|       if (dtp->u.p.current_unit->bytes_left < (gfc_offset) length)
 | |
| 	{
 | |
| 	  /* For preconnected units with default record length, set bytes left
 | |
| 	     to unit record length and proceed, otherwise error.  */
 | |
| 	  if (likely ((dtp->u.p.current_unit->unit_number
 | |
| 		       == options.stdout_unit
 | |
| 		       || dtp->u.p.current_unit->unit_number
 | |
| 		       == options.stderr_unit)
 | |
| 		      && dtp->u.p.current_unit->recl == DEFAULT_RECL))
 | |
| 	    dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
 | |
| 	  else
 | |
| 	    {
 | |
| 	      generate_error (&dtp->common, LIBERROR_EOR, NULL);
 | |
| 	      return NULL;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|       dtp->u.p.current_unit->bytes_left -= (gfc_offset) length;
 | |
|     }
 | |
| 
 | |
|   if (is_internal_unit (dtp))
 | |
|     {
 | |
|       if (is_char4_unit(dtp)) /* char4 internel unit.  */
 | |
| 	{
 | |
| 	  gfc_char4_t *dest4;
 | |
| 	  dest4 = mem_alloc_w4 (dtp->u.p.current_unit->s, &length);
 | |
| 	  if (dest4 == NULL)
 | |
| 	  {
 | |
|             generate_error (&dtp->common, LIBERROR_END, NULL);
 | |
|             return NULL;
 | |
| 	  }
 | |
| 	  return dest4;
 | |
| 	}
 | |
|       else
 | |
| 	dest = mem_alloc_w (dtp->u.p.current_unit->s, &length);
 | |
| 
 | |
|       if (dest == NULL)
 | |
| 	{
 | |
|           generate_error (&dtp->common, LIBERROR_END, NULL);
 | |
|           return NULL;
 | |
| 	}
 | |
| 
 | |
|       if (unlikely (dtp->u.p.current_unit->endfile == AT_ENDFILE))
 | |
| 	generate_error (&dtp->common, LIBERROR_END, NULL);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       dest = fbuf_alloc (dtp->u.p.current_unit, length);
 | |
|       if (dest == NULL)
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_OS, NULL);
 | |
| 	  return NULL;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
 | |
|     dtp->u.p.size_used += (GFC_IO_INT) length;
 | |
| 
 | |
|   dtp->u.p.current_unit->strm_pos += (gfc_offset) length;
 | |
| 
 | |
|   return dest;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* High level interface to swrite(), taking care of errors.  This is only
 | |
|    called for unformatted files.  There are three cases to consider:
 | |
|    Stream I/O, unformatted direct, unformatted sequential.  */
 | |
| 
 | |
| static bool
 | |
| write_buf (st_parameter_dt *dtp, void *buf, size_t nbytes)
 | |
| {
 | |
| 
 | |
|   ssize_t have_written;
 | |
|   ssize_t to_write_subrecord;
 | |
|   int short_record;
 | |
| 
 | |
|   /* Stream I/O.  */
 | |
| 
 | |
|   if (is_stream_io (dtp))
 | |
|     {
 | |
|       have_written = swrite (dtp->u.p.current_unit->s, buf, nbytes);
 | |
|       if (unlikely (have_written < 0))
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_OS, NULL);
 | |
| 	  return false;
 | |
| 	}
 | |
| 
 | |
|       dtp->u.p.current_unit->strm_pos += (gfc_offset) have_written;
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   /* Unformatted direct access.  */
 | |
| 
 | |
|   if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
 | |
|     {
 | |
|       if (unlikely (dtp->u.p.current_unit->bytes_left < (gfc_offset) nbytes))
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_DIRECT_EOR, NULL);
 | |
| 	  return false;
 | |
| 	}
 | |
| 
 | |
|       if (buf == NULL && nbytes == 0)
 | |
| 	return true;
 | |
| 
 | |
|       have_written = swrite (dtp->u.p.current_unit->s, buf, nbytes);
 | |
|       if (unlikely (have_written < 0))
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_OS, NULL);
 | |
| 	  return false;
 | |
| 	}
 | |
| 
 | |
|       dtp->u.p.current_unit->strm_pos += (gfc_offset) have_written;
 | |
|       dtp->u.p.current_unit->bytes_left -= (gfc_offset) have_written;
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   /* Unformatted sequential.  */
 | |
| 
 | |
|   have_written = 0;
 | |
| 
 | |
|   if (dtp->u.p.current_unit->flags.has_recl
 | |
|       && (gfc_offset) nbytes > dtp->u.p.current_unit->bytes_left)
 | |
|     {
 | |
|       nbytes = dtp->u.p.current_unit->bytes_left;
 | |
|       short_record = 1;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       short_record = 0;
 | |
|     }
 | |
| 
 | |
|   while (1)
 | |
|     {
 | |
| 
 | |
|       to_write_subrecord =
 | |
| 	(size_t) dtp->u.p.current_unit->bytes_left_subrecord < nbytes ?
 | |
| 	(size_t) dtp->u.p.current_unit->bytes_left_subrecord : nbytes;
 | |
| 
 | |
|       dtp->u.p.current_unit->bytes_left_subrecord -=
 | |
| 	(gfc_offset) to_write_subrecord;
 | |
| 
 | |
|       to_write_subrecord = swrite (dtp->u.p.current_unit->s,
 | |
| 				   buf + have_written, to_write_subrecord);
 | |
|       if (unlikely (to_write_subrecord < 0))
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_OS, NULL);
 | |
| 	  return false;
 | |
| 	}
 | |
| 
 | |
|       dtp->u.p.current_unit->strm_pos += (gfc_offset) to_write_subrecord;
 | |
|       nbytes -= to_write_subrecord;
 | |
|       have_written += to_write_subrecord;
 | |
| 
 | |
|       if (nbytes == 0)
 | |
| 	break;
 | |
| 
 | |
|       next_record_w_unf (dtp, 1);
 | |
|       us_write (dtp, 1);
 | |
|     }
 | |
|   dtp->u.p.current_unit->bytes_left -= have_written;
 | |
|   if (unlikely (short_record))
 | |
|     {
 | |
|       generate_error (&dtp->common, LIBERROR_SHORT_RECORD, NULL);
 | |
|       return false;
 | |
|     }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Reverse memcpy - used for byte swapping.  */
 | |
| 
 | |
| static void
 | |
| reverse_memcpy (void *dest, const void *src, size_t n)
 | |
| {
 | |
|   char *d, *s;
 | |
|   size_t i;
 | |
| 
 | |
|   d = (char *) dest;
 | |
|   s = (char *) src + n - 1;
 | |
| 
 | |
|   /* Write with ascending order - this is likely faster
 | |
|      on modern architectures because of write combining.  */
 | |
|   for (i=0; i<n; i++)
 | |
|       *(d++) = *(s--);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Utility function for byteswapping an array, using the bswap
 | |
|    builtins if possible. dest and src can overlap completely, or then
 | |
|    they must point to separate objects; partial overlaps are not
 | |
|    allowed.  */
 | |
| 
 | |
| static void
 | |
| bswap_array (void *dest, const void *src, size_t size, size_t nelems)
 | |
| {
 | |
|   const char *ps;
 | |
|   char *pd;
 | |
| 
 | |
|   switch (size)
 | |
|     {
 | |
|     case 1:
 | |
|       break;
 | |
|     case 2:
 | |
|       for (size_t i = 0; i < nelems; i++)
 | |
| 	((uint16_t*)dest)[i] = __builtin_bswap16 (((uint16_t*)src)[i]);
 | |
|       break;
 | |
|     case 4:
 | |
|       for (size_t i = 0; i < nelems; i++)
 | |
| 	((uint32_t*)dest)[i] = __builtin_bswap32 (((uint32_t*)src)[i]);
 | |
|       break;
 | |
|     case 8:
 | |
|       for (size_t i = 0; i < nelems; i++)
 | |
| 	((uint64_t*)dest)[i] = __builtin_bswap64 (((uint64_t*)src)[i]);
 | |
|       break;
 | |
|     case 12:
 | |
|       ps = src;
 | |
|       pd = dest;
 | |
|       for (size_t i = 0; i < nelems; i++)
 | |
| 	{
 | |
| 	  uint32_t tmp;
 | |
| 	  memcpy (&tmp, ps, 4);
 | |
| 	  *(uint32_t*)pd = __builtin_bswap32 (*(uint32_t*)(ps + 8));
 | |
| 	  *(uint32_t*)(pd + 4) = __builtin_bswap32 (*(uint32_t*)(ps + 4));
 | |
| 	  *(uint32_t*)(pd + 8) = __builtin_bswap32 (tmp);
 | |
| 	  ps += size;
 | |
| 	  pd += size;
 | |
| 	}
 | |
|       break;
 | |
|     case 16:
 | |
|       ps = src;
 | |
|       pd = dest;
 | |
|       for (size_t i = 0; i < nelems; i++)
 | |
| 	{
 | |
| 	  uint64_t tmp;
 | |
| 	  memcpy (&tmp, ps, 8);
 | |
| 	  *(uint64_t*)pd = __builtin_bswap64 (*(uint64_t*)(ps + 8));
 | |
| 	  *(uint64_t*)(pd + 8) = __builtin_bswap64 (tmp);
 | |
| 	  ps += size;
 | |
| 	  pd += size;
 | |
| 	}
 | |
|       break;
 | |
|     default:
 | |
|       pd = dest;
 | |
|       if (dest != src)
 | |
| 	{
 | |
| 	  ps = src;
 | |
| 	  for (size_t i = 0; i < nelems; i++)
 | |
| 	    {
 | |
| 	      reverse_memcpy (pd, ps, size);
 | |
| 	      ps += size;
 | |
| 	      pd += size;
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  /* In-place byte swap.  */
 | |
| 	  for (size_t i = 0; i < nelems; i++)
 | |
| 	    {
 | |
| 	      char tmp, *low = pd, *high = pd + size - 1;
 | |
| 	      for (size_t j = 0; j < size/2; j++)
 | |
| 		{
 | |
| 		  tmp = *low;
 | |
| 		  *low = *high;
 | |
| 		  *high = tmp;
 | |
| 		  low++;
 | |
| 		  high--;
 | |
| 		}
 | |
| 	      pd += size;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Master function for unformatted reads.  */
 | |
| 
 | |
| static void
 | |
| unformatted_read (st_parameter_dt *dtp, bt type,
 | |
| 		  void *dest, int kind, size_t size, size_t nelems)
 | |
| {
 | |
|   if (type == BT_CLASS)
 | |
|     {
 | |
| 	  int unit = dtp->u.p.current_unit->unit_number;
 | |
| 	  char tmp_iomsg[IOMSG_LEN] = "";
 | |
| 	  char *child_iomsg;
 | |
| 	  gfc_charlen_type child_iomsg_len;
 | |
| 	  int noiostat;
 | |
| 	  int *child_iostat = NULL;
 | |
| 
 | |
| 	  /* Set iostat, intent(out).  */
 | |
| 	  noiostat = 0;
 | |
| 	  child_iostat = (dtp->common.flags & IOPARM_HAS_IOSTAT) ?
 | |
| 			  dtp->common.iostat : &noiostat;
 | |
| 
 | |
| 	  /* Set iomsg, intent(inout).  */
 | |
| 	  if (dtp->common.flags & IOPARM_HAS_IOMSG)
 | |
| 	    {
 | |
| 	      child_iomsg = dtp->common.iomsg;
 | |
| 	      child_iomsg_len = dtp->common.iomsg_len;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      child_iomsg = tmp_iomsg;
 | |
| 	      child_iomsg_len = IOMSG_LEN;
 | |
| 	    }
 | |
| 
 | |
| 	  /* Call the user defined unformatted READ procedure.  */
 | |
| 	  dtp->u.p.current_unit->child_dtio++;
 | |
| 	  dtp->u.p.ufdtio_ptr (dest, &unit, child_iostat, child_iomsg,
 | |
| 			      child_iomsg_len);
 | |
| 	  dtp->u.p.current_unit->child_dtio--;
 | |
| 	  return;
 | |
|     }
 | |
| 
 | |
|   if (type == BT_CHARACTER)
 | |
|     size *= GFC_SIZE_OF_CHAR_KIND(kind);
 | |
|   read_block_direct (dtp, dest, size * nelems);
 | |
| 
 | |
|   if (unlikely (dtp->u.p.current_unit->flags.convert == GFC_CONVERT_SWAP)
 | |
|       && kind != 1)
 | |
|     {
 | |
|       /* Handle wide chracters.  */
 | |
|       if (type == BT_CHARACTER)
 | |
|   	{
 | |
|   	  nelems *= size;
 | |
|   	  size = kind;
 | |
|   	}
 | |
| 
 | |
|       /* Break up complex into its constituent reals.  */
 | |
|       else if (type == BT_COMPLEX)
 | |
|   	{
 | |
|   	  nelems *= 2;
 | |
|   	  size /= 2;
 | |
|   	}
 | |
|       bswap_array (dest, dest, size, nelems);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Master function for unformatted writes.  NOTE: For kind=10 the size is 16
 | |
|    bytes on 64 bit machines.  The unused bytes are not initialized and never
 | |
|    used, which can show an error with memory checking analyzers like
 | |
|    valgrind.  We us BT_CLASS to denote a User Defined I/O call.  */
 | |
| 
 | |
| static void
 | |
| unformatted_write (st_parameter_dt *dtp, bt type,
 | |
| 		   void *source, int kind, size_t size, size_t nelems)
 | |
| {
 | |
|   if (type == BT_CLASS)
 | |
|     {
 | |
| 	  int unit = dtp->u.p.current_unit->unit_number;
 | |
| 	  char tmp_iomsg[IOMSG_LEN] = "";
 | |
| 	  char *child_iomsg;
 | |
| 	  gfc_charlen_type child_iomsg_len;
 | |
| 	  int noiostat;
 | |
| 	  int *child_iostat = NULL;
 | |
| 
 | |
| 	  /* Set iostat, intent(out).  */
 | |
| 	  noiostat = 0;
 | |
| 	  child_iostat = (dtp->common.flags & IOPARM_HAS_IOSTAT) ?
 | |
| 			  dtp->common.iostat : &noiostat;
 | |
| 
 | |
| 	  /* Set iomsg, intent(inout).  */
 | |
| 	  if (dtp->common.flags & IOPARM_HAS_IOMSG)
 | |
| 	    {
 | |
| 	      child_iomsg = dtp->common.iomsg;
 | |
| 	      child_iomsg_len = dtp->common.iomsg_len;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      child_iomsg = tmp_iomsg;
 | |
| 	      child_iomsg_len = IOMSG_LEN;
 | |
| 	    }
 | |
| 
 | |
| 	  /* Call the user defined unformatted WRITE procedure.  */
 | |
| 	  dtp->u.p.current_unit->child_dtio++;
 | |
| 	  dtp->u.p.ufdtio_ptr (source, &unit, child_iostat, child_iomsg,
 | |
| 			      child_iomsg_len);
 | |
| 	  dtp->u.p.current_unit->child_dtio--;
 | |
| 	  return;
 | |
|     }
 | |
| 
 | |
|   if (likely (dtp->u.p.current_unit->flags.convert == GFC_CONVERT_NATIVE)
 | |
|       || kind == 1)
 | |
|     {
 | |
|       size_t stride = type == BT_CHARACTER ?
 | |
| 		  size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
 | |
| 
 | |
|       write_buf (dtp, source, stride * nelems);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
| #define BSWAP_BUFSZ 512
 | |
|       char buffer[BSWAP_BUFSZ];
 | |
|       char *p;
 | |
|       size_t nrem;
 | |
| 
 | |
|       p = source;
 | |
| 
 | |
|       /* Handle wide chracters.  */
 | |
|       if (type == BT_CHARACTER && kind != 1)
 | |
| 	{
 | |
| 	  nelems *= size;
 | |
| 	  size = kind;
 | |
| 	}
 | |
| 
 | |
|       /* Break up complex into its constituent reals.  */
 | |
|       if (type == BT_COMPLEX)
 | |
| 	{
 | |
| 	  nelems *= 2;
 | |
| 	  size /= 2;
 | |
| 	}
 | |
| 
 | |
|       /* By now, all complex variables have been split into their
 | |
| 	 constituent reals.  */
 | |
| 
 | |
|       nrem = nelems;
 | |
|       do
 | |
| 	{
 | |
| 	  size_t nc;
 | |
| 	  if (size * nrem > BSWAP_BUFSZ)
 | |
| 	    nc = BSWAP_BUFSZ / size;
 | |
| 	  else
 | |
| 	    nc = nrem;
 | |
| 
 | |
| 	  bswap_array (buffer, p, size, nc);
 | |
| 	  write_buf (dtp, buffer, size * nc);
 | |
| 	  p += size * nc;
 | |
| 	  nrem -= nc;
 | |
| 	}
 | |
|       while (nrem > 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Return a pointer to the name of a type.  */
 | |
| 
 | |
| const char *
 | |
| type_name (bt type)
 | |
| {
 | |
|   const char *p;
 | |
| 
 | |
|   switch (type)
 | |
|     {
 | |
|     case BT_INTEGER:
 | |
|       p = "INTEGER";
 | |
|       break;
 | |
|     case BT_LOGICAL:
 | |
|       p = "LOGICAL";
 | |
|       break;
 | |
|     case BT_CHARACTER:
 | |
|       p = "CHARACTER";
 | |
|       break;
 | |
|     case BT_REAL:
 | |
|       p = "REAL";
 | |
|       break;
 | |
|     case BT_COMPLEX:
 | |
|       p = "COMPLEX";
 | |
|       break;
 | |
|     case BT_CLASS:
 | |
|       p = "CLASS or DERIVED";
 | |
|       break;
 | |
|     default:
 | |
|       internal_error (NULL, "type_name(): Bad type");
 | |
|     }
 | |
| 
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Write a constant string to the output.
 | |
|    This is complicated because the string can have doubled delimiters
 | |
|    in it.  The length in the format node is the true length.  */
 | |
| 
 | |
| static void
 | |
| write_constant_string (st_parameter_dt *dtp, const fnode *f)
 | |
| {
 | |
|   char c, delimiter, *p, *q;
 | |
|   int length;
 | |
| 
 | |
|   length = f->u.string.length;
 | |
|   if (length == 0)
 | |
|     return;
 | |
| 
 | |
|   p = write_block (dtp, length);
 | |
|   if (p == NULL)
 | |
|     return;
 | |
| 
 | |
|   q = f->u.string.p;
 | |
|   delimiter = q[-1];
 | |
| 
 | |
|   for (; length > 0; length--)
 | |
|     {
 | |
|       c = *p++ = *q++;
 | |
|       if (c == delimiter && c != 'H' && c != 'h')
 | |
| 	q++;			/* Skip the doubled delimiter.  */
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Given actual and expected types in a formatted data transfer, make
 | |
|    sure they agree.  If not, an error message is generated.  Returns
 | |
|    nonzero if something went wrong.  */
 | |
| 
 | |
| static int
 | |
| require_type (st_parameter_dt *dtp, bt expected, bt actual, const fnode *f)
 | |
| {
 | |
| #define BUFLEN 100
 | |
|   char buffer[BUFLEN];
 | |
| 
 | |
|   if (actual == expected)
 | |
|     return 0;
 | |
| 
 | |
|   /* Adjust item_count before emitting error message.  */
 | |
|   snprintf (buffer, BUFLEN,
 | |
| 	    "Expected %s for item %d in formatted transfer, got %s",
 | |
| 	   type_name (expected), dtp->u.p.item_count - 1, type_name (actual));
 | |
| 
 | |
|   format_error (dtp, f, buffer);
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| require_numeric_type (st_parameter_dt *dtp, bt actual, const fnode *f)
 | |
| {
 | |
| #define BUFLEN 100
 | |
|   char buffer[BUFLEN];
 | |
| 
 | |
|   if (actual == BT_INTEGER || actual == BT_REAL || actual == BT_COMPLEX)
 | |
|     return 0;
 | |
| 
 | |
|   /* Adjust item_count before emitting error message.  */
 | |
|   snprintf (buffer, BUFLEN,
 | |
| 	    "Expected numeric type for item %d in formatted transfer, got %s",
 | |
| 	    dtp->u.p.item_count - 1, type_name (actual));
 | |
| 
 | |
|   format_error (dtp, f, buffer);
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* This function is in the main loop for a formatted data transfer
 | |
|    statement.  It would be natural to implement this as a coroutine
 | |
|    with the user program, but C makes that awkward.  We loop,
 | |
|    processing format elements.  When we actually have to transfer
 | |
|    data instead of just setting flags, we return control to the user
 | |
|    program which calls a function that supplies the address and type
 | |
|    of the next element, then comes back here to process it.  */
 | |
| 
 | |
| static void
 | |
| formatted_transfer_scalar_read (st_parameter_dt *dtp, bt type, void *p, int kind,
 | |
| 				size_t size)
 | |
| {
 | |
|   int pos, bytes_used;
 | |
|   const fnode *f;
 | |
|   format_token t;
 | |
|   int n;
 | |
|   int consume_data_flag;
 | |
| 
 | |
|   /* Change a complex data item into a pair of reals.  */
 | |
| 
 | |
|   n = (p == NULL) ? 0 : ((type != BT_COMPLEX) ? 1 : 2);
 | |
|   if (type == BT_COMPLEX)
 | |
|     {
 | |
|       type = BT_REAL;
 | |
|       size /= 2;
 | |
|     }
 | |
| 
 | |
|   /* If there's an EOR condition, we simulate finalizing the transfer
 | |
|      by doing nothing.  */
 | |
|   if (dtp->u.p.eor_condition)
 | |
|     return;
 | |
| 
 | |
|   /* Set this flag so that commas in reads cause the read to complete before
 | |
|      the entire field has been read.  The next read field will start right after
 | |
|      the comma in the stream.  (Set to 0 for character reads).  */
 | |
|   dtp->u.p.sf_read_comma =
 | |
|     dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA ? 0 : 1;
 | |
| 
 | |
|   for (;;)
 | |
|     {
 | |
|       /* If reversion has occurred and there is another real data item,
 | |
| 	 then we have to move to the next record.  */
 | |
|       if (dtp->u.p.reversion_flag && n > 0)
 | |
| 	{
 | |
| 	  dtp->u.p.reversion_flag = 0;
 | |
| 	  next_record (dtp, 0);
 | |
| 	}
 | |
| 
 | |
|       consume_data_flag = 1;
 | |
|       if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
 | |
| 	break;
 | |
| 
 | |
|       f = next_format (dtp);
 | |
|       if (f == NULL)
 | |
| 	{
 | |
| 	  /* No data descriptors left.  */
 | |
| 	  if (unlikely (n > 0))
 | |
| 	    generate_error (&dtp->common, LIBERROR_FORMAT,
 | |
| 		"Insufficient data descriptors in format after reversion");
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       t = f->format;
 | |
| 
 | |
|       bytes_used = (int)(dtp->u.p.current_unit->recl
 | |
| 		   - dtp->u.p.current_unit->bytes_left);
 | |
| 
 | |
|       if (is_stream_io(dtp))
 | |
| 	bytes_used = 0;
 | |
| 
 | |
|       switch (t)
 | |
| 	{
 | |
| 	case FMT_I:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_read_data;
 | |
| 	  if (require_type (dtp, BT_INTEGER, type, f))
 | |
| 	    return;
 | |
| 	  read_decimal (dtp, f, p, kind);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_B:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_read_data;
 | |
| 	  if (!(compile_options.allow_std & GFC_STD_GNU)
 | |
| 	      && require_numeric_type (dtp, type, f))
 | |
| 	    return;
 | |
| 	  if (!(compile_options.allow_std & GFC_STD_F2008)
 | |
|               && require_type (dtp, BT_INTEGER, type, f))
 | |
| 	    return;
 | |
| 	  read_radix (dtp, f, p, kind, 2);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_O:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_read_data;
 | |
| 	  if (!(compile_options.allow_std & GFC_STD_GNU)
 | |
| 	      && require_numeric_type (dtp, type, f))
 | |
| 	    return;
 | |
| 	  if (!(compile_options.allow_std & GFC_STD_F2008)
 | |
|               && require_type (dtp, BT_INTEGER, type, f))
 | |
| 	    return;
 | |
| 	  read_radix (dtp, f, p, kind, 8);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_Z:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_read_data;
 | |
| 	  if (!(compile_options.allow_std & GFC_STD_GNU)
 | |
| 	      && require_numeric_type (dtp, type, f))
 | |
| 	    return;
 | |
| 	  if (!(compile_options.allow_std & GFC_STD_F2008)
 | |
|               && require_type (dtp, BT_INTEGER, type, f))
 | |
| 	    return;
 | |
| 	  read_radix (dtp, f, p, kind, 16);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_A:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_read_data;
 | |
| 
 | |
| 	  /* It is possible to have FMT_A with something not BT_CHARACTER such
 | |
| 	     as when writing out hollerith strings, so check both type
 | |
| 	     and kind before calling wide character routines.  */
 | |
| 	  if (type == BT_CHARACTER && kind == 4)
 | |
| 	    read_a_char4 (dtp, f, p, size);
 | |
| 	  else
 | |
| 	    read_a (dtp, f, p, size);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_L:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_read_data;
 | |
| 	  read_l (dtp, f, p, kind);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_D:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_read_data;
 | |
| 	  if (require_type (dtp, BT_REAL, type, f))
 | |
| 	    return;
 | |
| 	  read_f (dtp, f, p, kind);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_DT:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_read_data;
 | |
| 	  if (require_type (dtp, BT_CLASS, type, f))
 | |
| 	    return;
 | |
| 	  int unit = dtp->u.p.current_unit->unit_number;
 | |
| 	  char dt[] = "DT";
 | |
| 	  char tmp_iomsg[IOMSG_LEN] = "";
 | |
| 	  char *child_iomsg;
 | |
| 	  gfc_charlen_type child_iomsg_len;
 | |
| 	  int noiostat;
 | |
| 	  int *child_iostat = NULL;
 | |
| 	  char *iotype = f->u.udf.string;
 | |
| 	  gfc_charlen_type iotype_len = f->u.udf.string_len;
 | |
| 
 | |
| 	  /* Build the iotype string.  */
 | |
| 	  if (iotype_len == 0)
 | |
| 	    {
 | |
| 	      iotype_len = 2;
 | |
| 	      iotype = dt;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      iotype_len += 2;
 | |
| 	      iotype = xmalloc (iotype_len);
 | |
| 	      iotype[0] = dt[0];
 | |
| 	      iotype[1] = dt[1];
 | |
| 	      memcpy (iotype + 2, f->u.udf.string, f->u.udf.string_len);
 | |
| 	    }
 | |
| 
 | |
| 	  /* Set iostat, intent(out).  */
 | |
| 	  noiostat = 0;
 | |
| 	  child_iostat = (dtp->common.flags & IOPARM_HAS_IOSTAT) ?
 | |
| 			  dtp->common.iostat : &noiostat;
 | |
| 
 | |
| 	  /* Set iomsg, intent(inout).  */
 | |
| 	  if (dtp->common.flags & IOPARM_HAS_IOMSG)
 | |
| 	    {
 | |
| 	      child_iomsg = dtp->common.iomsg;
 | |
| 	      child_iomsg_len = dtp->common.iomsg_len;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      child_iomsg = tmp_iomsg;
 | |
| 	      child_iomsg_len = IOMSG_LEN;
 | |
| 	    }
 | |
| 
 | |
| 	  /* Call the user defined formatted READ procedure.  */
 | |
| 	  dtp->u.p.current_unit->child_dtio++;
 | |
| 	  dtp->u.p.fdtio_ptr (p, &unit, iotype, f->u.udf.vlist,
 | |
| 			      child_iostat, child_iomsg,
 | |
| 			      iotype_len, child_iomsg_len);
 | |
| 	  dtp->u.p.current_unit->child_dtio--;
 | |
| 
 | |
| 	  if (f->u.udf.string_len != 0)
 | |
| 	    free (iotype);
 | |
| 	  /* Note: vlist is freed in free_format_data.  */
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_E:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_read_data;
 | |
| 	  if (require_type (dtp, BT_REAL, type, f))
 | |
| 	    return;
 | |
| 	  read_f (dtp, f, p, kind);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_EN:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_read_data;
 | |
| 	  if (require_type (dtp, BT_REAL, type, f))
 | |
| 	    return;
 | |
| 	  read_f (dtp, f, p, kind);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_ES:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_read_data;
 | |
| 	  if (require_type (dtp, BT_REAL, type, f))
 | |
| 	    return;
 | |
| 	  read_f (dtp, f, p, kind);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_F:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_read_data;
 | |
| 	  if (require_type (dtp, BT_REAL, type, f))
 | |
| 	    return;
 | |
| 	  read_f (dtp, f, p, kind);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_G:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_read_data;
 | |
| 	  switch (type)
 | |
| 	    {
 | |
| 	      case BT_INTEGER:
 | |
| 		read_decimal (dtp, f, p, kind);
 | |
| 		break;
 | |
| 	      case BT_LOGICAL:
 | |
| 		read_l (dtp, f, p, kind);
 | |
| 		break;
 | |
| 	      case BT_CHARACTER:
 | |
| 		if (kind == 4)
 | |
| 		  read_a_char4 (dtp, f, p, size);
 | |
| 		else
 | |
| 		  read_a (dtp, f, p, size);
 | |
| 		break;
 | |
| 	      case BT_REAL:
 | |
| 		read_f (dtp, f, p, kind);
 | |
| 		break;
 | |
| 	      default:
 | |
| 		internal_error (&dtp->common, "formatted_transfer(): Bad type");
 | |
| 	    }
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_STRING:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  format_error (dtp, f, "Constant string in input format");
 | |
| 	  return;
 | |
| 
 | |
| 	/* Format codes that don't transfer data.  */
 | |
| 	case FMT_X:
 | |
| 	case FMT_TR:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.skips += f->u.n;
 | |
| 	  pos = bytes_used + dtp->u.p.skips - 1;
 | |
| 	  dtp->u.p.pending_spaces = pos - dtp->u.p.max_pos + 1;
 | |
| 	  read_x (dtp, f->u.n);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_TL:
 | |
| 	case FMT_T:
 | |
| 	  consume_data_flag = 0;
 | |
| 
 | |
| 	  if (f->format == FMT_TL)
 | |
| 	    {
 | |
| 	      /* Handle the special case when no bytes have been used yet.
 | |
| 	         Cannot go below zero. */
 | |
| 	      if (bytes_used == 0)
 | |
| 		{
 | |
| 		  dtp->u.p.pending_spaces -= f->u.n;
 | |
| 		  dtp->u.p.skips -= f->u.n;
 | |
| 		  dtp->u.p.skips = dtp->u.p.skips < 0 ? 0 : dtp->u.p.skips;
 | |
| 		}
 | |
| 
 | |
| 	      pos = bytes_used - f->u.n;
 | |
| 	    }
 | |
| 	  else /* FMT_T */
 | |
| 	    pos = f->u.n - 1;
 | |
| 
 | |
| 	  /* Standard 10.6.1.1: excessive left tabbing is reset to the
 | |
| 	     left tab limit.  We do not check if the position has gone
 | |
| 	     beyond the end of record because a subsequent tab could
 | |
| 	     bring us back again.  */
 | |
| 	  pos = pos < 0 ? 0 : pos;
 | |
| 
 | |
| 	  dtp->u.p.skips = dtp->u.p.skips + pos - bytes_used;
 | |
| 	  dtp->u.p.pending_spaces = dtp->u.p.pending_spaces
 | |
| 				    + pos - dtp->u.p.max_pos;
 | |
| 	  dtp->u.p.pending_spaces = dtp->u.p.pending_spaces < 0
 | |
| 				    ? 0 : dtp->u.p.pending_spaces;
 | |
| 	  if (dtp->u.p.skips == 0)
 | |
| 	    break;
 | |
| 
 | |
| 	  /* Adjust everything for end-of-record condition */
 | |
| 	  if (dtp->u.p.sf_seen_eor && !is_internal_unit (dtp))
 | |
| 	    {
 | |
|               dtp->u.p.current_unit->bytes_left -= dtp->u.p.sf_seen_eor;
 | |
|               dtp->u.p.skips -= dtp->u.p.sf_seen_eor;
 | |
| 	      bytes_used = pos;
 | |
| 	      dtp->u.p.sf_seen_eor = 0;
 | |
| 	    }
 | |
| 	  if (dtp->u.p.skips < 0)
 | |
| 	    {
 | |
|               if (is_internal_unit (dtp))
 | |
|                 sseek (dtp->u.p.current_unit->s, dtp->u.p.skips, SEEK_CUR);
 | |
|               else
 | |
|                 fbuf_seek (dtp->u.p.current_unit, dtp->u.p.skips, SEEK_CUR);
 | |
| 	      dtp->u.p.current_unit->bytes_left -= (gfc_offset) dtp->u.p.skips;
 | |
| 	      dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    read_x (dtp, dtp->u.p.skips);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_S:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.sign_status = SIGN_S;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_SS:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.sign_status = SIGN_SS;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_SP:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.sign_status = SIGN_SP;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_BN:
 | |
| 	  consume_data_flag = 0 ;
 | |
| 	  dtp->u.p.blank_status = BLANK_NULL;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_BZ:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.blank_status = BLANK_ZERO;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_DC:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.current_unit->decimal_status = DECIMAL_COMMA;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_DP:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.current_unit->decimal_status = DECIMAL_POINT;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_RC:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.current_unit->round_status = ROUND_COMPATIBLE;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_RD:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.current_unit->round_status = ROUND_DOWN;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_RN:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.current_unit->round_status = ROUND_NEAREST;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_RP:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.current_unit->round_status = ROUND_PROCDEFINED;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_RU:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.current_unit->round_status = ROUND_UP;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_RZ:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.current_unit->round_status = ROUND_ZERO;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_P:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.scale_factor = f->u.k;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_DOLLAR:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.seen_dollar = 1;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_SLASH:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
 | |
| 	  next_record (dtp, 0);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_COLON:
 | |
| 	  /* A colon descriptor causes us to exit this loop (in
 | |
| 	     particular preventing another / descriptor from being
 | |
| 	     processed) unless there is another data item to be
 | |
| 	     transferred.  */
 | |
| 	  consume_data_flag = 0;
 | |
| 	  if (n == 0)
 | |
| 	    return;
 | |
| 	  break;
 | |
| 
 | |
| 	default:
 | |
| 	  internal_error (&dtp->common, "Bad format node");
 | |
| 	}
 | |
| 
 | |
|       /* Adjust the item count and data pointer.  */
 | |
| 
 | |
|       if ((consume_data_flag > 0) && (n > 0))
 | |
| 	{
 | |
| 	  n--;
 | |
| 	  p = ((char *) p) + size;
 | |
| 	}
 | |
| 
 | |
|       dtp->u.p.skips = 0;
 | |
| 
 | |
|       pos = (int)(dtp->u.p.current_unit->recl - dtp->u.p.current_unit->bytes_left);
 | |
|       dtp->u.p.max_pos = (dtp->u.p.max_pos > pos) ? dtp->u.p.max_pos : pos;
 | |
|     }
 | |
| 
 | |
|   return;
 | |
| 
 | |
|   /* Come here when we need a data descriptor but don't have one.  We
 | |
|      push the current format node back onto the input, then return and
 | |
|      let the user program call us back with the data.  */
 | |
|  need_read_data:
 | |
|   unget_format (dtp, f);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| formatted_transfer_scalar_write (st_parameter_dt *dtp, bt type, void *p, int kind,
 | |
| 				 size_t size)
 | |
| {
 | |
|   int pos, bytes_used;
 | |
|   const fnode *f;
 | |
|   format_token t;
 | |
|   int n;
 | |
|   int consume_data_flag;
 | |
| 
 | |
|   /* Change a complex data item into a pair of reals.  */
 | |
| 
 | |
|   n = (p == NULL) ? 0 : ((type != BT_COMPLEX) ? 1 : 2);
 | |
|   if (type == BT_COMPLEX)
 | |
|     {
 | |
|       type = BT_REAL;
 | |
|       size /= 2;
 | |
|     }
 | |
| 
 | |
|   /* If there's an EOR condition, we simulate finalizing the transfer
 | |
|      by doing nothing.  */
 | |
|   if (dtp->u.p.eor_condition)
 | |
|     return;
 | |
| 
 | |
|   /* Set this flag so that commas in reads cause the read to complete before
 | |
|      the entire field has been read.  The next read field will start right after
 | |
|      the comma in the stream.  (Set to 0 for character reads).  */
 | |
|   dtp->u.p.sf_read_comma =
 | |
|     dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA ? 0 : 1;
 | |
| 
 | |
|   for (;;)
 | |
|     {
 | |
|       /* If reversion has occurred and there is another real data item,
 | |
| 	 then we have to move to the next record.  */
 | |
|       if (dtp->u.p.reversion_flag && n > 0)
 | |
| 	{
 | |
| 	  dtp->u.p.reversion_flag = 0;
 | |
| 	  next_record (dtp, 0);
 | |
| 	}
 | |
| 
 | |
|       consume_data_flag = 1;
 | |
|       if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
 | |
| 	break;
 | |
| 
 | |
|       f = next_format (dtp);
 | |
|       if (f == NULL)
 | |
| 	{
 | |
| 	  /* No data descriptors left.  */
 | |
| 	  if (unlikely (n > 0))
 | |
| 	    generate_error (&dtp->common, LIBERROR_FORMAT,
 | |
| 		"Insufficient data descriptors in format after reversion");
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       /* Now discharge T, TR and X movements to the right.  This is delayed
 | |
| 	 until a data producing format to suppress trailing spaces.  */
 | |
| 
 | |
|       t = f->format;
 | |
|       if (dtp->u.p.mode == WRITING && dtp->u.p.skips != 0
 | |
| 	&& ((n>0 && (  t == FMT_I  || t == FMT_B  || t == FMT_O
 | |
| 		    || t == FMT_Z  || t == FMT_F  || t == FMT_E
 | |
| 		    || t == FMT_EN || t == FMT_ES || t == FMT_G
 | |
| 		    || t == FMT_L  || t == FMT_A  || t == FMT_D
 | |
| 		    || t == FMT_DT))
 | |
| 	    || t == FMT_STRING))
 | |
| 	{
 | |
| 	  if (dtp->u.p.skips > 0)
 | |
| 	    {
 | |
| 	      int tmp;
 | |
| 	      write_x (dtp, dtp->u.p.skips, dtp->u.p.pending_spaces);
 | |
| 	      tmp = (int)(dtp->u.p.current_unit->recl
 | |
| 			  - dtp->u.p.current_unit->bytes_left);
 | |
| 	      dtp->u.p.max_pos =
 | |
| 		dtp->u.p.max_pos > tmp ? dtp->u.p.max_pos : tmp;
 | |
| 	      dtp->u.p.skips = 0;
 | |
| 	    }
 | |
| 	  if (dtp->u.p.skips < 0)
 | |
| 	    {
 | |
|               if (is_internal_unit (dtp))
 | |
| 	        sseek (dtp->u.p.current_unit->s, dtp->u.p.skips, SEEK_CUR);
 | |
|               else
 | |
|                 fbuf_seek (dtp->u.p.current_unit, dtp->u.p.skips, SEEK_CUR);
 | |
| 	      dtp->u.p.current_unit->bytes_left -= (gfc_offset) dtp->u.p.skips;
 | |
| 	    }
 | |
| 	  dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
 | |
| 	}
 | |
| 
 | |
|       bytes_used = (int)(dtp->u.p.current_unit->recl
 | |
| 		   - dtp->u.p.current_unit->bytes_left);
 | |
| 
 | |
|       if (is_stream_io(dtp))
 | |
| 	bytes_used = 0;
 | |
| 
 | |
|       switch (t)
 | |
| 	{
 | |
| 	case FMT_I:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_data;
 | |
| 	  if (require_type (dtp, BT_INTEGER, type, f))
 | |
| 	    return;
 | |
| 	  write_i (dtp, f, p, kind);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_B:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_data;
 | |
| 	  if (!(compile_options.allow_std & GFC_STD_GNU)
 | |
| 	      && require_numeric_type (dtp, type, f))
 | |
| 	    return;
 | |
| 	  if (!(compile_options.allow_std & GFC_STD_F2008)
 | |
|               && require_type (dtp, BT_INTEGER, type, f))
 | |
| 	    return;
 | |
| 	  write_b (dtp, f, p, kind);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_O:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_data;
 | |
| 	  if (!(compile_options.allow_std & GFC_STD_GNU)
 | |
| 	      && require_numeric_type (dtp, type, f))
 | |
| 	    return;
 | |
| 	  if (!(compile_options.allow_std & GFC_STD_F2008)
 | |
|               && require_type (dtp, BT_INTEGER, type, f))
 | |
| 	    return;
 | |
| 	  write_o (dtp, f, p, kind);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_Z:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_data;
 | |
| 	  if (!(compile_options.allow_std & GFC_STD_GNU)
 | |
| 	      && require_numeric_type (dtp, type, f))
 | |
| 	    return;
 | |
| 	  if (!(compile_options.allow_std & GFC_STD_F2008)
 | |
|               && require_type (dtp, BT_INTEGER, type, f))
 | |
| 	    return;
 | |
| 	  write_z (dtp, f, p, kind);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_A:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_data;
 | |
| 
 | |
| 	  /* It is possible to have FMT_A with something not BT_CHARACTER such
 | |
| 	     as when writing out hollerith strings, so check both type
 | |
| 	     and kind before calling wide character routines.  */
 | |
| 	  if (type == BT_CHARACTER && kind == 4)
 | |
| 	    write_a_char4 (dtp, f, p, size);
 | |
| 	  else
 | |
| 	    write_a (dtp, f, p, size);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_L:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_data;
 | |
| 	  write_l (dtp, f, p, kind);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_D:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_data;
 | |
| 	  if (require_type (dtp, BT_REAL, type, f))
 | |
| 	    return;
 | |
| 	  write_d (dtp, f, p, kind);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_DT:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_data;
 | |
| 	  int unit = dtp->u.p.current_unit->unit_number;
 | |
| 	  char dt[] = "DT";
 | |
| 	  char tmp_iomsg[IOMSG_LEN] = "";
 | |
| 	  char *child_iomsg;
 | |
| 	  gfc_charlen_type child_iomsg_len;
 | |
| 	  int noiostat;
 | |
| 	  int *child_iostat = NULL;
 | |
| 	  char *iotype = f->u.udf.string;
 | |
| 	  gfc_charlen_type iotype_len = f->u.udf.string_len;
 | |
| 
 | |
| 	  /* Build the iotype string.  */
 | |
| 	  if (iotype_len == 0)
 | |
| 	    {
 | |
| 	      iotype_len = 2;
 | |
| 	      iotype = dt;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      iotype_len += 2;
 | |
| 	      iotype = xmalloc (iotype_len);
 | |
| 	      iotype[0] = dt[0];
 | |
| 	      iotype[1] = dt[1];
 | |
| 	      memcpy (iotype + 2, f->u.udf.string, f->u.udf.string_len);
 | |
| 	    }
 | |
| 
 | |
| 	  /* Set iostat, intent(out).  */
 | |
| 	  noiostat = 0;
 | |
| 	  child_iostat = (dtp->common.flags & IOPARM_HAS_IOSTAT) ?
 | |
| 			  dtp->common.iostat : &noiostat;
 | |
| 
 | |
| 	  /* Set iomsg, intent(inout).  */
 | |
| 	  if (dtp->common.flags & IOPARM_HAS_IOMSG)
 | |
| 	    {
 | |
| 	      child_iomsg = dtp->common.iomsg;
 | |
| 	      child_iomsg_len = dtp->common.iomsg_len;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      child_iomsg = tmp_iomsg;
 | |
| 	      child_iomsg_len = IOMSG_LEN;
 | |
| 	    }
 | |
| 
 | |
| 	  /* Call the user defined formatted WRITE procedure.  */
 | |
| 	  dtp->u.p.current_unit->child_dtio++;
 | |
| 	  dtp->u.p.fdtio_ptr (p, &unit, iotype, f->u.udf.vlist,
 | |
| 			      child_iostat, child_iomsg,
 | |
| 			      iotype_len, child_iomsg_len);
 | |
| 	  dtp->u.p.current_unit->child_dtio--;
 | |
| 
 | |
| 	  if (f->u.udf.string_len != 0)
 | |
| 	    free (iotype);
 | |
| 	  /* Note: vlist is freed in free_format_data.  */
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_E:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_data;
 | |
| 	  if (require_type (dtp, BT_REAL, type, f))
 | |
| 	    return;
 | |
| 	  write_e (dtp, f, p, kind);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_EN:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_data;
 | |
| 	  if (require_type (dtp, BT_REAL, type, f))
 | |
| 	    return;
 | |
| 	  write_en (dtp, f, p, kind);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_ES:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_data;
 | |
| 	  if (require_type (dtp, BT_REAL, type, f))
 | |
| 	    return;
 | |
| 	  write_es (dtp, f, p, kind);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_F:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_data;
 | |
| 	  if (require_type (dtp, BT_REAL, type, f))
 | |
| 	    return;
 | |
| 	  write_f (dtp, f, p, kind);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_G:
 | |
| 	  if (n == 0)
 | |
| 	    goto need_data;
 | |
| 	  switch (type)
 | |
| 	    {
 | |
| 	      case BT_INTEGER:
 | |
| 		write_i (dtp, f, p, kind);
 | |
| 		break;
 | |
| 	      case BT_LOGICAL:
 | |
| 		write_l (dtp, f, p, kind);
 | |
| 		break;
 | |
| 	      case BT_CHARACTER:
 | |
| 		if (kind == 4)
 | |
| 		  write_a_char4 (dtp, f, p, size);
 | |
| 		else
 | |
| 		  write_a (dtp, f, p, size);
 | |
| 		break;
 | |
| 	      case BT_REAL:
 | |
| 		if (f->u.real.w == 0)
 | |
|                   write_real_g0 (dtp, p, kind, f->u.real.d);
 | |
| 		else
 | |
| 		  write_d (dtp, f, p, kind);
 | |
| 		break;
 | |
| 	      default:
 | |
| 		internal_error (&dtp->common,
 | |
| 				"formatted_transfer(): Bad type");
 | |
| 	    }
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_STRING:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  write_constant_string (dtp, f);
 | |
| 	  break;
 | |
| 
 | |
| 	/* Format codes that don't transfer data.  */
 | |
| 	case FMT_X:
 | |
| 	case FMT_TR:
 | |
| 	  consume_data_flag = 0;
 | |
| 
 | |
| 	  dtp->u.p.skips += f->u.n;
 | |
| 	  pos = bytes_used + dtp->u.p.skips - 1;
 | |
| 	  dtp->u.p.pending_spaces = pos - dtp->u.p.max_pos + 1;
 | |
| 	  /* Writes occur just before the switch on f->format, above, so
 | |
| 	     that trailing blanks are suppressed, unless we are doing a
 | |
| 	     non-advancing write in which case we want to output the blanks
 | |
| 	     now.  */
 | |
| 	  if (dtp->u.p.advance_status == ADVANCE_NO)
 | |
| 	    {
 | |
| 	      write_x (dtp, dtp->u.p.skips, dtp->u.p.pending_spaces);
 | |
| 	      dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
 | |
| 	    }
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_TL:
 | |
| 	case FMT_T:
 | |
| 	  consume_data_flag = 0;
 | |
| 
 | |
| 	  if (f->format == FMT_TL)
 | |
| 	    {
 | |
| 
 | |
| 	      /* Handle the special case when no bytes have been used yet.
 | |
| 	         Cannot go below zero. */
 | |
| 	      if (bytes_used == 0)
 | |
| 		{
 | |
| 		  dtp->u.p.pending_spaces -= f->u.n;
 | |
| 		  dtp->u.p.skips -= f->u.n;
 | |
| 		  dtp->u.p.skips = dtp->u.p.skips < 0 ? 0 : dtp->u.p.skips;
 | |
| 		}
 | |
| 
 | |
| 	      pos = bytes_used - f->u.n;
 | |
| 	    }
 | |
| 	  else /* FMT_T */
 | |
| 	    pos = f->u.n - dtp->u.p.pending_spaces - 1;
 | |
| 
 | |
| 	  /* Standard 10.6.1.1: excessive left tabbing is reset to the
 | |
| 	     left tab limit.  We do not check if the position has gone
 | |
| 	     beyond the end of record because a subsequent tab could
 | |
| 	     bring us back again.  */
 | |
| 	  pos = pos < 0 ? 0 : pos;
 | |
| 
 | |
| 	  dtp->u.p.skips = dtp->u.p.skips + pos - bytes_used;
 | |
| 	  dtp->u.p.pending_spaces = dtp->u.p.pending_spaces
 | |
| 				    + pos - dtp->u.p.max_pos;
 | |
| 	  dtp->u.p.pending_spaces = dtp->u.p.pending_spaces < 0
 | |
| 				    ? 0 : dtp->u.p.pending_spaces;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_S:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.sign_status = SIGN_S;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_SS:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.sign_status = SIGN_SS;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_SP:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.sign_status = SIGN_SP;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_BN:
 | |
| 	  consume_data_flag = 0 ;
 | |
| 	  dtp->u.p.blank_status = BLANK_NULL;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_BZ:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.blank_status = BLANK_ZERO;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_DC:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.current_unit->decimal_status = DECIMAL_COMMA;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_DP:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.current_unit->decimal_status = DECIMAL_POINT;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_RC:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.current_unit->round_status = ROUND_COMPATIBLE;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_RD:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.current_unit->round_status = ROUND_DOWN;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_RN:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.current_unit->round_status = ROUND_NEAREST;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_RP:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.current_unit->round_status = ROUND_PROCDEFINED;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_RU:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.current_unit->round_status = ROUND_UP;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_RZ:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.current_unit->round_status = ROUND_ZERO;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_P:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.scale_factor = f->u.k;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_DOLLAR:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.seen_dollar = 1;
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_SLASH:
 | |
| 	  consume_data_flag = 0;
 | |
| 	  dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
 | |
| 	  next_record (dtp, 0);
 | |
| 	  break;
 | |
| 
 | |
| 	case FMT_COLON:
 | |
| 	  /* A colon descriptor causes us to exit this loop (in
 | |
| 	     particular preventing another / descriptor from being
 | |
| 	     processed) unless there is another data item to be
 | |
| 	     transferred.  */
 | |
| 	  consume_data_flag = 0;
 | |
| 	  if (n == 0)
 | |
| 	    return;
 | |
| 	  break;
 | |
| 
 | |
| 	default:
 | |
| 	  internal_error (&dtp->common, "Bad format node");
 | |
| 	}
 | |
| 
 | |
|       /* Adjust the item count and data pointer.  */
 | |
| 
 | |
|       if ((consume_data_flag > 0) && (n > 0))
 | |
| 	{
 | |
| 	  n--;
 | |
| 	  p = ((char *) p) + size;
 | |
| 	}
 | |
| 
 | |
|       pos = (int)(dtp->u.p.current_unit->recl - dtp->u.p.current_unit->bytes_left);
 | |
|       dtp->u.p.max_pos = (dtp->u.p.max_pos > pos) ? dtp->u.p.max_pos : pos;
 | |
|     }
 | |
| 
 | |
|   return;
 | |
| 
 | |
|   /* Come here when we need a data descriptor but don't have one.  We
 | |
|      push the current format node back onto the input, then return and
 | |
|      let the user program call us back with the data.  */
 | |
|  need_data:
 | |
|   unget_format (dtp, f);
 | |
| }
 | |
| 
 | |
|   /* This function is first called from data_init_transfer to initiate the loop
 | |
|      over each item in the format, transferring data as required.  Subsequent
 | |
|      calls to this function occur for each data item foound in the READ/WRITE
 | |
|      statement.  The item_count is incremented for each call.  Since the first
 | |
|      call is from data_transfer_init, the item_count is always one greater than
 | |
|      the actual count number of the item being transferred.  */
 | |
| 
 | |
| static void
 | |
| formatted_transfer (st_parameter_dt *dtp, bt type, void *p, int kind,
 | |
| 		    size_t size, size_t nelems)
 | |
| {
 | |
|   size_t elem;
 | |
|   char *tmp;
 | |
| 
 | |
|   tmp = (char *) p;
 | |
|   size_t stride = type == BT_CHARACTER ?
 | |
| 		  size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
 | |
|   if (dtp->u.p.mode == READING)
 | |
|     {
 | |
|       /* Big loop over all the elements.  */
 | |
|       for (elem = 0; elem < nelems; elem++)
 | |
| 	{
 | |
| 	  dtp->u.p.item_count++;
 | |
| 	  formatted_transfer_scalar_read (dtp, type, tmp + stride*elem, kind, size);
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       /* Big loop over all the elements.  */
 | |
|       for (elem = 0; elem < nelems; elem++)
 | |
| 	{
 | |
| 	  dtp->u.p.item_count++;
 | |
| 	  formatted_transfer_scalar_write (dtp, type, tmp + stride*elem, kind, size);
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Data transfer entry points.  The type of the data entity is
 | |
|    implicit in the subroutine call.  This prevents us from having to
 | |
|    share a common enum with the compiler.  */
 | |
| 
 | |
| void
 | |
| transfer_integer (st_parameter_dt *dtp, void *p, int kind)
 | |
| {
 | |
|   if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
 | |
|     return;
 | |
|   dtp->u.p.transfer (dtp, BT_INTEGER, p, kind, kind, 1);
 | |
| }
 | |
| 
 | |
| void
 | |
| transfer_integer_write (st_parameter_dt *dtp, void *p, int kind)
 | |
| {
 | |
|   transfer_integer (dtp, p, kind);
 | |
| }
 | |
| 
 | |
| void
 | |
| transfer_real (st_parameter_dt *dtp, void *p, int kind)
 | |
| {
 | |
|   size_t size;
 | |
|   if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
 | |
|     return;
 | |
|   size = size_from_real_kind (kind);
 | |
|   dtp->u.p.transfer (dtp, BT_REAL, p, kind, size, 1);
 | |
| }
 | |
| 
 | |
| void
 | |
| transfer_real_write (st_parameter_dt *dtp, void *p, int kind)
 | |
| {
 | |
|   transfer_real (dtp, p, kind);
 | |
| }
 | |
| 
 | |
| void
 | |
| transfer_logical (st_parameter_dt *dtp, void *p, int kind)
 | |
| {
 | |
|   if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
 | |
|     return;
 | |
|   dtp->u.p.transfer (dtp, BT_LOGICAL, p, kind, kind, 1);
 | |
| }
 | |
| 
 | |
| void
 | |
| transfer_logical_write (st_parameter_dt *dtp, void *p, int kind)
 | |
| {
 | |
|   transfer_logical (dtp, p, kind);
 | |
| }
 | |
| 
 | |
| void
 | |
| transfer_character (st_parameter_dt *dtp, void *p, int len)
 | |
| {
 | |
|   static char *empty_string[0];
 | |
| 
 | |
|   if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
 | |
|     return;
 | |
| 
 | |
|   /* Strings of zero length can have p == NULL, which confuses the
 | |
|      transfer routines into thinking we need more data elements.  To avoid
 | |
|      this, we give them a nice pointer.  */
 | |
|   if (len == 0 && p == NULL)
 | |
|     p = empty_string;
 | |
| 
 | |
|   /* Set kind here to 1.  */
 | |
|   dtp->u.p.transfer (dtp, BT_CHARACTER, p, 1, len, 1);
 | |
| }
 | |
| 
 | |
| void
 | |
| transfer_character_write (st_parameter_dt *dtp, void *p, int len)
 | |
| {
 | |
|   transfer_character (dtp, p, len);
 | |
| }
 | |
| 
 | |
| void
 | |
| transfer_character_wide (st_parameter_dt *dtp, void *p, int len, int kind)
 | |
| {
 | |
|   static char *empty_string[0];
 | |
| 
 | |
|   if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
 | |
|     return;
 | |
| 
 | |
|   /* Strings of zero length can have p == NULL, which confuses the
 | |
|      transfer routines into thinking we need more data elements.  To avoid
 | |
|      this, we give them a nice pointer.  */
 | |
|   if (len == 0 && p == NULL)
 | |
|     p = empty_string;
 | |
| 
 | |
|   /* Here we pass the actual kind value.  */
 | |
|   dtp->u.p.transfer (dtp, BT_CHARACTER, p, kind, len, 1);
 | |
| }
 | |
| 
 | |
| void
 | |
| transfer_character_wide_write (st_parameter_dt *dtp, void *p, int len, int kind)
 | |
| {
 | |
|   transfer_character_wide (dtp, p, len, kind);
 | |
| }
 | |
| 
 | |
| void
 | |
| transfer_complex (st_parameter_dt *dtp, void *p, int kind)
 | |
| {
 | |
|   size_t size;
 | |
|   if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
 | |
|     return;
 | |
|   size = size_from_complex_kind (kind);
 | |
|   dtp->u.p.transfer (dtp, BT_COMPLEX, p, kind, size, 1);
 | |
| }
 | |
| 
 | |
| void
 | |
| transfer_complex_write (st_parameter_dt *dtp, void *p, int kind)
 | |
| {
 | |
|   transfer_complex (dtp, p, kind);
 | |
| }
 | |
| 
 | |
| void
 | |
| transfer_array (st_parameter_dt *dtp, gfc_array_char *desc, int kind,
 | |
| 		gfc_charlen_type charlen)
 | |
| {
 | |
|   index_type count[GFC_MAX_DIMENSIONS];
 | |
|   index_type extent[GFC_MAX_DIMENSIONS];
 | |
|   index_type stride[GFC_MAX_DIMENSIONS];
 | |
|   index_type stride0, rank, size, n;
 | |
|   size_t tsize;
 | |
|   char *data;
 | |
|   bt iotype;
 | |
| 
 | |
|   if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
 | |
|     return;
 | |
| 
 | |
|   iotype = (bt) GFC_DESCRIPTOR_TYPE (desc);
 | |
|   size = iotype == BT_CHARACTER ? charlen : GFC_DESCRIPTOR_SIZE (desc);
 | |
| 
 | |
|   rank = GFC_DESCRIPTOR_RANK (desc);
 | |
|   for (n = 0; n < rank; n++)
 | |
|     {
 | |
|       count[n] = 0;
 | |
|       stride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(desc,n);
 | |
|       extent[n] = GFC_DESCRIPTOR_EXTENT(desc,n);
 | |
| 
 | |
|       /* If the extent of even one dimension is zero, then the entire
 | |
| 	 array section contains zero elements, so we return after writing
 | |
| 	 a zero array record.  */
 | |
|       if (extent[n] <= 0)
 | |
| 	{
 | |
| 	  data = NULL;
 | |
| 	  tsize = 0;
 | |
| 	  dtp->u.p.transfer (dtp, iotype, data, kind, size, tsize);
 | |
| 	  return;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   stride0 = stride[0];
 | |
| 
 | |
|   /* If the innermost dimension has a stride of 1, we can do the transfer
 | |
|      in contiguous chunks.  */
 | |
|   if (stride0 == size)
 | |
|     tsize = extent[0];
 | |
|   else
 | |
|     tsize = 1;
 | |
| 
 | |
|   data = GFC_DESCRIPTOR_DATA (desc);
 | |
| 
 | |
|   while (data)
 | |
|     {
 | |
|       dtp->u.p.transfer (dtp, iotype, data, kind, size, tsize);
 | |
|       data += stride0 * tsize;
 | |
|       count[0] += tsize;
 | |
|       n = 0;
 | |
|       while (count[n] == extent[n])
 | |
| 	{
 | |
| 	  count[n] = 0;
 | |
| 	  data -= stride[n] * extent[n];
 | |
| 	  n++;
 | |
| 	  if (n == rank)
 | |
| 	    {
 | |
| 	      data = NULL;
 | |
| 	      break;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      count[n]++;
 | |
| 	      data += stride[n];
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| transfer_array_write (st_parameter_dt *dtp, gfc_array_char *desc, int kind,
 | |
| 		      gfc_charlen_type charlen)
 | |
| {
 | |
|   transfer_array (dtp, desc, kind, charlen);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* User defined input/output iomsg. */
 | |
| 
 | |
| #define IOMSG_LEN 256
 | |
| 
 | |
| void
 | |
| transfer_derived (st_parameter_dt *parent, void *dtio_source, void *dtio_proc)
 | |
| {
 | |
|   if (parent->u.p.current_unit)
 | |
|     {
 | |
|       if (parent->u.p.current_unit->flags.form == FORM_UNFORMATTED)
 | |
| 	parent->u.p.ufdtio_ptr = (unformatted_dtio) dtio_proc;
 | |
|       else
 | |
| 	parent->u.p.fdtio_ptr = (formatted_dtio) dtio_proc;
 | |
|     }
 | |
|   parent->u.p.transfer (parent, BT_CLASS, dtio_source, 0, 0, 1);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Preposition a sequential unformatted file while reading.  */
 | |
| 
 | |
| static void
 | |
| us_read (st_parameter_dt *dtp, int continued)
 | |
| {
 | |
|   ssize_t n, nr;
 | |
|   GFC_INTEGER_4 i4;
 | |
|   GFC_INTEGER_8 i8;
 | |
|   gfc_offset i;
 | |
| 
 | |
|   if (compile_options.record_marker == 0)
 | |
|     n = sizeof (GFC_INTEGER_4);
 | |
|   else
 | |
|     n = compile_options.record_marker;
 | |
| 
 | |
|   nr = sread (dtp->u.p.current_unit->s, &i, n);
 | |
|   if (unlikely (nr < 0))
 | |
|     {
 | |
|       generate_error (&dtp->common, LIBERROR_BAD_US, NULL);
 | |
|       return;
 | |
|     }
 | |
|   else if (nr == 0)
 | |
|     {
 | |
|       hit_eof (dtp);
 | |
|       return;  /* end of file */
 | |
|     }
 | |
|   else if (unlikely (n != nr))
 | |
|     {
 | |
|       generate_error (&dtp->common, LIBERROR_BAD_US, NULL);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   /* Only GFC_CONVERT_NATIVE and GFC_CONVERT_SWAP are valid here.  */
 | |
|   if (likely (dtp->u.p.current_unit->flags.convert == GFC_CONVERT_NATIVE))
 | |
|     {
 | |
|       switch (nr)
 | |
| 	{
 | |
| 	case sizeof(GFC_INTEGER_4):
 | |
| 	  memcpy (&i4, &i, sizeof (i4));
 | |
| 	  i = i4;
 | |
| 	  break;
 | |
| 
 | |
| 	case sizeof(GFC_INTEGER_8):
 | |
| 	  memcpy (&i8, &i, sizeof (i8));
 | |
| 	  i = i8;
 | |
| 	  break;
 | |
| 
 | |
| 	default:
 | |
| 	  runtime_error ("Illegal value for record marker");
 | |
| 	  break;
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       uint32_t u32;
 | |
|       uint64_t u64;
 | |
|       switch (nr)
 | |
| 	{
 | |
| 	case sizeof(GFC_INTEGER_4):
 | |
| 	  memcpy (&u32, &i, sizeof (u32));
 | |
| 	  u32 = __builtin_bswap32 (u32);
 | |
| 	  memcpy (&i4, &u32, sizeof (i4));
 | |
| 	  i = i4;
 | |
| 	  break;
 | |
| 
 | |
| 	case sizeof(GFC_INTEGER_8):
 | |
| 	  memcpy (&u64, &i, sizeof (u64));
 | |
| 	  u64 = __builtin_bswap64 (u64);
 | |
| 	  memcpy (&i8, &u64, sizeof (i8));
 | |
| 	  i = i8;
 | |
| 	  break;
 | |
| 
 | |
| 	default:
 | |
| 	  runtime_error ("Illegal value for record marker");
 | |
| 	  break;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   if (i >= 0)
 | |
|     {
 | |
|       dtp->u.p.current_unit->bytes_left_subrecord = i;
 | |
|       dtp->u.p.current_unit->continued = 0;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       dtp->u.p.current_unit->bytes_left_subrecord = -i;
 | |
|       dtp->u.p.current_unit->continued = 1;
 | |
|     }
 | |
| 
 | |
|   if (! continued)
 | |
|     dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Preposition a sequential unformatted file while writing.  This
 | |
|    amount to writing a bogus length that will be filled in later.  */
 | |
| 
 | |
| static void
 | |
| us_write (st_parameter_dt *dtp, int continued)
 | |
| {
 | |
|   ssize_t nbytes;
 | |
|   gfc_offset dummy;
 | |
| 
 | |
|   dummy = 0;
 | |
| 
 | |
|   if (compile_options.record_marker == 0)
 | |
|     nbytes = sizeof (GFC_INTEGER_4);
 | |
|   else
 | |
|     nbytes = compile_options.record_marker ;
 | |
| 
 | |
|   if (swrite (dtp->u.p.current_unit->s, &dummy, nbytes) != nbytes)
 | |
|     generate_error (&dtp->common, LIBERROR_OS, NULL);
 | |
| 
 | |
|   /* For sequential unformatted, if RECL= was not specified in the OPEN
 | |
|      we write until we have more bytes than can fit in the subrecord
 | |
|      markers, then we write a new subrecord.  */
 | |
| 
 | |
|   dtp->u.p.current_unit->bytes_left_subrecord =
 | |
|     dtp->u.p.current_unit->recl_subrecord;
 | |
|   dtp->u.p.current_unit->continued = continued;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Position to the next record prior to transfer.  We are assumed to
 | |
|    be before the next record.  We also calculate the bytes in the next
 | |
|    record.  */
 | |
| 
 | |
| static void
 | |
| pre_position (st_parameter_dt *dtp)
 | |
| {
 | |
|   if (dtp->u.p.current_unit->current_record)
 | |
|     return;			/* Already positioned.  */
 | |
| 
 | |
|   switch (current_mode (dtp))
 | |
|     {
 | |
|     case FORMATTED_STREAM:
 | |
|     case UNFORMATTED_STREAM:
 | |
|       /* There are no records with stream I/O.  If the position was specified
 | |
| 	 data_transfer_init has already positioned the file. If no position
 | |
| 	 was specified, we continue from where we last left off.  I.e.
 | |
| 	 there is nothing to do here.  */
 | |
|       break;
 | |
| 
 | |
|     case UNFORMATTED_SEQUENTIAL:
 | |
|       if (dtp->u.p.mode == READING)
 | |
| 	us_read (dtp, 0);
 | |
|       else
 | |
| 	us_write (dtp, 0);
 | |
| 
 | |
|       break;
 | |
| 
 | |
|     case FORMATTED_SEQUENTIAL:
 | |
|     case FORMATTED_DIRECT:
 | |
|     case UNFORMATTED_DIRECT:
 | |
|       dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   dtp->u.p.current_unit->current_record = 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Initialize things for a data transfer.  This code is common for
 | |
|    both reading and writing.  */
 | |
| 
 | |
| static void
 | |
| data_transfer_init (st_parameter_dt *dtp, int read_flag)
 | |
| {
 | |
|   unit_flags u_flags;  /* Used for creating a unit if needed.  */
 | |
|   GFC_INTEGER_4 cf = dtp->common.flags;
 | |
|   namelist_info *ionml;
 | |
| 
 | |
|   ionml = ((cf & IOPARM_DT_IONML_SET) != 0) ? dtp->u.p.ionml : NULL;
 | |
| 
 | |
|   memset (&dtp->u.p, 0, sizeof (dtp->u.p));
 | |
| 
 | |
|   dtp->u.p.ionml = ionml;
 | |
|   dtp->u.p.mode = read_flag ? READING : WRITING;
 | |
| 
 | |
|   if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
 | |
|     return;
 | |
| 
 | |
|   if ((cf & IOPARM_DT_HAS_SIZE) != 0)
 | |
|     dtp->u.p.size_used = 0;  /* Initialize the count.  */
 | |
| 
 | |
|   dtp->u.p.current_unit = get_unit (dtp, 1);
 | |
| 
 | |
|   if (dtp->u.p.current_unit->s == NULL)
 | |
|     {  /* Open the unit with some default flags.  */
 | |
|        st_parameter_open opp;
 | |
|        unit_convert conv;
 | |
| 
 | |
|       if (dtp->common.unit < 0 && !is_internal_unit (dtp))
 | |
| 	{
 | |
| 	  close_unit (dtp->u.p.current_unit);
 | |
| 	  dtp->u.p.current_unit = NULL;
 | |
| 	  generate_error (&dtp->common, LIBERROR_BAD_OPTION,
 | |
| 			  "Bad unit number in statement");
 | |
| 	  return;
 | |
| 	}
 | |
|       memset (&u_flags, '\0', sizeof (u_flags));
 | |
|       u_flags.access = ACCESS_SEQUENTIAL;
 | |
|       u_flags.action = ACTION_READWRITE;
 | |
| 
 | |
|       /* Is it unformatted?  */
 | |
|       if (!(cf & (IOPARM_DT_HAS_FORMAT | IOPARM_DT_LIST_FORMAT
 | |
| 		  | IOPARM_DT_IONML_SET)))
 | |
| 	u_flags.form = FORM_UNFORMATTED;
 | |
|       else
 | |
| 	u_flags.form = FORM_UNSPECIFIED;
 | |
| 
 | |
|       u_flags.delim = DELIM_UNSPECIFIED;
 | |
|       u_flags.blank = BLANK_UNSPECIFIED;
 | |
|       u_flags.pad = PAD_UNSPECIFIED;
 | |
|       u_flags.decimal = DECIMAL_UNSPECIFIED;
 | |
|       u_flags.encoding = ENCODING_UNSPECIFIED;
 | |
|       u_flags.async = ASYNC_UNSPECIFIED;
 | |
|       u_flags.round = ROUND_UNSPECIFIED;
 | |
|       u_flags.sign = SIGN_UNSPECIFIED;
 | |
| 
 | |
|       u_flags.status = STATUS_UNKNOWN;
 | |
| 
 | |
|       conv = get_unformatted_convert (dtp->common.unit);
 | |
| 
 | |
|       if (conv == GFC_CONVERT_NONE)
 | |
| 	conv = compile_options.convert;
 | |
| 
 | |
|       /* We use big_endian, which is 0 on little-endian machines
 | |
| 	 and 1 on big-endian machines.  */
 | |
|       switch (conv)
 | |
| 	{
 | |
| 	case GFC_CONVERT_NATIVE:
 | |
| 	case GFC_CONVERT_SWAP:
 | |
| 	  break;
 | |
| 
 | |
| 	case GFC_CONVERT_BIG:
 | |
| 	  conv = big_endian ? GFC_CONVERT_NATIVE : GFC_CONVERT_SWAP;
 | |
| 	  break;
 | |
| 
 | |
| 	case GFC_CONVERT_LITTLE:
 | |
| 	  conv = big_endian ? GFC_CONVERT_SWAP : GFC_CONVERT_NATIVE;
 | |
| 	  break;
 | |
| 
 | |
| 	default:
 | |
| 	  internal_error (&opp.common, "Illegal value for CONVERT");
 | |
| 	  break;
 | |
| 	}
 | |
| 
 | |
|       u_flags.convert = conv;
 | |
| 
 | |
|       opp.common = dtp->common;
 | |
|       opp.common.flags &= IOPARM_COMMON_MASK;
 | |
|       dtp->u.p.current_unit = new_unit (&opp, dtp->u.p.current_unit, &u_flags);
 | |
|       dtp->common.flags &= ~IOPARM_COMMON_MASK;
 | |
|       dtp->common.flags |= (opp.common.flags & IOPARM_COMMON_MASK);
 | |
|       if (dtp->u.p.current_unit == NULL)
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|   /* Check the action.  */
 | |
| 
 | |
|   if (read_flag && dtp->u.p.current_unit->flags.action == ACTION_WRITE)
 | |
|     {
 | |
|       generate_error (&dtp->common, LIBERROR_BAD_ACTION,
 | |
| 		      "Cannot read from file opened for WRITE");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if (!read_flag && dtp->u.p.current_unit->flags.action == ACTION_READ)
 | |
|     {
 | |
|       generate_error (&dtp->common, LIBERROR_BAD_ACTION,
 | |
| 		      "Cannot write to file opened for READ");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   dtp->u.p.first_item = 1;
 | |
| 
 | |
|   /* Check the format.  */
 | |
| 
 | |
|   if ((cf & IOPARM_DT_HAS_FORMAT) != 0)
 | |
|     parse_format (dtp);
 | |
| 
 | |
|   if (dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED
 | |
|       && (cf & (IOPARM_DT_HAS_FORMAT | IOPARM_DT_LIST_FORMAT))
 | |
| 	 != 0)
 | |
|     {
 | |
|       generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
 | |
| 		      "Format present for UNFORMATTED data transfer");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if ((cf & IOPARM_DT_HAS_NAMELIST_NAME) != 0 && dtp->u.p.ionml != NULL)
 | |
|      {
 | |
| 	if ((cf & IOPARM_DT_HAS_FORMAT) != 0)
 | |
| 	  {
 | |
| 	    generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
 | |
| 			"A format cannot be specified with a namelist");
 | |
| 	    return;
 | |
| 	  }
 | |
|      }
 | |
|   else if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED &&
 | |
| 	   !(cf & (IOPARM_DT_HAS_FORMAT | IOPARM_DT_LIST_FORMAT)))
 | |
|     {
 | |
|       generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
 | |
| 		      "Missing format for FORMATTED data transfer");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if (is_internal_unit (dtp)
 | |
|       && dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED)
 | |
|     {
 | |
|       generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
 | |
| 		      "Internal file cannot be accessed by UNFORMATTED "
 | |
| 		      "data transfer");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   /* Check the record or position number.  */
 | |
| 
 | |
|   if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT
 | |
|       && (cf & IOPARM_DT_HAS_REC) == 0)
 | |
|     {
 | |
|       generate_error (&dtp->common, LIBERROR_MISSING_OPTION,
 | |
| 		      "Direct access data transfer requires record number");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL)
 | |
|     {
 | |
|       if ((cf & IOPARM_DT_HAS_REC) != 0)
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
 | |
| 			"Record number not allowed for sequential access "
 | |
| 			"data transfer");
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       if (compile_options.warn_std &&
 | |
| 	  dtp->u.p.current_unit->endfile == AFTER_ENDFILE)
 | |
|       	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
 | |
| 			"Sequential READ or WRITE not allowed after "
 | |
| 			"EOF marker, possibly use REWIND or BACKSPACE");
 | |
| 	  return;
 | |
| 	}
 | |
|     }
 | |
|   /* Process the ADVANCE option.  */
 | |
| 
 | |
|   dtp->u.p.advance_status
 | |
|     = !(cf & IOPARM_DT_HAS_ADVANCE) ? ADVANCE_UNSPECIFIED :
 | |
|       find_option (&dtp->common, dtp->advance, dtp->advance_len, advance_opt,
 | |
| 		   "Bad ADVANCE parameter in data transfer statement");
 | |
| 
 | |
|   if (dtp->u.p.advance_status != ADVANCE_UNSPECIFIED)
 | |
|     {
 | |
|       if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
 | |
| 			  "ADVANCE specification conflicts with sequential "
 | |
| 			  "access");
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       if (is_internal_unit (dtp))
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
 | |
| 			  "ADVANCE specification conflicts with internal file");
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       if ((cf & (IOPARM_DT_HAS_FORMAT | IOPARM_DT_LIST_FORMAT))
 | |
| 	  != IOPARM_DT_HAS_FORMAT)
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
 | |
| 			  "ADVANCE specification requires an explicit format");
 | |
| 	  return;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   if (read_flag)
 | |
|     {
 | |
|       dtp->u.p.current_unit->previous_nonadvancing_write = 0;
 | |
| 
 | |
|       if ((cf & IOPARM_EOR) != 0 && dtp->u.p.advance_status != ADVANCE_NO)
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_MISSING_OPTION,
 | |
| 			  "EOR specification requires an ADVANCE specification "
 | |
| 			  "of NO");
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       if ((cf & IOPARM_DT_HAS_SIZE) != 0
 | |
| 	  && dtp->u.p.advance_status != ADVANCE_NO)
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_MISSING_OPTION,
 | |
| 			  "SIZE specification requires an ADVANCE "
 | |
| 			  "specification of NO");
 | |
| 	  return;
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {				/* Write constraints.  */
 | |
|       if ((cf & IOPARM_END) != 0)
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
 | |
| 			  "END specification cannot appear in a write "
 | |
| 			  "statement");
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       if ((cf & IOPARM_EOR) != 0)
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
 | |
| 			  "EOR specification cannot appear in a write "
 | |
| 			  "statement");
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       if ((cf & IOPARM_DT_HAS_SIZE) != 0)
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
 | |
| 			  "SIZE specification cannot appear in a write "
 | |
| 			  "statement");
 | |
| 	  return;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   if (dtp->u.p.advance_status == ADVANCE_UNSPECIFIED)
 | |
|     dtp->u.p.advance_status = ADVANCE_YES;
 | |
| 
 | |
|   /* Check the decimal mode.  */
 | |
|   dtp->u.p.current_unit->decimal_status
 | |
| 	= !(cf & IOPARM_DT_HAS_DECIMAL) ? DECIMAL_UNSPECIFIED :
 | |
| 	  find_option (&dtp->common, dtp->decimal, dtp->decimal_len,
 | |
| 			decimal_opt, "Bad DECIMAL parameter in data transfer "
 | |
| 			"statement");
 | |
| 
 | |
|   if (dtp->u.p.current_unit->decimal_status == DECIMAL_UNSPECIFIED)
 | |
| 	dtp->u.p.current_unit->decimal_status = dtp->u.p.current_unit->flags.decimal;
 | |
| 
 | |
|   /* Check the round mode.  */
 | |
|   dtp->u.p.current_unit->round_status
 | |
| 	= !(cf & IOPARM_DT_HAS_ROUND) ? ROUND_UNSPECIFIED :
 | |
| 	  find_option (&dtp->common, dtp->round, dtp->round_len,
 | |
| 			round_opt, "Bad ROUND parameter in data transfer "
 | |
| 			"statement");
 | |
| 
 | |
|   if (dtp->u.p.current_unit->round_status == ROUND_UNSPECIFIED)
 | |
| 	dtp->u.p.current_unit->round_status = dtp->u.p.current_unit->flags.round;
 | |
| 
 | |
|   /* Check the sign mode. */
 | |
|   dtp->u.p.sign_status
 | |
| 	= !(cf & IOPARM_DT_HAS_SIGN) ? SIGN_UNSPECIFIED :
 | |
| 	  find_option (&dtp->common, dtp->sign, dtp->sign_len, sign_opt,
 | |
| 			"Bad SIGN parameter in data transfer statement");
 | |
| 
 | |
|   if (dtp->u.p.sign_status == SIGN_UNSPECIFIED)
 | |
| 	dtp->u.p.sign_status = dtp->u.p.current_unit->flags.sign;
 | |
| 
 | |
|   /* Check the blank mode.  */
 | |
|   dtp->u.p.blank_status
 | |
| 	= !(cf & IOPARM_DT_HAS_BLANK) ? BLANK_UNSPECIFIED :
 | |
| 	  find_option (&dtp->common, dtp->blank, dtp->blank_len,
 | |
| 			blank_opt,
 | |
| 			"Bad BLANK parameter in data transfer statement");
 | |
| 
 | |
|   if (dtp->u.p.blank_status == BLANK_UNSPECIFIED)
 | |
| 	dtp->u.p.blank_status = dtp->u.p.current_unit->flags.blank;
 | |
| 
 | |
|   /* Check the delim mode.  */
 | |
|   dtp->u.p.current_unit->delim_status
 | |
| 	= !(cf & IOPARM_DT_HAS_DELIM) ? DELIM_UNSPECIFIED :
 | |
| 	  find_option (&dtp->common, dtp->delim, dtp->delim_len,
 | |
| 	  delim_opt, "Bad DELIM parameter in data transfer statement");
 | |
| 
 | |
|   if (dtp->u.p.current_unit->delim_status == DELIM_UNSPECIFIED)
 | |
|     {
 | |
|       if (ionml && dtp->u.p.current_unit->flags.delim == DELIM_UNSPECIFIED)
 | |
| 	dtp->u.p.current_unit->delim_status = DELIM_QUOTE;
 | |
|       else
 | |
| 	dtp->u.p.current_unit->delim_status = dtp->u.p.current_unit->flags.delim;
 | |
|     }
 | |
| 
 | |
|   /* Check the pad mode.  */
 | |
|   dtp->u.p.current_unit->pad_status
 | |
| 	= !(cf & IOPARM_DT_HAS_PAD) ? PAD_UNSPECIFIED :
 | |
| 	  find_option (&dtp->common, dtp->pad, dtp->pad_len, pad_opt,
 | |
| 			"Bad PAD parameter in data transfer statement");
 | |
| 
 | |
|   if (dtp->u.p.current_unit->pad_status == PAD_UNSPECIFIED)
 | |
| 	dtp->u.p.current_unit->pad_status = dtp->u.p.current_unit->flags.pad;
 | |
| 
 | |
|   /* Check to see if we might be reading what we wrote before  */
 | |
| 
 | |
|   if (dtp->u.p.mode != dtp->u.p.current_unit->mode
 | |
|       && !is_internal_unit (dtp))
 | |
|     {
 | |
|       int pos = fbuf_reset (dtp->u.p.current_unit);
 | |
|       if (pos != 0)
 | |
|         sseek (dtp->u.p.current_unit->s, pos, SEEK_CUR);
 | |
|       sflush(dtp->u.p.current_unit->s);
 | |
|     }
 | |
| 
 | |
|   /* Check the POS= specifier: that it is in range and that it is used with a
 | |
|      unit that has been connected for STREAM access. F2003 9.5.1.10.  */
 | |
| 
 | |
|   if (((cf & IOPARM_DT_HAS_POS) != 0))
 | |
|     {
 | |
|       if (is_stream_io (dtp))
 | |
|         {
 | |
| 
 | |
|           if (dtp->pos <= 0)
 | |
|             {
 | |
|               generate_error (&dtp->common, LIBERROR_BAD_OPTION,
 | |
|                               "POS=specifier must be positive");
 | |
|               return;
 | |
|             }
 | |
| 
 | |
|           if (dtp->pos >= dtp->u.p.current_unit->maxrec)
 | |
|             {
 | |
|               generate_error (&dtp->common, LIBERROR_BAD_OPTION,
 | |
|                               "POS=specifier too large");
 | |
|               return;
 | |
|             }
 | |
| 
 | |
|           dtp->rec = dtp->pos;
 | |
| 
 | |
|           if (dtp->u.p.mode == READING)
 | |
|             {
 | |
|               /* Reset the endfile flag; if we hit EOF during reading
 | |
|                  we'll set the flag and generate an error at that point
 | |
|                  rather than worrying about it here.  */
 | |
|               dtp->u.p.current_unit->endfile = NO_ENDFILE;
 | |
|             }
 | |
| 
 | |
|           if (dtp->pos != dtp->u.p.current_unit->strm_pos)
 | |
|             {
 | |
|               fbuf_flush (dtp->u.p.current_unit, dtp->u.p.mode);
 | |
|               if (sseek (dtp->u.p.current_unit->s, dtp->pos - 1, SEEK_SET) < 0)
 | |
|                 {
 | |
|                   generate_error (&dtp->common, LIBERROR_OS, NULL);
 | |
|                   return;
 | |
|                 }
 | |
|               dtp->u.p.current_unit->strm_pos = dtp->pos;
 | |
|             }
 | |
|         }
 | |
|       else
 | |
|         {
 | |
|           generate_error (&dtp->common, LIBERROR_BAD_OPTION,
 | |
|                           "POS=specifier not allowed, "
 | |
|                           "Try OPEN with ACCESS='stream'");
 | |
|           return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|   /* Sanity checks on the record number.  */
 | |
|   if ((cf & IOPARM_DT_HAS_REC) != 0)
 | |
|     {
 | |
|       if (dtp->rec <= 0)
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_BAD_OPTION,
 | |
| 			  "Record number must be positive");
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       if (dtp->rec >= dtp->u.p.current_unit->maxrec)
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_BAD_OPTION,
 | |
| 			  "Record number too large");
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       /* Make sure format buffer is reset.  */
 | |
|       if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED)
 | |
|         fbuf_reset (dtp->u.p.current_unit);
 | |
| 
 | |
| 
 | |
|       /* Check whether the record exists to be read.  Only
 | |
| 	 a partial record needs to exist.  */
 | |
| 
 | |
|       if (dtp->u.p.mode == READING && (dtp->rec - 1)
 | |
| 	  * dtp->u.p.current_unit->recl >= ssize (dtp->u.p.current_unit->s))
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_BAD_OPTION,
 | |
| 			  "Non-existing record number");
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       /* Position the file.  */
 | |
|       if (sseek (dtp->u.p.current_unit->s, (gfc_offset) (dtp->rec - 1)
 | |
| 		 * dtp->u.p.current_unit->recl, SEEK_SET) < 0)
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_OS, NULL);
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       /* TODO: This is required to maintain compatibility between
 | |
|          4.3 and 4.4 runtime. Remove when ABI changes from 4.3 */
 | |
| 
 | |
|       if (is_stream_io (dtp))
 | |
|         dtp->u.p.current_unit->strm_pos = dtp->rec;
 | |
| 
 | |
|       /* TODO: Un-comment this code when ABI changes from 4.3.
 | |
|       if (dtp->u.p.current_unit->flags.access == ACCESS_STREAM)
 | |
|        {
 | |
|          generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
 | |
|                      "Record number not allowed for stream access "
 | |
|                      "data transfer");
 | |
|          return;
 | |
|        }  */
 | |
|     }
 | |
| 
 | |
|   /* Bugware for badly written mixed C-Fortran I/O.  */
 | |
|   if (!is_internal_unit (dtp))
 | |
|     flush_if_preconnected(dtp->u.p.current_unit->s);
 | |
| 
 | |
|   dtp->u.p.current_unit->mode = dtp->u.p.mode;
 | |
| 
 | |
|   /* Set the maximum position reached from the previous I/O operation.  This
 | |
|      could be greater than zero from a previous non-advancing write.  */
 | |
|   dtp->u.p.max_pos = dtp->u.p.current_unit->saved_pos;
 | |
| 
 | |
|   pre_position (dtp);
 | |
| 
 | |
| 
 | |
|   /* Set up the subroutine that will handle the transfers.  */
 | |
| 
 | |
|   if (read_flag)
 | |
|     {
 | |
|       if (dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED)
 | |
| 	dtp->u.p.transfer = unformatted_read;
 | |
|       else
 | |
| 	{
 | |
| 	  if ((cf & IOPARM_DT_LIST_FORMAT) != 0)
 | |
| 	    {
 | |
| 	      if (dtp->u.p.current_unit->child_dtio  == 0)
 | |
| 	        dtp->u.p.current_unit->last_char = EOF - 1;
 | |
| 	      dtp->u.p.transfer = list_formatted_read;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    dtp->u.p.transfer = formatted_transfer;
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       if (dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED)
 | |
| 	dtp->u.p.transfer = unformatted_write;
 | |
|       else
 | |
| 	{
 | |
| 	  if ((cf & IOPARM_DT_LIST_FORMAT) != 0)
 | |
| 	    dtp->u.p.transfer = list_formatted_write;
 | |
| 	  else
 | |
| 	    dtp->u.p.transfer = formatted_transfer;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   /* Make sure that we don't do a read after a nonadvancing write.  */
 | |
| 
 | |
|   if (read_flag)
 | |
|     {
 | |
|       if (dtp->u.p.current_unit->read_bad && !is_stream_io (dtp))
 | |
| 	{
 | |
| 	  generate_error (&dtp->common, LIBERROR_BAD_OPTION,
 | |
| 			  "Cannot READ after a nonadvancing WRITE");
 | |
| 	  return;
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       if (dtp->u.p.advance_status == ADVANCE_YES && !dtp->u.p.seen_dollar)
 | |
| 	dtp->u.p.current_unit->read_bad = 1;
 | |
|     }
 | |
| 
 | |
|   if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED)
 | |
|     {
 | |
| #ifdef HAVE_USELOCALE
 | |
|       dtp->u.p.old_locale = uselocale (c_locale);
 | |
| #else
 | |
|       __gthread_mutex_lock (&old_locale_lock);
 | |
|       if (!old_locale_ctr++)
 | |
| 	{
 | |
| 	  old_locale = setlocale (LC_NUMERIC, NULL);
 | |
| 	  setlocale (LC_NUMERIC, "C");
 | |
| 	}
 | |
|       __gthread_mutex_unlock (&old_locale_lock);
 | |
| #endif
 | |
|       /* Start the data transfer if we are doing a formatted transfer.  */
 | |
|       if ((cf & (IOPARM_DT_LIST_FORMAT | IOPARM_DT_HAS_NAMELIST_NAME)) == 0
 | |
| 	&& dtp->u.p.ionml == NULL)
 | |
| 	formatted_transfer (dtp, 0, NULL, 0, 0, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Initialize an array_loop_spec given the array descriptor.  The function
 | |
|    returns the index of the last element of the array, and also returns
 | |
|    starting record, where the first I/O goes to (necessary in case of
 | |
|    negative strides).  */
 | |
| 
 | |
| gfc_offset
 | |
| init_loop_spec (gfc_array_char *desc, array_loop_spec *ls,
 | |
| 		gfc_offset *start_record)
 | |
| {
 | |
|   int rank = GFC_DESCRIPTOR_RANK(desc);
 | |
|   int i;
 | |
|   gfc_offset index;
 | |
|   int empty;
 | |
| 
 | |
|   empty = 0;
 | |
|   index = 1;
 | |
|   *start_record = 0;
 | |
| 
 | |
|   for (i=0; i<rank; i++)
 | |
|     {
 | |
|       ls[i].idx = GFC_DESCRIPTOR_LBOUND(desc,i);
 | |
|       ls[i].start = GFC_DESCRIPTOR_LBOUND(desc,i);
 | |
|       ls[i].end = GFC_DESCRIPTOR_UBOUND(desc,i);
 | |
|       ls[i].step = GFC_DESCRIPTOR_STRIDE(desc,i);
 | |
|       empty = empty || (GFC_DESCRIPTOR_UBOUND(desc,i)
 | |
| 			< GFC_DESCRIPTOR_LBOUND(desc,i));
 | |
| 
 | |
|       if (GFC_DESCRIPTOR_STRIDE(desc,i) > 0)
 | |
| 	{
 | |
| 	  index += (GFC_DESCRIPTOR_EXTENT(desc,i) - 1)
 | |
| 	    * GFC_DESCRIPTOR_STRIDE(desc,i);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  index -= (GFC_DESCRIPTOR_EXTENT(desc,i) - 1)
 | |
| 	    * GFC_DESCRIPTOR_STRIDE(desc,i);
 | |
| 	  *start_record -= (GFC_DESCRIPTOR_EXTENT(desc,i) - 1)
 | |
| 	    * GFC_DESCRIPTOR_STRIDE(desc,i);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   if (empty)
 | |
|     return 0;
 | |
|   else
 | |
|     return index;
 | |
| }
 | |
| 
 | |
| /* Determine the index to the next record in an internal unit array by
 | |
|    by incrementing through the array_loop_spec.  */
 | |
| 
 | |
| gfc_offset
 | |
| next_array_record (st_parameter_dt *dtp, array_loop_spec *ls, int *finished)
 | |
| {
 | |
|   int i, carry;
 | |
|   gfc_offset index;
 | |
| 
 | |
|   carry = 1;
 | |
|   index = 0;
 | |
| 
 | |
|   for (i = 0; i < dtp->u.p.current_unit->rank; i++)
 | |
|     {
 | |
|       if (carry)
 | |
|         {
 | |
|           ls[i].idx++;
 | |
|           if (ls[i].idx > ls[i].end)
 | |
|             {
 | |
|               ls[i].idx = ls[i].start;
 | |
|               carry = 1;
 | |
|             }
 | |
|           else
 | |
|             carry = 0;
 | |
|         }
 | |
|       index = index + (ls[i].idx - ls[i].start) * ls[i].step;
 | |
|     }
 | |
| 
 | |
|   *finished = carry;
 | |
| 
 | |
|   return index;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Skip to the end of the current record, taking care of an optional
 | |
|    record marker of size bytes.  If the file is not seekable, we
 | |
|    read chunks of size MAX_READ until we get to the right
 | |
|    position.  */
 | |
| 
 | |
| static void
 | |
| skip_record (st_parameter_dt *dtp, ssize_t bytes)
 | |
| {
 | |
|   ssize_t rlength, readb;
 | |
| #define MAX_READ 4096
 | |
|   char p[MAX_READ];
 | |
| 
 | |
|   dtp->u.p.current_unit->bytes_left_subrecord += bytes;
 | |
|   if (dtp->u.p.current_unit->bytes_left_subrecord == 0)
 | |
|     return;
 | |
| 
 | |
|   /* Direct access files do not generate END conditions,
 | |
|      only I/O errors.  */
 | |
|   if (sseek (dtp->u.p.current_unit->s,
 | |
| 	     dtp->u.p.current_unit->bytes_left_subrecord, SEEK_CUR) < 0)
 | |
|     {
 | |
|       /* Seeking failed, fall back to seeking by reading data.  */
 | |
|       while (dtp->u.p.current_unit->bytes_left_subrecord > 0)
 | |
| 	{
 | |
| 	  rlength =
 | |
| 	    (MAX_READ < dtp->u.p.current_unit->bytes_left_subrecord) ?
 | |
| 	    MAX_READ : dtp->u.p.current_unit->bytes_left_subrecord;
 | |
| 
 | |
| 	  readb = sread (dtp->u.p.current_unit->s, p, rlength);
 | |
| 	  if (readb < 0)
 | |
| 	    {
 | |
| 	      generate_error (&dtp->common, LIBERROR_OS, NULL);
 | |
| 	      return;
 | |
| 	    }
 | |
| 
 | |
| 	  dtp->u.p.current_unit->bytes_left_subrecord -= readb;
 | |
| 	}
 | |
|       return;
 | |
|     }
 | |
|   dtp->u.p.current_unit->bytes_left_subrecord = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Advance to the next record reading unformatted files, taking
 | |
|    care of subrecords.  If complete_record is nonzero, we loop
 | |
|    until all subrecords are cleared.  */
 | |
| 
 | |
| static void
 | |
| next_record_r_unf (st_parameter_dt *dtp, int complete_record)
 | |
| {
 | |
|   size_t bytes;
 | |
| 
 | |
|   bytes =  compile_options.record_marker == 0 ?
 | |
|     sizeof (GFC_INTEGER_4) : compile_options.record_marker;
 | |
| 
 | |
|   while(1)
 | |
|     {
 | |
| 
 | |
|       /* Skip over tail */
 | |
| 
 | |
|       skip_record (dtp, bytes);
 | |
| 
 | |
|       if ( ! (complete_record && dtp->u.p.current_unit->continued))
 | |
| 	return;
 | |
| 
 | |
|       us_read (dtp, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static gfc_offset
 | |
| min_off (gfc_offset a, gfc_offset b)
 | |
| {
 | |
|   return (a < b ? a : b);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Space to the next record for read mode.  */
 | |
| 
 | |
| static void
 | |
| next_record_r (st_parameter_dt *dtp, int done)
 | |
| {
 | |
|   gfc_offset record;
 | |
|   int bytes_left;
 | |
|   char p;
 | |
|   int cc;
 | |
| 
 | |
|   switch (current_mode (dtp))
 | |
|     {
 | |
|     /* No records in unformatted STREAM I/O.  */
 | |
|     case UNFORMATTED_STREAM:
 | |
|       return;
 | |
| 
 | |
|     case UNFORMATTED_SEQUENTIAL:
 | |
|       next_record_r_unf (dtp, 1);
 | |
|       dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
 | |
|       break;
 | |
| 
 | |
|     case FORMATTED_DIRECT:
 | |
|     case UNFORMATTED_DIRECT:
 | |
|       skip_record (dtp, dtp->u.p.current_unit->bytes_left);
 | |
|       break;
 | |
| 
 | |
|     case FORMATTED_STREAM:
 | |
|     case FORMATTED_SEQUENTIAL:
 | |
|       /* read_sf has already terminated input because of an '\n', or
 | |
|          we have hit EOF.  */
 | |
|       if (dtp->u.p.sf_seen_eor)
 | |
| 	{
 | |
| 	  dtp->u.p.sf_seen_eor = 0;
 | |
| 	  break;
 | |
| 	}
 | |
| 
 | |
|       if (is_internal_unit (dtp))
 | |
| 	{
 | |
| 	  if (is_array_io (dtp))
 | |
| 	    {
 | |
| 	      int finished;
 | |
| 
 | |
| 	      record = next_array_record (dtp, dtp->u.p.current_unit->ls,
 | |
| 					  &finished);
 | |
| 	      if (!done && finished)
 | |
| 		hit_eof (dtp);
 | |
| 
 | |
| 	      /* Now seek to this record.  */
 | |
| 	      record = record * dtp->u.p.current_unit->recl;
 | |
| 	      if (sseek (dtp->u.p.current_unit->s, record, SEEK_SET) < 0)
 | |
| 		{
 | |
| 		  generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
 | |
| 		  break;
 | |
| 		}
 | |
| 	      dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      bytes_left = (int) dtp->u.p.current_unit->bytes_left;
 | |
| 	      bytes_left = min_off (bytes_left,
 | |
| 		      ssize (dtp->u.p.current_unit->s)
 | |
| 		      - stell (dtp->u.p.current_unit->s));
 | |
| 	      if (sseek (dtp->u.p.current_unit->s,
 | |
| 			 bytes_left, SEEK_CUR) < 0)
 | |
| 	        {
 | |
| 		  generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
 | |
| 		  break;
 | |
| 		}
 | |
| 	      dtp->u.p.current_unit->bytes_left
 | |
| 		= dtp->u.p.current_unit->recl;
 | |
| 	    }
 | |
| 	  break;
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  do
 | |
| 	    {
 | |
|               errno = 0;
 | |
|               cc = fbuf_getc (dtp->u.p.current_unit);
 | |
| 	      if (cc == EOF)
 | |
| 		{
 | |
|                   if (errno != 0)
 | |
|                     generate_error (&dtp->common, LIBERROR_OS, NULL);
 | |
| 		  else
 | |
| 		    {
 | |
| 		      if (is_stream_io (dtp)
 | |
| 			  || dtp->u.p.current_unit->pad_status == PAD_NO
 | |
| 			  || dtp->u.p.current_unit->bytes_left
 | |
| 			     == dtp->u.p.current_unit->recl)
 | |
| 			hit_eof (dtp);
 | |
| 		    }
 | |
| 		  break;
 | |
|                 }
 | |
| 
 | |
| 	      if (is_stream_io (dtp))
 | |
| 		dtp->u.p.current_unit->strm_pos++;
 | |
| 
 | |
|               p = (char) cc;
 | |
| 	    }
 | |
| 	  while (p != '\n');
 | |
| 	}
 | |
|       break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Small utility function to write a record marker, taking care of
 | |
|    byte swapping and of choosing the correct size.  */
 | |
| 
 | |
| static int
 | |
| write_us_marker (st_parameter_dt *dtp, const gfc_offset buf)
 | |
| {
 | |
|   size_t len;
 | |
|   GFC_INTEGER_4 buf4;
 | |
|   GFC_INTEGER_8 buf8;
 | |
| 
 | |
|   if (compile_options.record_marker == 0)
 | |
|     len = sizeof (GFC_INTEGER_4);
 | |
|   else
 | |
|     len = compile_options.record_marker;
 | |
| 
 | |
|   /* Only GFC_CONVERT_NATIVE and GFC_CONVERT_SWAP are valid here.  */
 | |
|   if (likely (dtp->u.p.current_unit->flags.convert == GFC_CONVERT_NATIVE))
 | |
|     {
 | |
|       switch (len)
 | |
| 	{
 | |
| 	case sizeof (GFC_INTEGER_4):
 | |
| 	  buf4 = buf;
 | |
| 	  return swrite (dtp->u.p.current_unit->s, &buf4, len);
 | |
| 	  break;
 | |
| 
 | |
| 	case sizeof (GFC_INTEGER_8):
 | |
| 	  buf8 = buf;
 | |
| 	  return swrite (dtp->u.p.current_unit->s, &buf8, len);
 | |
| 	  break;
 | |
| 
 | |
| 	default:
 | |
| 	  runtime_error ("Illegal value for record marker");
 | |
| 	  break;
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       uint32_t u32;
 | |
|       uint64_t u64;
 | |
|       switch (len)
 | |
| 	{
 | |
| 	case sizeof (GFC_INTEGER_4):
 | |
| 	  buf4 = buf;
 | |
| 	  memcpy (&u32, &buf4, sizeof (u32));
 | |
| 	  u32 = __builtin_bswap32 (u32);
 | |
| 	  return swrite (dtp->u.p.current_unit->s, &u32, len);
 | |
| 	  break;
 | |
| 
 | |
| 	case sizeof (GFC_INTEGER_8):
 | |
| 	  buf8 = buf;
 | |
| 	  memcpy (&u64, &buf8, sizeof (u64));
 | |
| 	  u64 = __builtin_bswap64 (u64);
 | |
| 	  return swrite (dtp->u.p.current_unit->s, &u64, len);
 | |
| 	  break;
 | |
| 
 | |
| 	default:
 | |
| 	  runtime_error ("Illegal value for record marker");
 | |
| 	  break;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Position to the next (sub)record in write mode for
 | |
|    unformatted sequential files.  */
 | |
| 
 | |
| static void
 | |
| next_record_w_unf (st_parameter_dt *dtp, int next_subrecord)
 | |
| {
 | |
|   gfc_offset m, m_write, record_marker;
 | |
| 
 | |
|   /* Bytes written.  */
 | |
|   m = dtp->u.p.current_unit->recl_subrecord
 | |
|     - dtp->u.p.current_unit->bytes_left_subrecord;
 | |
| 
 | |
|   if (compile_options.record_marker == 0)
 | |
|     record_marker = sizeof (GFC_INTEGER_4);
 | |
|   else
 | |
|     record_marker = compile_options.record_marker;
 | |
| 
 | |
|   /* Seek to the head and overwrite the bogus length with the real
 | |
|      length.  */
 | |
| 
 | |
|   if (unlikely (sseek (dtp->u.p.current_unit->s, - m - record_marker,
 | |
| 		       SEEK_CUR) < 0))
 | |
|     goto io_error;
 | |
| 
 | |
|   if (next_subrecord)
 | |
|     m_write = -m;
 | |
|   else
 | |
|     m_write = m;
 | |
| 
 | |
|   if (unlikely (write_us_marker (dtp, m_write) < 0))
 | |
|     goto io_error;
 | |
| 
 | |
|   /* Seek past the end of the current record.  */
 | |
| 
 | |
|   if (unlikely (sseek (dtp->u.p.current_unit->s, m, SEEK_CUR) < 0))
 | |
|     goto io_error;
 | |
| 
 | |
|   /* Write the length tail.  If we finish a record containing
 | |
|      subrecords, we write out the negative length.  */
 | |
| 
 | |
|   if (dtp->u.p.current_unit->continued)
 | |
|     m_write = -m;
 | |
|   else
 | |
|     m_write = m;
 | |
| 
 | |
|   if (unlikely (write_us_marker (dtp, m_write) < 0))
 | |
|     goto io_error;
 | |
| 
 | |
|   return;
 | |
| 
 | |
|  io_error:
 | |
|   generate_error (&dtp->common, LIBERROR_OS, NULL);
 | |
|   return;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Utility function like memset() but operating on streams. Return
 | |
|    value is same as for POSIX write().  */
 | |
| 
 | |
| static ssize_t
 | |
| sset (stream * s, int c, ssize_t nbyte)
 | |
| {
 | |
| #define WRITE_CHUNK 256
 | |
|   char p[WRITE_CHUNK];
 | |
|   ssize_t bytes_left, trans;
 | |
| 
 | |
|   if (nbyte < WRITE_CHUNK)
 | |
|     memset (p, c, nbyte);
 | |
|   else
 | |
|     memset (p, c, WRITE_CHUNK);
 | |
| 
 | |
|   bytes_left = nbyte;
 | |
|   while (bytes_left > 0)
 | |
|     {
 | |
|       trans = (bytes_left < WRITE_CHUNK) ? bytes_left : WRITE_CHUNK;
 | |
|       trans = swrite (s, p, trans);
 | |
|       if (trans <= 0)
 | |
| 	return trans;
 | |
|       bytes_left -= trans;
 | |
|     }
 | |
| 
 | |
|   return nbyte - bytes_left;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Position to the next record in write mode.  */
 | |
| 
 | |
| static void
 | |
| next_record_w (st_parameter_dt *dtp, int done)
 | |
| {
 | |
|   gfc_offset m, record, max_pos;
 | |
|   int length;
 | |
| 
 | |
|   /* Zero counters for X- and T-editing.  */
 | |
|   max_pos = dtp->u.p.max_pos;
 | |
|   dtp->u.p.max_pos = dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
 | |
| 
 | |
|   switch (current_mode (dtp))
 | |
|     {
 | |
|     /* No records in unformatted STREAM I/O.  */
 | |
|     case UNFORMATTED_STREAM:
 | |
|       return;
 | |
| 
 | |
|     case FORMATTED_DIRECT:
 | |
|       if (dtp->u.p.current_unit->bytes_left == 0)
 | |
| 	break;
 | |
| 
 | |
|       fbuf_seek (dtp->u.p.current_unit, 0, SEEK_END);
 | |
|       fbuf_flush (dtp->u.p.current_unit, WRITING);
 | |
|       if (sset (dtp->u.p.current_unit->s, ' ',
 | |
| 		dtp->u.p.current_unit->bytes_left)
 | |
| 	  != dtp->u.p.current_unit->bytes_left)
 | |
| 	goto io_error;
 | |
| 
 | |
|       break;
 | |
| 
 | |
|     case UNFORMATTED_DIRECT:
 | |
|       if (dtp->u.p.current_unit->bytes_left > 0)
 | |
| 	{
 | |
| 	  length = (int) dtp->u.p.current_unit->bytes_left;
 | |
| 	  if (sset (dtp->u.p.current_unit->s, 0, length) != length)
 | |
| 	    goto io_error;
 | |
| 	}
 | |
|       break;
 | |
| 
 | |
|     case UNFORMATTED_SEQUENTIAL:
 | |
|       next_record_w_unf (dtp, 0);
 | |
|       dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
 | |
|       break;
 | |
| 
 | |
|     case FORMATTED_STREAM:
 | |
|     case FORMATTED_SEQUENTIAL:
 | |
| 
 | |
|       if (is_internal_unit (dtp))
 | |
| 	{
 | |
| 	  char *p;
 | |
| 	  if (is_array_io (dtp))
 | |
| 	    {
 | |
| 	      int finished;
 | |
| 
 | |
| 	      length = (int) dtp->u.p.current_unit->bytes_left;
 | |
| 
 | |
| 	      /* If the farthest position reached is greater than current
 | |
| 	      position, adjust the position and set length to pad out
 | |
| 	      whats left.  Otherwise just pad whats left.
 | |
| 	      (for character array unit) */
 | |
| 	      m = dtp->u.p.current_unit->recl
 | |
| 			- dtp->u.p.current_unit->bytes_left;
 | |
| 	      if (max_pos > m)
 | |
| 		{
 | |
| 		  length = (int) (max_pos - m);
 | |
| 		  if (sseek (dtp->u.p.current_unit->s,
 | |
| 			     length, SEEK_CUR) < 0)
 | |
| 		    {
 | |
| 		      generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
 | |
| 		      return;
 | |
| 		    }
 | |
| 		  length = (int) (dtp->u.p.current_unit->recl - max_pos);
 | |
| 		}
 | |
| 
 | |
| 	      p = write_block (dtp, length);
 | |
| 	      if (p == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	      if (unlikely (is_char4_unit (dtp)))
 | |
| 	        {
 | |
| 		  gfc_char4_t *p4 = (gfc_char4_t *) p;
 | |
| 		  memset4 (p4, ' ', length);
 | |
| 		}
 | |
| 	      else
 | |
| 		memset (p, ' ', length);
 | |
| 
 | |
| 	      /* Now that the current record has been padded out,
 | |
| 		 determine where the next record in the array is. */
 | |
| 	      record = next_array_record (dtp, dtp->u.p.current_unit->ls,
 | |
| 					  &finished);
 | |
| 	      if (finished)
 | |
| 		dtp->u.p.current_unit->endfile = AT_ENDFILE;
 | |
| 
 | |
| 	      /* Now seek to this record */
 | |
| 	      record = record * dtp->u.p.current_unit->recl;
 | |
| 
 | |
| 	      if (sseek (dtp->u.p.current_unit->s, record, SEEK_SET) < 0)
 | |
| 		{
 | |
| 		  generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
 | |
| 		  return;
 | |
| 		}
 | |
| 
 | |
| 	      dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      length = 1;
 | |
| 
 | |
| 	      /* If this is the last call to next_record move to the farthest
 | |
| 		 position reached and set length to pad out the remainder
 | |
| 		 of the record. (for character scaler unit) */
 | |
| 	      if (done)
 | |
| 		{
 | |
| 		  m = dtp->u.p.current_unit->recl
 | |
| 			- dtp->u.p.current_unit->bytes_left;
 | |
| 		  if (max_pos > m)
 | |
| 		    {
 | |
| 		      length = (int) (max_pos - m);
 | |
| 		      if (sseek (dtp->u.p.current_unit->s,
 | |
| 				 length, SEEK_CUR) < 0)
 | |
| 		        {
 | |
| 			  generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
 | |
| 			  return;
 | |
| 			}
 | |
| 		      length = (int) (dtp->u.p.current_unit->recl - max_pos);
 | |
| 		    }
 | |
| 		  else
 | |
| 		    length = (int) dtp->u.p.current_unit->bytes_left;
 | |
| 		}
 | |
| 	      if (length > 0)
 | |
| 		{
 | |
| 		  p = write_block (dtp, length);
 | |
| 		  if (p == NULL)
 | |
| 		    return;
 | |
| 
 | |
| 		  if (unlikely (is_char4_unit (dtp)))
 | |
| 		    {
 | |
| 		      gfc_char4_t *p4 = (gfc_char4_t *) p;
 | |
| 		      memset4 (p4, (gfc_char4_t) ' ', length);
 | |
| 		    }
 | |
| 		  else
 | |
| 		    memset (p, ' ', length);
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| #ifdef HAVE_CRLF
 | |
| 	  const int len = 2;
 | |
| #else
 | |
| 	  const int len = 1;
 | |
| #endif
 | |
|           fbuf_seek (dtp->u.p.current_unit, 0, SEEK_END);
 | |
|           char * p = fbuf_alloc (dtp->u.p.current_unit, len);
 | |
|           if (!p)
 | |
|             goto io_error;
 | |
| #ifdef HAVE_CRLF
 | |
|           *(p++) = '\r';
 | |
| #endif
 | |
|           *p = '\n';
 | |
| 	  if (is_stream_io (dtp))
 | |
| 	    {
 | |
| 	      dtp->u.p.current_unit->strm_pos += len;
 | |
| 	      if (dtp->u.p.current_unit->strm_pos
 | |
| 		  < ssize (dtp->u.p.current_unit->s))
 | |
| 		unit_truncate (dtp->u.p.current_unit,
 | |
|                                dtp->u.p.current_unit->strm_pos - 1,
 | |
|                                &dtp->common);
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|       break;
 | |
| 
 | |
|     io_error:
 | |
|       generate_error (&dtp->common, LIBERROR_OS, NULL);
 | |
|       break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Position to the next record, which means moving to the end of the
 | |
|    current record.  This can happen under several different
 | |
|    conditions.  If the done flag is not set, we get ready to process
 | |
|    the next record.  */
 | |
| 
 | |
| void
 | |
| next_record (st_parameter_dt *dtp, int done)
 | |
| {
 | |
|   gfc_offset fp; /* File position.  */
 | |
| 
 | |
|   dtp->u.p.current_unit->read_bad = 0;
 | |
| 
 | |
|   if (dtp->u.p.mode == READING)
 | |
|     next_record_r (dtp, done);
 | |
|   else
 | |
|     next_record_w (dtp, done);
 | |
| 
 | |
|   fbuf_flush (dtp->u.p.current_unit, dtp->u.p.mode);
 | |
| 
 | |
|   if (!is_stream_io (dtp))
 | |
|     {
 | |
|       /* Since we have changed the position, set it to unspecified so
 | |
| 	 that INQUIRE(POSITION=) knows it needs to look into it.  */
 | |
|       if (done)
 | |
| 	dtp->u.p.current_unit->flags.position = POSITION_UNSPECIFIED;
 | |
| 
 | |
|       dtp->u.p.current_unit->current_record = 0;
 | |
|       if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
 | |
| 	{
 | |
| 	  fp = stell (dtp->u.p.current_unit->s);
 | |
| 	  /* Calculate next record, rounding up partial records.  */
 | |
| 	  dtp->u.p.current_unit->last_record =
 | |
| 	    (fp + dtp->u.p.current_unit->recl) /
 | |
| 	      dtp->u.p.current_unit->recl - 1;
 | |
| 	}
 | |
|       else
 | |
| 	dtp->u.p.current_unit->last_record++;
 | |
|     }
 | |
| 
 | |
|   if (!done)
 | |
|     pre_position (dtp);
 | |
| 
 | |
|   smarkeor (dtp->u.p.current_unit->s);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Finalize the current data transfer.  For a nonadvancing transfer,
 | |
|    this means advancing to the next record.  For internal units close the
 | |
|    stream associated with the unit.  */
 | |
| 
 | |
| static void
 | |
| finalize_transfer (st_parameter_dt *dtp)
 | |
| {
 | |
|   GFC_INTEGER_4 cf = dtp->common.flags;
 | |
| 
 | |
|   if ((dtp->u.p.ionml != NULL)
 | |
|       && (cf & IOPARM_DT_HAS_NAMELIST_NAME) != 0)
 | |
|     {
 | |
|        if ((cf & IOPARM_DT_NAMELIST_READ_MODE) != 0)
 | |
| 	 namelist_read (dtp);
 | |
|        else
 | |
| 	 namelist_write (dtp);
 | |
|     }
 | |
| 
 | |
|   if (dtp->u.p.current_unit && (dtp->u.p.current_unit->child_dtio  > 0))
 | |
|     return;
 | |
| 
 | |
|   if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
 | |
|     *dtp->size = dtp->u.p.size_used;
 | |
| 
 | |
|   if (dtp->u.p.eor_condition)
 | |
|     {
 | |
|       generate_error (&dtp->common, LIBERROR_EOR, NULL);
 | |
|       goto done;
 | |
|     }
 | |
| 
 | |
|   if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
 | |
|     {
 | |
|       if (dtp->u.p.current_unit && current_mode (dtp) == UNFORMATTED_SEQUENTIAL)
 | |
| 	dtp->u.p.current_unit->current_record = 0;
 | |
|       goto done;
 | |
|     }
 | |
| 
 | |
|   dtp->u.p.transfer = NULL;
 | |
|   if (dtp->u.p.current_unit == NULL)
 | |
|     goto done;
 | |
| 
 | |
|   if ((cf & IOPARM_DT_LIST_FORMAT) != 0 && dtp->u.p.mode == READING)
 | |
|     {
 | |
|       finish_list_read (dtp);
 | |
|       goto done;
 | |
|     }
 | |
| 
 | |
|   if (dtp->u.p.mode == WRITING)
 | |
|     dtp->u.p.current_unit->previous_nonadvancing_write
 | |
|       = dtp->u.p.advance_status == ADVANCE_NO;
 | |
| 
 | |
|   if (is_stream_io (dtp))
 | |
|     {
 | |
|       if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED
 | |
| 	  && dtp->u.p.advance_status != ADVANCE_NO)
 | |
| 	next_record (dtp, 1);
 | |
| 
 | |
|       goto done;
 | |
|     }
 | |
| 
 | |
|   dtp->u.p.current_unit->current_record = 0;
 | |
| 
 | |
|   if (!is_internal_unit (dtp) && dtp->u.p.seen_dollar)
 | |
|     {
 | |
|       fbuf_flush (dtp->u.p.current_unit, dtp->u.p.mode);
 | |
|       dtp->u.p.seen_dollar = 0;
 | |
|       goto done;
 | |
|     }
 | |
| 
 | |
|   /* For non-advancing I/O, save the current maximum position for use in the
 | |
|      next I/O operation if needed.  */
 | |
|   if (dtp->u.p.advance_status == ADVANCE_NO)
 | |
|     {
 | |
|       if (dtp->u.p.skips > 0)
 | |
| 	{
 | |
| 	  int tmp;
 | |
| 	  write_x (dtp, dtp->u.p.skips, dtp->u.p.pending_spaces);
 | |
| 	  tmp = (int)(dtp->u.p.current_unit->recl
 | |
| 		      - dtp->u.p.current_unit->bytes_left);
 | |
| 	  dtp->u.p.max_pos =
 | |
| 	    dtp->u.p.max_pos > tmp ? dtp->u.p.max_pos : tmp;
 | |
| 	  dtp->u.p.skips = 0;
 | |
| 	}
 | |
|       int bytes_written = (int) (dtp->u.p.current_unit->recl
 | |
| 	- dtp->u.p.current_unit->bytes_left);
 | |
|       dtp->u.p.current_unit->saved_pos =
 | |
| 	dtp->u.p.max_pos > 0 ? dtp->u.p.max_pos - bytes_written : 0;
 | |
|       fbuf_flush (dtp->u.p.current_unit, dtp->u.p.mode);
 | |
|       goto done;
 | |
|     }
 | |
|   else if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED
 | |
|            && dtp->u.p.mode == WRITING && !is_internal_unit (dtp))
 | |
|       fbuf_seek (dtp->u.p.current_unit, 0, SEEK_END);
 | |
| 
 | |
|   dtp->u.p.current_unit->saved_pos = 0;
 | |
| 
 | |
|   next_record (dtp, 1);
 | |
| 
 | |
|  done:
 | |
| #ifdef HAVE_USELOCALE
 | |
|   if (dtp->u.p.old_locale != (locale_t) 0)
 | |
|     {
 | |
|       uselocale (dtp->u.p.old_locale);
 | |
|       dtp->u.p.old_locale = (locale_t) 0;
 | |
|     }
 | |
| #else
 | |
|   __gthread_mutex_lock (&old_locale_lock);
 | |
|   if (!--old_locale_ctr)
 | |
|     {
 | |
|       setlocale (LC_NUMERIC, old_locale);
 | |
|       old_locale = NULL;
 | |
|     }
 | |
|   __gthread_mutex_unlock (&old_locale_lock);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Transfer function for IOLENGTH. It doesn't actually do any
 | |
|    data transfer, it just updates the length counter.  */
 | |
| 
 | |
| static void
 | |
| iolength_transfer (st_parameter_dt *dtp, bt type __attribute__((unused)),
 | |
| 		   void *dest __attribute__ ((unused)),
 | |
| 		   int kind __attribute__((unused)),
 | |
| 		   size_t size, size_t nelems)
 | |
| {
 | |
|   if ((dtp->common.flags & IOPARM_DT_HAS_IOLENGTH) != 0)
 | |
|     *dtp->iolength += (GFC_IO_INT) (size * nelems);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Initialize the IOLENGTH data transfer. This function is in essence
 | |
|    a very much simplified version of data_transfer_init(), because it
 | |
|    doesn't have to deal with units at all.  */
 | |
| 
 | |
| static void
 | |
| iolength_transfer_init (st_parameter_dt *dtp)
 | |
| {
 | |
|   if ((dtp->common.flags & IOPARM_DT_HAS_IOLENGTH) != 0)
 | |
|     *dtp->iolength = 0;
 | |
| 
 | |
|   memset (&dtp->u.p, 0, sizeof (dtp->u.p));
 | |
| 
 | |
|   /* Set up the subroutine that will handle the transfers.  */
 | |
| 
 | |
|   dtp->u.p.transfer = iolength_transfer;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Library entry point for the IOLENGTH form of the INQUIRE
 | |
|    statement. The IOLENGTH form requires no I/O to be performed, but
 | |
|    it must still be a runtime library call so that we can determine
 | |
|    the iolength for dynamic arrays and such.  */
 | |
| 
 | |
| extern void st_iolength (st_parameter_dt *);
 | |
| export_proto(st_iolength);
 | |
| 
 | |
| void
 | |
| st_iolength (st_parameter_dt *dtp)
 | |
| {
 | |
|   library_start (&dtp->common);
 | |
|   iolength_transfer_init (dtp);
 | |
| }
 | |
| 
 | |
| extern void st_iolength_done (st_parameter_dt *);
 | |
| export_proto(st_iolength_done);
 | |
| 
 | |
| void
 | |
| st_iolength_done (st_parameter_dt *dtp __attribute__((unused)))
 | |
| {
 | |
|   free_ionml (dtp);
 | |
|   library_end ();
 | |
| }
 | |
| 
 | |
| 
 | |
| /* The READ statement.  */
 | |
| 
 | |
| extern void st_read (st_parameter_dt *);
 | |
| export_proto(st_read);
 | |
| 
 | |
| void
 | |
| st_read (st_parameter_dt *dtp)
 | |
| {
 | |
|   library_start (&dtp->common);
 | |
| 
 | |
|   data_transfer_init (dtp, 1);
 | |
| }
 | |
| 
 | |
| extern void st_read_done (st_parameter_dt *);
 | |
| export_proto(st_read_done);
 | |
| 
 | |
| void
 | |
| st_read_done (st_parameter_dt *dtp)
 | |
| {
 | |
|   finalize_transfer (dtp);
 | |
| 
 | |
|   free_ionml (dtp);
 | |
| 
 | |
|   /* If this is a parent READ statement we do not need to retain the
 | |
|      internal unit structure for child use.  Free it and stash the unit
 | |
|      number for reuse.  */
 | |
|   if (dtp->u.p.current_unit != NULL
 | |
|       && dtp->u.p.current_unit->child_dtio == 0)
 | |
|     {
 | |
|       if (is_internal_unit (dtp) &&
 | |
| 	  (dtp->common.flags & IOPARM_DT_HAS_UDTIO) == 0)
 | |
|         {
 | |
| 	  free (dtp->u.p.current_unit->filename);
 | |
| 	  dtp->u.p.current_unit->filename = NULL;
 | |
| 	  free_format_hash_table (dtp->u.p.current_unit);
 | |
| 	  free (dtp->u.p.current_unit->s);
 | |
| 	  dtp->u.p.current_unit->s = NULL;
 | |
| 	  if (dtp->u.p.current_unit->ls)
 | |
| 	    free (dtp->u.p.current_unit->ls);
 | |
| 	  dtp->u.p.current_unit->ls = NULL;
 | |
| 	  stash_internal_unit (dtp);
 | |
| 	}
 | |
|       if (is_internal_unit (dtp) || dtp->u.p.format_not_saved)
 | |
| 	{
 | |
| 	  free_format_data (dtp->u.p.fmt);
 | |
| 	  free_format (dtp);
 | |
| 	}
 | |
|       unlock_unit (dtp->u.p.current_unit);
 | |
|     }
 | |
| 
 | |
|   library_end ();
 | |
| }
 | |
| 
 | |
| extern void st_write (st_parameter_dt *);
 | |
| export_proto(st_write);
 | |
| 
 | |
| void
 | |
| st_write (st_parameter_dt *dtp)
 | |
| {
 | |
|   library_start (&dtp->common);
 | |
|   data_transfer_init (dtp, 0);
 | |
| }
 | |
| 
 | |
| extern void st_write_done (st_parameter_dt *);
 | |
| export_proto(st_write_done);
 | |
| 
 | |
| void
 | |
| st_write_done (st_parameter_dt *dtp)
 | |
| {
 | |
|   finalize_transfer (dtp);
 | |
| 
 | |
|   if (dtp->u.p.current_unit != NULL
 | |
|       && dtp->u.p.current_unit->child_dtio == 0)
 | |
|     {
 | |
|       /* Deal with endfile conditions associated with sequential files.  */
 | |
|       if (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL)
 | |
| 	switch (dtp->u.p.current_unit->endfile)
 | |
| 	  {
 | |
| 	  case AT_ENDFILE:		/* Remain at the endfile record.  */
 | |
| 	    break;
 | |
| 
 | |
| 	  case AFTER_ENDFILE:
 | |
| 	    dtp->u.p.current_unit->endfile = AT_ENDFILE; /* Just at it now.  */
 | |
| 	    break;
 | |
| 
 | |
| 	  case NO_ENDFILE:
 | |
| 	    /* Get rid of whatever is after this record.  */
 | |
| 	    if (!is_internal_unit (dtp))
 | |
| 	      unit_truncate (dtp->u.p.current_unit,
 | |
| 			     stell (dtp->u.p.current_unit->s),
 | |
| 			     &dtp->common);
 | |
| 	    dtp->u.p.current_unit->endfile = AT_ENDFILE;
 | |
| 	    break;
 | |
| 	  }
 | |
| 
 | |
|       free_ionml (dtp);
 | |
| 
 | |
|       /* If this is a parent WRITE statement we do not need to retain the
 | |
| 	 internal unit structure for child use.  Free it and stash the
 | |
| 	 unit number for reuse.  */
 | |
|       if (is_internal_unit (dtp) &&
 | |
| 	  (dtp->common.flags & IOPARM_DT_HAS_UDTIO) == 0)
 | |
| 	{
 | |
| 	  free (dtp->u.p.current_unit->filename);
 | |
| 	  dtp->u.p.current_unit->filename = NULL;
 | |
| 	  free_format_hash_table (dtp->u.p.current_unit);
 | |
| 	  free (dtp->u.p.current_unit->s);
 | |
| 	  dtp->u.p.current_unit->s = NULL;
 | |
| 	  if (dtp->u.p.current_unit->ls)
 | |
| 	    free (dtp->u.p.current_unit->ls);
 | |
| 	  dtp->u.p.current_unit->ls = NULL;
 | |
| 	  stash_internal_unit (dtp);
 | |
| 	}
 | |
|       if (is_internal_unit (dtp) || dtp->u.p.format_not_saved)
 | |
| 	{
 | |
| 	  free_format_data (dtp->u.p.fmt);
 | |
| 	  free_format (dtp);
 | |
| 	}
 | |
|       unlock_unit (dtp->u.p.current_unit);
 | |
|     }
 | |
|   library_end ();
 | |
| }
 | |
| 
 | |
| 
 | |
| /* F2003: This is a stub for the runtime portion of the WAIT statement.  */
 | |
| void
 | |
| st_wait (st_parameter_wait *wtp __attribute__((unused)))
 | |
| {
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Receives the scalar information for namelist objects and stores it
 | |
|    in a linked list of namelist_info types.  */
 | |
| 
 | |
| static void
 | |
| set_nml_var (st_parameter_dt *dtp, void * var_addr, char * var_name,
 | |
| 	     GFC_INTEGER_4 len, gfc_charlen_type string_length,
 | |
| 	     GFC_INTEGER_4 dtype, void *dtio_sub, void *vtable)
 | |
| {
 | |
|   namelist_info *t1 = NULL;
 | |
|   namelist_info *nml;
 | |
|   size_t var_name_len = strlen (var_name);
 | |
| 
 | |
|   nml = (namelist_info*) xmalloc (sizeof (namelist_info));
 | |
| 
 | |
|   nml->mem_pos = var_addr;
 | |
|   nml->dtio_sub = dtio_sub;
 | |
|   nml->vtable = vtable;
 | |
| 
 | |
|   nml->var_name = (char*) xmalloc (var_name_len + 1);
 | |
|   memcpy (nml->var_name, var_name, var_name_len);
 | |
|   nml->var_name[var_name_len] = '\0';
 | |
| 
 | |
|   nml->len = (int) len;
 | |
|   nml->string_length = (index_type) string_length;
 | |
| 
 | |
|   nml->var_rank = (int) (dtype & GFC_DTYPE_RANK_MASK);
 | |
|   nml->size = (index_type) (dtype >> GFC_DTYPE_SIZE_SHIFT);
 | |
|   nml->type = (bt) ((dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT);
 | |
| 
 | |
|   if (nml->var_rank > 0)
 | |
|     {
 | |
|       nml->dim = (descriptor_dimension*)
 | |
| 	xmallocarray (nml->var_rank, sizeof (descriptor_dimension));
 | |
|       nml->ls = (array_loop_spec*)
 | |
| 	xmallocarray (nml->var_rank, sizeof (array_loop_spec));
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       nml->dim = NULL;
 | |
|       nml->ls = NULL;
 | |
|     }
 | |
| 
 | |
|   nml->next = NULL;
 | |
| 
 | |
|   if ((dtp->common.flags & IOPARM_DT_IONML_SET) == 0)
 | |
|     {
 | |
|       dtp->common.flags |= IOPARM_DT_IONML_SET;
 | |
|       dtp->u.p.ionml = nml;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       for (t1 = dtp->u.p.ionml; t1->next; t1 = t1->next);
 | |
|       t1->next = nml;
 | |
|     }
 | |
| }
 | |
| 
 | |
| extern void st_set_nml_var (st_parameter_dt *dtp, void *, char *,
 | |
| 			    GFC_INTEGER_4, gfc_charlen_type, GFC_INTEGER_4);
 | |
| export_proto(st_set_nml_var);
 | |
| 
 | |
| void
 | |
| st_set_nml_var (st_parameter_dt *dtp, void * var_addr, char * var_name,
 | |
| 		GFC_INTEGER_4 len, gfc_charlen_type string_length,
 | |
| 		GFC_INTEGER_4 dtype)
 | |
| {
 | |
|   set_nml_var (dtp, var_addr, var_name, len, string_length,
 | |
| 	       dtype, NULL, NULL);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Essentially the same as previous but carrying the dtio procedure
 | |
|    and the vtable as additional arguments.  */
 | |
| extern void st_set_nml_dtio_var (st_parameter_dt *dtp, void *, char *,
 | |
| 				 GFC_INTEGER_4, gfc_charlen_type, GFC_INTEGER_4,
 | |
| 				 void *, void *);
 | |
| export_proto(st_set_nml_dtio_var);
 | |
| 
 | |
| 
 | |
| void
 | |
| st_set_nml_dtio_var (st_parameter_dt *dtp, void * var_addr, char * var_name,
 | |
| 		     GFC_INTEGER_4 len, gfc_charlen_type string_length,
 | |
| 		     GFC_INTEGER_4 dtype, void *dtio_sub, void *vtable)
 | |
| {
 | |
|   set_nml_var (dtp, var_addr, var_name, len, string_length,
 | |
| 	       dtype, dtio_sub, vtable);
 | |
| }
 | |
| 
 | |
| /* Store the dimensional information for the namelist object.  */
 | |
| extern void st_set_nml_var_dim (st_parameter_dt *, GFC_INTEGER_4,
 | |
| 				index_type, index_type,
 | |
| 				index_type);
 | |
| export_proto(st_set_nml_var_dim);
 | |
| 
 | |
| void
 | |
| st_set_nml_var_dim (st_parameter_dt *dtp, GFC_INTEGER_4 n_dim,
 | |
| 		    index_type stride, index_type lbound,
 | |
| 		    index_type ubound)
 | |
| {
 | |
|   namelist_info * nml;
 | |
|   int n;
 | |
| 
 | |
|   n = (int)n_dim;
 | |
| 
 | |
|   for (nml = dtp->u.p.ionml; nml->next; nml = nml->next);
 | |
| 
 | |
|   GFC_DIMENSION_SET(nml->dim[n],lbound,ubound,stride);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Once upon a time, a poor innocent Fortran program was reading a
 | |
|    file, when suddenly it hit the end-of-file (EOF).  Unfortunately
 | |
|    the OS doesn't tell whether we're at the EOF or whether we already
 | |
|    went past it.  Luckily our hero, libgfortran, keeps track of this.
 | |
|    Call this function when you detect an EOF condition.  See Section
 | |
|    9.10.2 in F2003.  */
 | |
| 
 | |
| void
 | |
| hit_eof (st_parameter_dt * dtp)
 | |
| {
 | |
|   dtp->u.p.current_unit->flags.position = POSITION_APPEND;
 | |
| 
 | |
|   if (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL)
 | |
|     switch (dtp->u.p.current_unit->endfile)
 | |
|       {
 | |
|       case NO_ENDFILE:
 | |
|       case AT_ENDFILE:
 | |
|         generate_error (&dtp->common, LIBERROR_END, NULL);
 | |
| 	if (!is_internal_unit (dtp) && !dtp->u.p.namelist_mode)
 | |
| 	  {
 | |
| 	    dtp->u.p.current_unit->endfile = AFTER_ENDFILE;
 | |
| 	    dtp->u.p.current_unit->current_record = 0;
 | |
| 	  }
 | |
|         else
 | |
|           dtp->u.p.current_unit->endfile = AT_ENDFILE;
 | |
| 	break;
 | |
| 
 | |
|       case AFTER_ENDFILE:
 | |
| 	generate_error (&dtp->common, LIBERROR_ENDFILE, NULL);
 | |
| 	dtp->u.p.current_unit->current_record = 0;
 | |
| 	break;
 | |
|       }
 | |
|   else
 | |
|     {
 | |
|       /* Non-sequential files don't have an ENDFILE record, so we
 | |
|          can't be at AFTER_ENDFILE.  */
 | |
|       dtp->u.p.current_unit->endfile = AT_ENDFILE;
 | |
|       generate_error (&dtp->common, LIBERROR_END, NULL);
 | |
|       dtp->u.p.current_unit->current_record = 0;
 | |
|     }
 | |
| }
 |