mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			281 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			281 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Go
		
	
	
	
// Copyright 2011 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
 | 
						|
// defined in FIPS 186-3.
 | 
						|
//
 | 
						|
// This implementation  derives the nonce from an AES-CTR CSPRNG keyed by
 | 
						|
// ChopMD(256, SHA2-512(priv.D || entropy || hash)). The CSPRNG key is IRO by
 | 
						|
// a result of Coron; the AES-CTR stream is IRO under standard assumptions.
 | 
						|
package ecdsa
 | 
						|
 | 
						|
// References:
 | 
						|
//   [NSA]: Suite B implementer's guide to FIPS 186-3,
 | 
						|
//     http://www.nsa.gov/ia/_files/ecdsa.pdf
 | 
						|
//   [SECG]: SECG, SEC1
 | 
						|
//     http://www.secg.org/sec1-v2.pdf
 | 
						|
 | 
						|
import (
 | 
						|
	"crypto"
 | 
						|
	"crypto/aes"
 | 
						|
	"crypto/cipher"
 | 
						|
	"crypto/elliptic"
 | 
						|
	"crypto/sha512"
 | 
						|
	"encoding/asn1"
 | 
						|
	"errors"
 | 
						|
	"io"
 | 
						|
	"math/big"
 | 
						|
)
 | 
						|
 | 
						|
// A invertible implements fast inverse mod Curve.Params().N
 | 
						|
type invertible interface {
 | 
						|
	// Inverse returns the inverse of k in GF(P)
 | 
						|
	Inverse(k *big.Int) *big.Int
 | 
						|
}
 | 
						|
 | 
						|
// combinedMult implements fast multiplication S1*g + S2*p (g - generator, p - arbitrary point)
 | 
						|
type combinedMult interface {
 | 
						|
	CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int)
 | 
						|
}
 | 
						|
 | 
						|
const (
 | 
						|
	aesIV = "IV for ECDSA CTR"
 | 
						|
)
 | 
						|
 | 
						|
// PublicKey represents an ECDSA public key.
 | 
						|
type PublicKey struct {
 | 
						|
	elliptic.Curve
 | 
						|
	X, Y *big.Int
 | 
						|
}
 | 
						|
 | 
						|
// PrivateKey represents a ECDSA private key.
 | 
						|
type PrivateKey struct {
 | 
						|
	PublicKey
 | 
						|
	D *big.Int
 | 
						|
}
 | 
						|
 | 
						|
type ecdsaSignature struct {
 | 
						|
	R, S *big.Int
 | 
						|
}
 | 
						|
 | 
						|
// Public returns the public key corresponding to priv.
 | 
						|
func (priv *PrivateKey) Public() crypto.PublicKey {
 | 
						|
	return &priv.PublicKey
 | 
						|
}
 | 
						|
 | 
						|
// Sign signs msg with priv, reading randomness from rand. This method is
 | 
						|
// intended to support keys where the private part is kept in, for example, a
 | 
						|
// hardware module. Common uses should use the Sign function in this package
 | 
						|
// directly.
 | 
						|
func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) {
 | 
						|
	r, s, err := Sign(rand, priv, msg)
 | 
						|
	if err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
 | 
						|
	return asn1.Marshal(ecdsaSignature{r, s})
 | 
						|
}
 | 
						|
 | 
						|
var one = new(big.Int).SetInt64(1)
 | 
						|
 | 
						|
// randFieldElement returns a random element of the field underlying the given
 | 
						|
// curve using the procedure given in [NSA] A.2.1.
 | 
						|
func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
 | 
						|
	params := c.Params()
 | 
						|
	b := make([]byte, params.BitSize/8+8)
 | 
						|
	_, err = io.ReadFull(rand, b)
 | 
						|
	if err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	k = new(big.Int).SetBytes(b)
 | 
						|
	n := new(big.Int).Sub(params.N, one)
 | 
						|
	k.Mod(k, n)
 | 
						|
	k.Add(k, one)
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// GenerateKey generates a public and private key pair.
 | 
						|
func GenerateKey(c elliptic.Curve, rand io.Reader) (priv *PrivateKey, err error) {
 | 
						|
	k, err := randFieldElement(c, rand)
 | 
						|
	if err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	priv = new(PrivateKey)
 | 
						|
	priv.PublicKey.Curve = c
 | 
						|
	priv.D = k
 | 
						|
	priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// hashToInt converts a hash value to an integer. There is some disagreement
 | 
						|
// about how this is done. [NSA] suggests that this is done in the obvious
 | 
						|
// manner, but [SECG] truncates the hash to the bit-length of the curve order
 | 
						|
// first. We follow [SECG] because that's what OpenSSL does. Additionally,
 | 
						|
// OpenSSL right shifts excess bits from the number if the hash is too large
 | 
						|
// and we mirror that too.
 | 
						|
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
 | 
						|
	orderBits := c.Params().N.BitLen()
 | 
						|
	orderBytes := (orderBits + 7) / 8
 | 
						|
	if len(hash) > orderBytes {
 | 
						|
		hash = hash[:orderBytes]
 | 
						|
	}
 | 
						|
 | 
						|
	ret := new(big.Int).SetBytes(hash)
 | 
						|
	excess := len(hash)*8 - orderBits
 | 
						|
	if excess > 0 {
 | 
						|
		ret.Rsh(ret, uint(excess))
 | 
						|
	}
 | 
						|
	return ret
 | 
						|
}
 | 
						|
 | 
						|
// fermatInverse calculates the inverse of k in GF(P) using Fermat's method.
 | 
						|
// This has better constant-time properties than Euclid's method (implemented
 | 
						|
// in math/big.Int.ModInverse) although math/big itself isn't strictly
 | 
						|
// constant-time so it's not perfect.
 | 
						|
func fermatInverse(k, N *big.Int) *big.Int {
 | 
						|
	two := big.NewInt(2)
 | 
						|
	nMinus2 := new(big.Int).Sub(N, two)
 | 
						|
	return new(big.Int).Exp(k, nMinus2, N)
 | 
						|
}
 | 
						|
 | 
						|
var errZeroParam = errors.New("zero parameter")
 | 
						|
 | 
						|
// Sign signs an arbitrary length hash (which should be the result of hashing a
 | 
						|
// larger message) using the private key, priv. It returns the signature as a
 | 
						|
// pair of integers. The security of the private key depends on the entropy of
 | 
						|
// rand.
 | 
						|
func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
 | 
						|
	// Get max(log2(q) / 2, 256) bits of entropy from rand.
 | 
						|
	entropylen := (priv.Curve.Params().BitSize + 7) / 16
 | 
						|
	if entropylen > 32 {
 | 
						|
		entropylen = 32
 | 
						|
	}
 | 
						|
	entropy := make([]byte, entropylen)
 | 
						|
	_, err = io.ReadFull(rand, entropy)
 | 
						|
	if err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	// Initialize an SHA-512 hash context; digest ...
 | 
						|
	md := sha512.New()
 | 
						|
	md.Write(priv.D.Bytes()) // the private key,
 | 
						|
	md.Write(entropy)        // the entropy,
 | 
						|
	md.Write(hash)           // and the input hash;
 | 
						|
	key := md.Sum(nil)[:32]  // and compute ChopMD-256(SHA-512),
 | 
						|
	// which is an indifferentiable MAC.
 | 
						|
 | 
						|
	// Create an AES-CTR instance to use as a CSPRNG.
 | 
						|
	block, err := aes.NewCipher(key)
 | 
						|
	if err != nil {
 | 
						|
		return nil, nil, err
 | 
						|
	}
 | 
						|
 | 
						|
	// Create a CSPRNG that xors a stream of zeros with
 | 
						|
	// the output of the AES-CTR instance.
 | 
						|
	csprng := cipher.StreamReader{
 | 
						|
		R: zeroReader,
 | 
						|
		S: cipher.NewCTR(block, []byte(aesIV)),
 | 
						|
	}
 | 
						|
 | 
						|
	// See [NSA] 3.4.1
 | 
						|
	c := priv.PublicKey.Curve
 | 
						|
	N := c.Params().N
 | 
						|
	if N.Sign() == 0 {
 | 
						|
		return nil, nil, errZeroParam
 | 
						|
	}
 | 
						|
	var k, kInv *big.Int
 | 
						|
	for {
 | 
						|
		for {
 | 
						|
			k, err = randFieldElement(c, csprng)
 | 
						|
			if err != nil {
 | 
						|
				r = nil
 | 
						|
				return
 | 
						|
			}
 | 
						|
 | 
						|
			if in, ok := priv.Curve.(invertible); ok {
 | 
						|
				kInv = in.Inverse(k)
 | 
						|
			} else {
 | 
						|
				kInv = fermatInverse(k, N) // N != 0
 | 
						|
			}
 | 
						|
 | 
						|
			r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
 | 
						|
			r.Mod(r, N)
 | 
						|
			if r.Sign() != 0 {
 | 
						|
				break
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		e := hashToInt(hash, c)
 | 
						|
		s = new(big.Int).Mul(priv.D, r)
 | 
						|
		s.Add(s, e)
 | 
						|
		s.Mul(s, kInv)
 | 
						|
		s.Mod(s, N) // N != 0
 | 
						|
		if s.Sign() != 0 {
 | 
						|
			break
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// Verify verifies the signature in r, s of hash using the public key, pub. Its
 | 
						|
// return value records whether the signature is valid.
 | 
						|
func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
 | 
						|
	// See [NSA] 3.4.2
 | 
						|
	c := pub.Curve
 | 
						|
	N := c.Params().N
 | 
						|
 | 
						|
	if r.Sign() == 0 || s.Sign() == 0 {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	e := hashToInt(hash, c)
 | 
						|
 | 
						|
	var w *big.Int
 | 
						|
	if in, ok := c.(invertible); ok {
 | 
						|
		w = in.Inverse(s)
 | 
						|
	} else {
 | 
						|
		w = new(big.Int).ModInverse(s, N)
 | 
						|
	}
 | 
						|
 | 
						|
	u1 := e.Mul(e, w)
 | 
						|
	u1.Mod(u1, N)
 | 
						|
	u2 := w.Mul(r, w)
 | 
						|
	u2.Mod(u2, N)
 | 
						|
 | 
						|
	// Check if implements S1*g + S2*p
 | 
						|
	var x, y *big.Int
 | 
						|
	if opt, ok := c.(combinedMult); ok {
 | 
						|
		x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes())
 | 
						|
	} else {
 | 
						|
		x1, y1 := c.ScalarBaseMult(u1.Bytes())
 | 
						|
		x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
 | 
						|
		x, y = c.Add(x1, y1, x2, y2)
 | 
						|
	}
 | 
						|
 | 
						|
	if x.Sign() == 0 && y.Sign() == 0 {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	x.Mod(x, N)
 | 
						|
	return x.Cmp(r) == 0
 | 
						|
}
 | 
						|
 | 
						|
type zr struct {
 | 
						|
	io.Reader
 | 
						|
}
 | 
						|
 | 
						|
// Read replaces the contents of dst with zeros.
 | 
						|
func (z *zr) Read(dst []byte) (n int, err error) {
 | 
						|
	for i := range dst {
 | 
						|
		dst[i] = 0
 | 
						|
	}
 | 
						|
	return len(dst), nil
 | 
						|
}
 | 
						|
 | 
						|
var zeroReader = &zr{}
 |