mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			185 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			185 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C
		
	
	
	
/* Implementation of the BESSEL_JN and BESSEL_YN transformational
 | 
						|
   function using a recurrence algorithm.
 | 
						|
   Copyright (C) 2010-2016 Free Software Foundation, Inc.
 | 
						|
   Contributed by Tobias Burnus <burnus@net-b.de>
 | 
						|
 | 
						|
This file is part of the GNU Fortran runtime library (libgfortran).
 | 
						|
 | 
						|
Libgfortran is free software; you can redistribute it and/or
 | 
						|
modify it under the terms of the GNU General Public
 | 
						|
License as published by the Free Software Foundation; either
 | 
						|
version 3 of the License, or (at your option) any later version.
 | 
						|
 | 
						|
Libgfortran is distributed in the hope that it will be useful,
 | 
						|
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
GNU General Public License for more details.
 | 
						|
 | 
						|
Under Section 7 of GPL version 3, you are granted additional
 | 
						|
permissions described in the GCC Runtime Library Exception, version
 | 
						|
3.1, as published by the Free Software Foundation.
 | 
						|
 | 
						|
You should have received a copy of the GNU General Public License and
 | 
						|
a copy of the GCC Runtime Library Exception along with this program;
 | 
						|
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | 
						|
<http://www.gnu.org/licenses/>.  */
 | 
						|
 | 
						|
#include "libgfortran.h"
 | 
						|
#include <stdlib.h>
 | 
						|
#include <assert.h>
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#define MATHFUNC(funcname) funcname ## f
 | 
						|
 | 
						|
#if defined (HAVE_GFC_REAL_4)
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#if defined (HAVE_JNF)
 | 
						|
extern void bessel_jn_r4 (gfc_array_r4 * const restrict ret, int n1,
 | 
						|
				     int n2, GFC_REAL_4 x);
 | 
						|
export_proto(bessel_jn_r4);
 | 
						|
 | 
						|
void
 | 
						|
bessel_jn_r4 (gfc_array_r4 * const restrict ret, int n1, int n2, GFC_REAL_4 x)
 | 
						|
{
 | 
						|
  int i;
 | 
						|
  index_type stride;
 | 
						|
 | 
						|
  GFC_REAL_4 last1, last2, x2rev;
 | 
						|
 | 
						|
  stride = GFC_DESCRIPTOR_STRIDE(ret,0);
 | 
						|
 | 
						|
  if (ret->base_addr == NULL)
 | 
						|
    {
 | 
						|
      size_t size = n2 < n1 ? 0 : n2-n1+1; 
 | 
						|
      GFC_DIMENSION_SET(ret->dim[0], 0, size-1, 1);
 | 
						|
      ret->base_addr = xmallocarray (size, sizeof (GFC_REAL_4));
 | 
						|
      ret->offset = 0;
 | 
						|
    }
 | 
						|
 | 
						|
  if (unlikely (n2 < n1))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (unlikely (compile_options.bounds_check)
 | 
						|
      && GFC_DESCRIPTOR_EXTENT(ret,0) != (n2-n1+1))
 | 
						|
    runtime_error("Incorrect extent in return value of BESSEL_JN "
 | 
						|
		  "(%ld vs. %ld)", (long int) n2-n1,
 | 
						|
		  (long int) GFC_DESCRIPTOR_EXTENT(ret,0));
 | 
						|
 | 
						|
  stride = GFC_DESCRIPTOR_STRIDE(ret,0);
 | 
						|
 | 
						|
  if (unlikely (x == 0))
 | 
						|
    {
 | 
						|
      ret->base_addr[0] = 1;
 | 
						|
      for (i = 1; i <= n2-n1; i++)
 | 
						|
        ret->base_addr[i*stride] = 0;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
  last1 = MATHFUNC(jn) (n2, x);
 | 
						|
  ret->base_addr[(n2-n1)*stride] = last1;
 | 
						|
 | 
						|
  if (n1 == n2)
 | 
						|
    return;
 | 
						|
 | 
						|
  last2 = MATHFUNC(jn) (n2 - 1, x);
 | 
						|
  ret->base_addr[(n2-n1-1)*stride] = last2;
 | 
						|
 | 
						|
  if (n1 + 1 == n2)
 | 
						|
    return;
 | 
						|
 | 
						|
  x2rev = GFC_REAL_4_LITERAL(2.)/x;
 | 
						|
 | 
						|
  for (i = n2-n1-2; i >= 0; i--)
 | 
						|
    {
 | 
						|
      ret->base_addr[i*stride] = x2rev * (i+1+n1) * last2 - last1;
 | 
						|
      last1 = last2;
 | 
						|
      last2 = ret->base_addr[i*stride];
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined (HAVE_YNF)
 | 
						|
extern void bessel_yn_r4 (gfc_array_r4 * const restrict ret,
 | 
						|
				     int n1, int n2, GFC_REAL_4 x);
 | 
						|
export_proto(bessel_yn_r4);
 | 
						|
 | 
						|
void
 | 
						|
bessel_yn_r4 (gfc_array_r4 * const restrict ret, int n1, int n2,
 | 
						|
			 GFC_REAL_4 x)
 | 
						|
{
 | 
						|
  int i;
 | 
						|
  index_type stride;
 | 
						|
 | 
						|
  GFC_REAL_4 last1, last2, x2rev;
 | 
						|
 | 
						|
  stride = GFC_DESCRIPTOR_STRIDE(ret,0);
 | 
						|
 | 
						|
  if (ret->base_addr == NULL)
 | 
						|
    {
 | 
						|
      size_t size = n2 < n1 ? 0 : n2-n1+1; 
 | 
						|
      GFC_DIMENSION_SET(ret->dim[0], 0, size-1, 1);
 | 
						|
      ret->base_addr = xmallocarray (size, sizeof (GFC_REAL_4));
 | 
						|
      ret->offset = 0;
 | 
						|
    }
 | 
						|
 | 
						|
  if (unlikely (n2 < n1))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (unlikely (compile_options.bounds_check)
 | 
						|
      && GFC_DESCRIPTOR_EXTENT(ret,0) != (n2-n1+1))
 | 
						|
    runtime_error("Incorrect extent in return value of BESSEL_JN "
 | 
						|
		  "(%ld vs. %ld)", (long int) n2-n1,
 | 
						|
		  (long int) GFC_DESCRIPTOR_EXTENT(ret,0));
 | 
						|
 | 
						|
  stride = GFC_DESCRIPTOR_STRIDE(ret,0);
 | 
						|
 | 
						|
  if (unlikely (x == 0))
 | 
						|
    {
 | 
						|
      for (i = 0; i <= n2-n1; i++)
 | 
						|
#if defined(GFC_REAL_4_INFINITY)
 | 
						|
        ret->base_addr[i*stride] = -GFC_REAL_4_INFINITY;
 | 
						|
#else
 | 
						|
        ret->base_addr[i*stride] = -GFC_REAL_4_HUGE;
 | 
						|
#endif
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
  last1 = MATHFUNC(yn) (n1, x);
 | 
						|
  ret->base_addr[0] = last1;
 | 
						|
 | 
						|
  if (n1 == n2)
 | 
						|
    return;
 | 
						|
 | 
						|
  last2 = MATHFUNC(yn) (n1 + 1, x);
 | 
						|
  ret->base_addr[1*stride] = last2;
 | 
						|
 | 
						|
  if (n1 + 1 == n2)
 | 
						|
    return;
 | 
						|
 | 
						|
  x2rev = GFC_REAL_4_LITERAL(2.)/x;
 | 
						|
 | 
						|
  for (i = 2; i <= n2 - n1; i++)
 | 
						|
    {
 | 
						|
#if defined(GFC_REAL_4_INFINITY)
 | 
						|
      if (unlikely (last2 == -GFC_REAL_4_INFINITY))
 | 
						|
	{
 | 
						|
	  ret->base_addr[i*stride] = -GFC_REAL_4_INFINITY;
 | 
						|
	}
 | 
						|
      else
 | 
						|
#endif
 | 
						|
	{
 | 
						|
	  ret->base_addr[i*stride] = x2rev * (i-1+n1) * last2 - last1;
 | 
						|
	  last1 = last2;
 | 
						|
	  last2 = ret->base_addr[i*stride];
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#endif
 | 
						|
 |