mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			1672 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1672 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Instruction scheduling pass.  This file contains definitions used
 | ||
|    internally in the scheduler.
 | ||
|    Copyright (C) 2006-2019 Free Software Foundation, Inc.
 | ||
| 
 | ||
| This file is part of GCC.
 | ||
| 
 | ||
| GCC is free software; you can redistribute it and/or modify it under
 | ||
| the terms of the GNU General Public License as published by the Free
 | ||
| Software Foundation; either version 3, or (at your option) any later
 | ||
| version.
 | ||
| 
 | ||
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY
 | ||
| WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | ||
| FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | ||
| for more details.
 | ||
| 
 | ||
| You should have received a copy of the GNU General Public License
 | ||
| along with GCC; see the file COPYING3.  If not see
 | ||
| <http://www.gnu.org/licenses/>.  */
 | ||
| 
 | ||
| #ifndef GCC_SEL_SCHED_IR_H
 | ||
| #define GCC_SEL_SCHED_IR_H
 | ||
| 
 | ||
| /* For state_t.  */
 | ||
| /* For reg_note.  */
 | ||
| 
 | ||
| /* tc_t is a short for target context.  This is a state of the target
 | ||
|    backend.  */
 | ||
| typedef void *tc_t;
 | ||
| 
 | ||
| /* List data types used for av sets, fences, paths, and boundaries.  */
 | ||
| 
 | ||
| /* Forward declarations for types that are part of some list nodes.  */
 | ||
| struct _list_node;
 | ||
| 
 | ||
| /* List backend.  */
 | ||
| typedef struct _list_node *_list_t;
 | ||
| #define _LIST_NEXT(L) ((L)->next)
 | ||
| 
 | ||
| /* Instruction data that is part of vinsn type.  */
 | ||
| struct idata_def;
 | ||
| typedef struct idata_def *idata_t;
 | ||
| 
 | ||
| /* A virtual instruction, i.e. an instruction as seen by the scheduler.  */
 | ||
| struct vinsn_def;
 | ||
| typedef struct vinsn_def *vinsn_t;
 | ||
| 
 | ||
| /* RTX list.
 | ||
|    This type is the backend for ilist.  */
 | ||
| typedef _list_t _xlist_t;
 | ||
| #define _XLIST_X(L) ((L)->u.x)
 | ||
| #define _XLIST_NEXT(L) (_LIST_NEXT (L))
 | ||
| 
 | ||
| /* Instruction.  */
 | ||
| typedef rtx_insn *insn_t;
 | ||
| 
 | ||
| /* List of insns.  */
 | ||
| typedef _list_t ilist_t;
 | ||
| #define ILIST_INSN(L) ((L)->u.insn)
 | ||
| #define ILIST_NEXT(L) (_LIST_NEXT (L))
 | ||
| 
 | ||
| /* This lists possible transformations that done locally, i.e. in
 | ||
|    moveup_expr.  */
 | ||
| enum local_trans_type
 | ||
|   {
 | ||
|     TRANS_SUBSTITUTION,
 | ||
|     TRANS_SPECULATION
 | ||
|   };
 | ||
| 
 | ||
| /* This struct is used to record the history of expression's
 | ||
|    transformations.  */
 | ||
| struct expr_history_def_1
 | ||
| {
 | ||
|   /* UID of the insn.  */
 | ||
|   unsigned uid;
 | ||
| 
 | ||
|   /* How the expression looked like.  */
 | ||
|   vinsn_t old_expr_vinsn;
 | ||
| 
 | ||
|   /* How the expression looks after the transformation.  */
 | ||
|   vinsn_t new_expr_vinsn;
 | ||
| 
 | ||
|   /* And its speculative status.  */
 | ||
|   ds_t spec_ds;
 | ||
| 
 | ||
|   /* Type of the transformation.  */
 | ||
|   enum local_trans_type type;
 | ||
| };
 | ||
| 
 | ||
| typedef struct expr_history_def_1 expr_history_def;
 | ||
| 
 | ||
| 
 | ||
| /* Expression information.  */
 | ||
| struct _expr
 | ||
| {
 | ||
|   /* Insn description.  */
 | ||
|   vinsn_t vinsn;
 | ||
| 
 | ||
|   /* SPEC is the degree of speculativeness.
 | ||
|      FIXME: now spec is increased when an rhs is moved through a
 | ||
|      conditional, thus showing only control speculativeness.  In the
 | ||
|      future we'd like to count data spec separately to allow a better
 | ||
|      control on scheduling.  */
 | ||
|   int spec;
 | ||
| 
 | ||
|   /* Degree of speculativeness measured as probability of executing
 | ||
|      instruction's original basic block given relative to
 | ||
|      the current scheduling point.  */
 | ||
|   int usefulness;
 | ||
| 
 | ||
|   /* A priority of this expression.  */
 | ||
|   int priority;
 | ||
| 
 | ||
|   /* A priority adjustment of this expression.  */
 | ||
|   int priority_adj;
 | ||
| 
 | ||
|   /* Number of times the insn was scheduled.  */
 | ||
|   int sched_times;
 | ||
| 
 | ||
|   /* A basic block index this was originated from.  Zero when there is
 | ||
|      more than one originator.  */
 | ||
|   int orig_bb_index;
 | ||
| 
 | ||
|   /* Instruction should be of SPEC_DONE_DS type in order to be moved to this
 | ||
|      point.  */
 | ||
|   ds_t spec_done_ds;
 | ||
| 
 | ||
|   /* SPEC_TO_CHECK_DS hold speculation types that should be checked
 | ||
|      (used only during move_op ()).  */
 | ||
|   ds_t spec_to_check_ds;
 | ||
| 
 | ||
|   /* Cycle on which original insn was scheduled.  Zero when it has not yet
 | ||
|      been scheduled or more than one originator.  */
 | ||
|   int orig_sched_cycle;
 | ||
| 
 | ||
|   /* This vector contains the history of insn's transformations.  */
 | ||
|   vec<expr_history_def> history_of_changes;
 | ||
| 
 | ||
|   /* True (1) when original target (register or memory) of this instruction
 | ||
|      is available for scheduling, false otherwise.  -1 means we're not sure;
 | ||
|      please run find_used_regs to clarify.  */
 | ||
|   signed char target_available;
 | ||
| 
 | ||
|   /* True when this expression needs a speculation check to be scheduled.
 | ||
|      This is used during find_used_regs.  */
 | ||
|   BOOL_BITFIELD needs_spec_check_p : 1;
 | ||
| 
 | ||
|   /* True when the expression was substituted.  Used for statistical
 | ||
|      purposes.  */
 | ||
|   BOOL_BITFIELD was_substituted : 1;
 | ||
| 
 | ||
|   /* True when the expression was renamed.  */
 | ||
|   BOOL_BITFIELD was_renamed : 1;
 | ||
| 
 | ||
|   /* True when expression can't be moved.  */
 | ||
|   BOOL_BITFIELD cant_move : 1;
 | ||
| };
 | ||
| 
 | ||
| typedef struct _expr expr_def;
 | ||
| typedef expr_def *expr_t;
 | ||
| 
 | ||
| #define EXPR_VINSN(EXPR) ((EXPR)->vinsn)
 | ||
| #define EXPR_INSN_RTX(EXPR) (VINSN_INSN_RTX (EXPR_VINSN (EXPR)))
 | ||
| #define EXPR_PATTERN(EXPR) (VINSN_PATTERN (EXPR_VINSN (EXPR)))
 | ||
| #define EXPR_LHS(EXPR) (VINSN_LHS (EXPR_VINSN (EXPR)))
 | ||
| #define EXPR_RHS(EXPR) (VINSN_RHS (EXPR_VINSN (EXPR)))
 | ||
| #define EXPR_TYPE(EXPR) (VINSN_TYPE (EXPR_VINSN (EXPR)))
 | ||
| #define EXPR_SEPARABLE_P(EXPR) (VINSN_SEPARABLE_P (EXPR_VINSN (EXPR)))
 | ||
| 
 | ||
| #define EXPR_SPEC(EXPR) ((EXPR)->spec)
 | ||
| #define EXPR_USEFULNESS(EXPR) ((EXPR)->usefulness)
 | ||
| #define EXPR_PRIORITY(EXPR) ((EXPR)->priority)
 | ||
| #define EXPR_PRIORITY_ADJ(EXPR) ((EXPR)->priority_adj)
 | ||
| #define EXPR_SCHED_TIMES(EXPR) ((EXPR)->sched_times)
 | ||
| #define EXPR_ORIG_BB_INDEX(EXPR) ((EXPR)->orig_bb_index)
 | ||
| #define EXPR_ORIG_SCHED_CYCLE(EXPR) ((EXPR)->orig_sched_cycle)
 | ||
| #define EXPR_SPEC_DONE_DS(EXPR) ((EXPR)->spec_done_ds)
 | ||
| #define EXPR_SPEC_TO_CHECK_DS(EXPR) ((EXPR)->spec_to_check_ds)
 | ||
| #define EXPR_HISTORY_OF_CHANGES(EXPR) ((EXPR)->history_of_changes)
 | ||
| #define EXPR_TARGET_AVAILABLE(EXPR) ((EXPR)->target_available)
 | ||
| #define EXPR_NEEDS_SPEC_CHECK_P(EXPR) ((EXPR)->needs_spec_check_p)
 | ||
| #define EXPR_WAS_SUBSTITUTED(EXPR) ((EXPR)->was_substituted)
 | ||
| #define EXPR_WAS_RENAMED(EXPR) ((EXPR)->was_renamed)
 | ||
| #define EXPR_CANT_MOVE(EXPR) ((EXPR)->cant_move)
 | ||
| 
 | ||
| /* Insn definition for list of original insns in find_used_regs.  */
 | ||
| struct _def
 | ||
| {
 | ||
|   insn_t orig_insn;
 | ||
| 
 | ||
|   /* FIXME: Get rid of CROSSES_CALL in each def, since if we're moving up
 | ||
|      rhs from two different places, but only one of the code motion paths
 | ||
|      crosses a call, we can't use any of the call_used_regs, no matter which
 | ||
|      path or whether all paths crosses a call.  Thus we should move CROSSES_CALL
 | ||
|      to static params.  */
 | ||
|   bool crosses_call;
 | ||
| };
 | ||
| typedef struct _def *def_t;
 | ||
| 
 | ||
| 
 | ||
| /* Availability sets are sets of expressions we're scheduling.  */
 | ||
| typedef _list_t av_set_t;
 | ||
| #define _AV_SET_EXPR(L) (&(L)->u.expr)
 | ||
| #define _AV_SET_NEXT(L) (_LIST_NEXT (L))
 | ||
| 
 | ||
| 
 | ||
| /* Boundary of the current fence group.  */
 | ||
| struct _bnd
 | ||
| {
 | ||
|   /* The actual boundary instruction.  */
 | ||
|   insn_t to;
 | ||
| 
 | ||
|   /* Its path to the fence.  */
 | ||
|   ilist_t ptr;
 | ||
| 
 | ||
|   /* Availability set at the boundary.  */
 | ||
|   av_set_t av;
 | ||
| 
 | ||
|   /* This set moved to the fence.  */
 | ||
|   av_set_t av1;
 | ||
| 
 | ||
|   /* Deps context at this boundary.  As long as we have one boundary per fence,
 | ||
|      this is just a pointer to the same deps context as in the corresponding
 | ||
|      fence.  */
 | ||
|   deps_t dc;
 | ||
| };
 | ||
| typedef struct _bnd *bnd_t;
 | ||
| #define BND_TO(B) ((B)->to)
 | ||
| 
 | ||
| /* PTR stands not for pointer as you might think, but as a Path To Root of the
 | ||
|    current instruction group from boundary B.  */
 | ||
| #define BND_PTR(B) ((B)->ptr)
 | ||
| #define BND_AV(B) ((B)->av)
 | ||
| #define BND_AV1(B) ((B)->av1)
 | ||
| #define BND_DC(B) ((B)->dc)
 | ||
| 
 | ||
| /* List of boundaries.  */
 | ||
| typedef _list_t blist_t;
 | ||
| #define BLIST_BND(L) (&(L)->u.bnd)
 | ||
| #define BLIST_NEXT(L) (_LIST_NEXT (L))
 | ||
| 
 | ||
| 
 | ||
| /* Fence information.  A fence represents current scheduling point and also
 | ||
|    blocks code motion through it when pipelining.  */
 | ||
| struct _fence
 | ||
| {
 | ||
|   /* Insn before which we gather an instruction group.*/
 | ||
|   insn_t insn;
 | ||
| 
 | ||
|   /* Modeled state of the processor pipeline.  */
 | ||
|   state_t state;
 | ||
| 
 | ||
|   /* Current cycle that is being scheduled on this fence.  */
 | ||
|   int cycle;
 | ||
| 
 | ||
|   /* Number of insns that were scheduled on the current cycle.
 | ||
|      This information has to be local to a fence.  */
 | ||
|   int cycle_issued_insns;
 | ||
| 
 | ||
|   /* At the end of fill_insns () this field holds the list of the instructions
 | ||
|      that are inner boundaries of the scheduled parallel group.  */
 | ||
|   ilist_t bnds;
 | ||
| 
 | ||
|   /* Deps context at this fence.  It is used to model dependencies at the
 | ||
|      fence so that insn ticks can be properly evaluated.  */
 | ||
|   deps_t dc;
 | ||
| 
 | ||
|   /* Target context at this fence.  Used to save and load any local target
 | ||
|      scheduling information when changing fences.  */
 | ||
|   tc_t tc;
 | ||
| 
 | ||
|   /* A vector of insns that are scheduled but not yet completed.  */
 | ||
|   vec<rtx_insn *, va_gc> *executing_insns;
 | ||
| 
 | ||
|   /* A vector indexed by UIDs that caches the earliest cycle on which
 | ||
|      an insn can be scheduled on this fence.  */
 | ||
|   int *ready_ticks;
 | ||
| 
 | ||
|   /* Its size.  */
 | ||
|   int ready_ticks_size;
 | ||
| 
 | ||
|   /* Insn, which has been scheduled last on this fence.  */
 | ||
|   rtx_insn *last_scheduled_insn;
 | ||
| 
 | ||
|   /* The last value of can_issue_more variable on this fence.  */
 | ||
|   int issue_more;
 | ||
| 
 | ||
|   /* If non-NULL force the next scheduled insn to be SCHED_NEXT.  */
 | ||
|   rtx_insn *sched_next;
 | ||
| 
 | ||
|   /* True if fill_insns processed this fence.  */
 | ||
|   BOOL_BITFIELD processed_p : 1;
 | ||
| 
 | ||
|   /* True if fill_insns actually scheduled something on this fence.  */
 | ||
|   BOOL_BITFIELD scheduled_p : 1;
 | ||
| 
 | ||
|   /* True when the next insn scheduled here would start a cycle.  */
 | ||
|   BOOL_BITFIELD starts_cycle_p : 1;
 | ||
| 
 | ||
|   /* True when the next insn scheduled here would be scheduled after a stall.  */
 | ||
|   BOOL_BITFIELD after_stall_p : 1;
 | ||
| };
 | ||
| typedef struct _fence *fence_t;
 | ||
| 
 | ||
| #define FENCE_INSN(F) ((F)->insn)
 | ||
| #define FENCE_STATE(F) ((F)->state)
 | ||
| #define FENCE_BNDS(F) ((F)->bnds)
 | ||
| #define FENCE_PROCESSED_P(F) ((F)->processed_p)
 | ||
| #define FENCE_SCHEDULED_P(F) ((F)->scheduled_p)
 | ||
| #define FENCE_ISSUED_INSNS(F) ((F)->cycle_issued_insns)
 | ||
| #define FENCE_CYCLE(F) ((F)->cycle)
 | ||
| #define FENCE_STARTS_CYCLE_P(F) ((F)->starts_cycle_p)
 | ||
| #define FENCE_AFTER_STALL_P(F) ((F)->after_stall_p)
 | ||
| #define FENCE_DC(F) ((F)->dc)
 | ||
| #define FENCE_TC(F) ((F)->tc)
 | ||
| #define FENCE_LAST_SCHEDULED_INSN(F) ((F)->last_scheduled_insn)
 | ||
| #define FENCE_ISSUE_MORE(F) ((F)->issue_more)
 | ||
| #define FENCE_EXECUTING_INSNS(F) ((F)->executing_insns)
 | ||
| #define FENCE_READY_TICKS(F) ((F)->ready_ticks)
 | ||
| #define FENCE_READY_TICKS_SIZE(F) ((F)->ready_ticks_size)
 | ||
| #define FENCE_SCHED_NEXT(F) ((F)->sched_next)
 | ||
| 
 | ||
| /* List of fences.  */
 | ||
| typedef _list_t flist_t;
 | ||
| #define FLIST_FENCE(L) (&(L)->u.fence)
 | ||
| #define FLIST_NEXT(L) (_LIST_NEXT (L))
 | ||
| 
 | ||
| /* List of fences with pointer to the tail node.  */
 | ||
| struct flist_tail_def
 | ||
| {
 | ||
|   flist_t head;
 | ||
|   flist_t *tailp;
 | ||
| };
 | ||
| 
 | ||
| typedef struct flist_tail_def *flist_tail_t;
 | ||
| #define FLIST_TAIL_HEAD(L) ((L)->head)
 | ||
| #define FLIST_TAIL_TAILP(L) ((L)->tailp)
 | ||
| 
 | ||
| /* List node information.  A list node can be any of the types above.  */
 | ||
| struct _list_node
 | ||
| {
 | ||
|   _list_t next;
 | ||
| 
 | ||
|   union
 | ||
|   {
 | ||
|     rtx x;
 | ||
|     insn_t insn;
 | ||
|     struct _bnd bnd;
 | ||
|     expr_def expr;
 | ||
|     struct _fence fence;
 | ||
|     struct _def def;
 | ||
|     void *data;
 | ||
|   } u;
 | ||
| };
 | ||
| 
 | ||
| 
 | ||
| /* _list_t functions.
 | ||
|    All of _*list_* functions are used through accessor macros, thus
 | ||
|    we can't move them in sel-sched-ir.c.  */
 | ||
| extern object_allocator<_list_node> sched_lists_pool;
 | ||
| 
 | ||
| static inline _list_t
 | ||
| _list_alloc (void)
 | ||
| {
 | ||
|   return sched_lists_pool.allocate ();
 | ||
| }
 | ||
| 
 | ||
| static inline void
 | ||
| _list_add (_list_t *lp)
 | ||
| {
 | ||
|   _list_t l = _list_alloc ();
 | ||
| 
 | ||
|   _LIST_NEXT (l) = *lp;
 | ||
|   *lp = l;
 | ||
| }
 | ||
| 
 | ||
| static inline void
 | ||
| _list_remove_nofree (_list_t *lp)
 | ||
| {
 | ||
|   _list_t n = *lp;
 | ||
| 
 | ||
|   *lp = _LIST_NEXT (n);
 | ||
| }
 | ||
| 
 | ||
| static inline void
 | ||
| _list_remove (_list_t *lp)
 | ||
| {
 | ||
|   _list_t n = *lp;
 | ||
| 
 | ||
|   *lp = _LIST_NEXT (n);
 | ||
|   sched_lists_pool.remove (n);
 | ||
| }
 | ||
| 
 | ||
| static inline void
 | ||
| _list_clear (_list_t *l)
 | ||
| {
 | ||
|   while (*l)
 | ||
|     _list_remove (l);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* List iterator backend.  */
 | ||
| struct _list_iterator
 | ||
| {
 | ||
|   /* The list we're iterating.  */
 | ||
|   _list_t *lp;
 | ||
| 
 | ||
|   /* True when this iterator supprts removing.  */
 | ||
|   bool can_remove_p;
 | ||
| 
 | ||
|   /* True when we've actually removed something.  */
 | ||
|   bool removed_p;
 | ||
| };
 | ||
| 
 | ||
| static inline void
 | ||
| _list_iter_start (_list_iterator *ip, _list_t *lp, bool can_remove_p)
 | ||
| {
 | ||
|   ip->lp = lp;
 | ||
|   ip->can_remove_p = can_remove_p;
 | ||
|   ip->removed_p = false;
 | ||
| }
 | ||
| 
 | ||
| static inline void
 | ||
| _list_iter_next (_list_iterator *ip)
 | ||
| {
 | ||
|   if (!ip->removed_p)
 | ||
|     ip->lp = &_LIST_NEXT (*ip->lp);
 | ||
|   else
 | ||
|     ip->removed_p = false;
 | ||
| }
 | ||
| 
 | ||
| static inline void
 | ||
| _list_iter_remove (_list_iterator *ip)
 | ||
| {
 | ||
|   gcc_assert (!ip->removed_p && ip->can_remove_p);
 | ||
|   _list_remove (ip->lp);
 | ||
|   ip->removed_p = true;
 | ||
| }
 | ||
| 
 | ||
| static inline void
 | ||
| _list_iter_remove_nofree (_list_iterator *ip)
 | ||
| {
 | ||
|   gcc_assert (!ip->removed_p && ip->can_remove_p);
 | ||
|   _list_remove_nofree (ip->lp);
 | ||
|   ip->removed_p = true;
 | ||
| }
 | ||
| 
 | ||
| /* General macros to traverse a list.  FOR_EACH_* interfaces are
 | ||
|    implemented using these.  */
 | ||
| #define _FOR_EACH(TYPE, ELEM, I, L)				\
 | ||
|   for (_list_iter_start (&(I), &(L), false);			\
 | ||
|        _list_iter_cond_##TYPE (*(I).lp, &(ELEM));		\
 | ||
|        _list_iter_next (&(I)))
 | ||
| 
 | ||
| #define _FOR_EACH_1(TYPE, ELEM, I, LP)                              \
 | ||
|   for (_list_iter_start (&(I), (LP), true);                         \
 | ||
|        _list_iter_cond_##TYPE (*(I).lp, &(ELEM));                   \
 | ||
|        _list_iter_next (&(I)))
 | ||
| 
 | ||
| 
 | ||
| /* _xlist_t functions.  */
 | ||
| 
 | ||
| static inline void
 | ||
| _xlist_add (_xlist_t *lp, rtx x)
 | ||
| {
 | ||
|   _list_add (lp);
 | ||
|   _XLIST_X (*lp) = x;
 | ||
| }
 | ||
| 
 | ||
| #define _xlist_remove(LP) (_list_remove (LP))
 | ||
| #define _xlist_clear(LP) (_list_clear (LP))
 | ||
| 
 | ||
| static inline bool
 | ||
| _xlist_is_in_p (_xlist_t l, rtx x)
 | ||
| {
 | ||
|   while (l)
 | ||
|     {
 | ||
|       if (_XLIST_X (l) == x)
 | ||
|         return true;
 | ||
|       l = _XLIST_NEXT (l);
 | ||
|     }
 | ||
| 
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| /* Used through _FOR_EACH.  */
 | ||
| static inline bool
 | ||
| _list_iter_cond_x (_xlist_t l, rtx *xp)
 | ||
| {
 | ||
|   if (l)
 | ||
|     {
 | ||
|       *xp = _XLIST_X (l);
 | ||
|       return true;
 | ||
|     }
 | ||
| 
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| #define _xlist_iter_remove(IP) (_list_iter_remove (IP))
 | ||
| 
 | ||
| typedef _list_iterator _xlist_iterator;
 | ||
| #define _FOR_EACH_X(X, I, L) _FOR_EACH (x, (X), (I), (L))
 | ||
| #define _FOR_EACH_X_1(X, I, LP) _FOR_EACH_1 (x, (X), (I), (LP))
 | ||
| 
 | ||
| 
 | ||
| /* ilist_t functions.  */
 | ||
| 
 | ||
| static inline void
 | ||
| ilist_add (ilist_t *lp, insn_t insn)
 | ||
| {
 | ||
|   _list_add (lp);
 | ||
|   ILIST_INSN (*lp) = insn;
 | ||
| }
 | ||
| #define ilist_remove(LP) (_list_remove (LP))
 | ||
| #define ilist_clear(LP) (_list_clear (LP))
 | ||
| 
 | ||
| static inline bool
 | ||
| ilist_is_in_p (ilist_t l, insn_t insn)
 | ||
| {
 | ||
|   while (l)
 | ||
|     {
 | ||
|       if (ILIST_INSN (l) == insn)
 | ||
|         return true;
 | ||
|       l = ILIST_NEXT (l);
 | ||
|     }
 | ||
| 
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| /* Used through _FOR_EACH.  */
 | ||
| static inline bool
 | ||
| _list_iter_cond_insn (ilist_t l, insn_t *ip)
 | ||
| {
 | ||
|   if (l)
 | ||
|     {
 | ||
|       *ip = ILIST_INSN (l);
 | ||
|       return true;
 | ||
|     }
 | ||
| 
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| #define ilist_iter_remove(IP) (_list_iter_remove (IP))
 | ||
| 
 | ||
| typedef _list_iterator ilist_iterator;
 | ||
| #define FOR_EACH_INSN(INSN, I, L) _FOR_EACH (insn, (INSN), (I), (L))
 | ||
| #define FOR_EACH_INSN_1(INSN, I, LP) _FOR_EACH_1 (insn, (INSN), (I), (LP))
 | ||
| 
 | ||
| 
 | ||
| /* Av set iterators.  */
 | ||
| typedef _list_iterator av_set_iterator;
 | ||
| #define FOR_EACH_EXPR(EXPR, I, AV) _FOR_EACH (expr, (EXPR), (I), (AV))
 | ||
| #define FOR_EACH_EXPR_1(EXPR, I, AV) _FOR_EACH_1 (expr, (EXPR), (I), (AV))
 | ||
| 
 | ||
| inline bool
 | ||
| _list_iter_cond_expr (av_set_t av, expr_t *exprp)
 | ||
| {
 | ||
|   if (av)
 | ||
|     {
 | ||
|       *exprp = _AV_SET_EXPR (av);
 | ||
|       return true;
 | ||
|     }
 | ||
| 
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Def list iterators.  */
 | ||
| typedef _list_t def_list_t;
 | ||
| typedef _list_iterator def_list_iterator;
 | ||
| 
 | ||
| #define DEF_LIST_NEXT(L) (_LIST_NEXT (L))
 | ||
| #define DEF_LIST_DEF(L) (&(L)->u.def)
 | ||
| 
 | ||
| #define FOR_EACH_DEF(DEF, I, DEF_LIST) _FOR_EACH (def, (DEF), (I), (DEF_LIST))
 | ||
| 
 | ||
| static inline bool
 | ||
| _list_iter_cond_def (def_list_t def_list, def_t *def)
 | ||
| {
 | ||
|   if (def_list)
 | ||
|     {
 | ||
|       *def = DEF_LIST_DEF (def_list);
 | ||
|       return true;
 | ||
|     }
 | ||
| 
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* InstructionData.  Contains information about insn pattern.  */
 | ||
| struct idata_def
 | ||
| {
 | ||
|   /* Type of the insn.
 | ||
|      o CALL_INSN - Call insn
 | ||
|      o JUMP_INSN - Jump insn
 | ||
|      o INSN - INSN that cannot be cloned
 | ||
|      o USE - INSN that can be cloned
 | ||
|      o SET - INSN that can be cloned and separable into lhs and rhs
 | ||
|      o PC - simplejump.  Insns that simply redirect control flow should not
 | ||
|      have any dependencies.  Sched-deps.c, though, might consider them as
 | ||
|      producers or consumers of certain registers.  To avoid that we handle
 | ||
|      dependency for simple jumps ourselves.  */
 | ||
|   int type;
 | ||
| 
 | ||
|   /* If insn is a SET, this is its left hand side.  */
 | ||
|   rtx lhs;
 | ||
| 
 | ||
|   /* If insn is a SET, this is its right hand side.  */
 | ||
|   rtx rhs;
 | ||
| 
 | ||
|   /* Registers that are set/used by this insn.  This info is now gathered
 | ||
|      via sched-deps.c.  The downside of this is that we also use live info
 | ||
|      from flow that is accumulated in the basic blocks.  These two infos
 | ||
|      can be slightly inconsistent, hence in the beginning we make a pass
 | ||
|      through CFG and calculating the conservative solution for the info in
 | ||
|      basic blocks.  When this scheduler will be switched to use dataflow,
 | ||
|      this can be unified as df gives us both per basic block and per
 | ||
|      instruction info.  Actually, we don't do that pass and just hope
 | ||
|      for the best.  */
 | ||
|   regset reg_sets;
 | ||
| 
 | ||
|   regset reg_clobbers;
 | ||
| 
 | ||
|   regset reg_uses;
 | ||
| };
 | ||
| 
 | ||
| #define IDATA_TYPE(ID) ((ID)->type)
 | ||
| #define IDATA_LHS(ID) ((ID)->lhs)
 | ||
| #define IDATA_RHS(ID) ((ID)->rhs)
 | ||
| #define IDATA_REG_SETS(ID) ((ID)->reg_sets)
 | ||
| #define IDATA_REG_USES(ID) ((ID)->reg_uses)
 | ||
| #define IDATA_REG_CLOBBERS(ID) ((ID)->reg_clobbers)
 | ||
| 
 | ||
| /* Type to represent all needed info to emit an insn.
 | ||
|    This is a virtual equivalent of the insn.
 | ||
|    Every insn in the stream has an associated vinsn.  This is used
 | ||
|    to reduce memory consumption basing on the fact that many insns
 | ||
|    don't change through the scheduler.
 | ||
| 
 | ||
|    vinsn can be either normal or unique.
 | ||
|    * Normal vinsn is the one, that can be cloned multiple times and typically
 | ||
|    corresponds to normal instruction.
 | ||
| 
 | ||
|    * Unique vinsn derivates from CALL, ASM, JUMP (for a while) and other
 | ||
|    unusual stuff.  Such a vinsn is described by its INSN field, which is a
 | ||
|    reference to the original instruction.  */
 | ||
| struct vinsn_def
 | ||
| {
 | ||
|   /* Associated insn.  */
 | ||
|   rtx_insn *insn_rtx;
 | ||
| 
 | ||
|   /* Its description.  */
 | ||
|   struct idata_def id;
 | ||
| 
 | ||
|   /* Hash of vinsn.  It is computed either from pattern or from rhs using
 | ||
|      hash_rtx.  It is not placed in ID for faster compares.  */
 | ||
|   unsigned hash;
 | ||
| 
 | ||
|   /* Hash of the insn_rtx pattern.  */
 | ||
|   unsigned hash_rtx;
 | ||
| 
 | ||
|   /* Smart pointer counter.  */
 | ||
|   int count;
 | ||
| 
 | ||
|   /* Cached cost of the vinsn.  To access it please use vinsn_cost ().  */
 | ||
|   int cost;
 | ||
| 
 | ||
|   /* Mark insns that may trap so we don't move them through jumps.  */
 | ||
|   bool may_trap_p;
 | ||
| };
 | ||
| 
 | ||
| #define VINSN_INSN_RTX(VI) ((VI)->insn_rtx)
 | ||
| #define VINSN_PATTERN(VI) (PATTERN (VINSN_INSN_RTX (VI)))
 | ||
| 
 | ||
| #define VINSN_ID(VI) (&((VI)->id))
 | ||
| #define VINSN_HASH(VI) ((VI)->hash)
 | ||
| #define VINSN_HASH_RTX(VI) ((VI)->hash_rtx)
 | ||
| #define VINSN_TYPE(VI) (IDATA_TYPE (VINSN_ID (VI)))
 | ||
| #define VINSN_SEPARABLE_P(VI) (VINSN_TYPE (VI) == SET)
 | ||
| #define VINSN_CLONABLE_P(VI) (VINSN_SEPARABLE_P (VI) || VINSN_TYPE (VI) == USE)
 | ||
| #define VINSN_UNIQUE_P(VI) (!VINSN_CLONABLE_P (VI))
 | ||
| #define VINSN_LHS(VI) (IDATA_LHS (VINSN_ID (VI)))
 | ||
| #define VINSN_RHS(VI) (IDATA_RHS (VINSN_ID (VI)))
 | ||
| #define VINSN_REG_SETS(VI) (IDATA_REG_SETS (VINSN_ID (VI)))
 | ||
| #define VINSN_REG_USES(VI) (IDATA_REG_USES (VINSN_ID (VI)))
 | ||
| #define VINSN_REG_CLOBBERS(VI) (IDATA_REG_CLOBBERS (VINSN_ID (VI)))
 | ||
| #define VINSN_COUNT(VI) ((VI)->count)
 | ||
| #define VINSN_MAY_TRAP_P(VI) ((VI)->may_trap_p)
 | ||
| 
 | ||
| 
 | ||
| /* An entry of the hashtable describing transformations happened when
 | ||
|    moving up through an insn.  */
 | ||
| struct transformed_insns
 | ||
| {
 | ||
|   /* Previous vinsn.  Used to find the proper element.  */
 | ||
|   vinsn_t vinsn_old;
 | ||
| 
 | ||
|   /* A new vinsn.  */
 | ||
|   vinsn_t vinsn_new;
 | ||
| 
 | ||
|   /* Speculative status.  */
 | ||
|   ds_t ds;
 | ||
| 
 | ||
|   /* Type of transformation happened.  */
 | ||
|   enum local_trans_type type;
 | ||
| 
 | ||
|   /* Whether a conflict on the target register happened.  */
 | ||
|   BOOL_BITFIELD was_target_conflict : 1;
 | ||
| 
 | ||
|   /* Whether a check was needed.  */
 | ||
|   BOOL_BITFIELD needs_check : 1;
 | ||
| };
 | ||
| 
 | ||
| /* Indexed by INSN_LUID, the collection of all data associated with
 | ||
|    a single instruction that is in the stream.  */
 | ||
| struct _sel_insn_data
 | ||
| {
 | ||
|   /* The expression that contains vinsn for this insn and some
 | ||
|      flow-sensitive data like priority.  */
 | ||
|   expr_def expr;
 | ||
| 
 | ||
|   /* If (WS_LEVEL == GLOBAL_LEVEL) then AV is empty.  */
 | ||
|   int ws_level;
 | ||
| 
 | ||
|   /* A number that helps in defining a traversing order for a region.  */
 | ||
|   int seqno;
 | ||
| 
 | ||
|   /* A liveness data computed above this insn.  */
 | ||
|   regset live;
 | ||
| 
 | ||
|   /* An INSN_UID bit is set when deps analysis result is already known.  */
 | ||
|   bitmap analyzed_deps;
 | ||
| 
 | ||
|   /* An INSN_UID bit is set when a hard dep was found, not set when
 | ||
|      no dependence is found.  This is meaningful only when the analyzed_deps
 | ||
|      bitmap has its bit set.  */
 | ||
|   bitmap found_deps;
 | ||
| 
 | ||
|   /* An INSN_UID bit is set when this is a bookkeeping insn generated from
 | ||
|      a parent with this uid.  If a parent is a bookkeeping copy, all its
 | ||
|      originators are transitively included in this set.  */
 | ||
|   bitmap originators;
 | ||
| 
 | ||
|   /* A hashtable caching the result of insn transformations through this one.  */
 | ||
|   htab_t transformed_insns;
 | ||
| 
 | ||
|   /* A context incapsulating this insn.  */
 | ||
|   struct deps_desc deps_context;
 | ||
| 
 | ||
|   /* This field is initialized at the beginning of scheduling and is used
 | ||
|      to handle sched group instructions.  If it is non-null, then it points
 | ||
|      to the instruction, which should be forced to schedule next.  Such
 | ||
|      instructions are unique.  */
 | ||
|   insn_t sched_next;
 | ||
| 
 | ||
|   /* Cycle at which insn was scheduled.  It is greater than zero if insn was
 | ||
|      scheduled.  This is used for bundling.  */
 | ||
|   int sched_cycle;
 | ||
| 
 | ||
|   /* Cycle at which insn's data will be fully ready.  */
 | ||
|   int ready_cycle;
 | ||
| 
 | ||
|   /* Speculations that are being checked by this insn.  */
 | ||
|   ds_t spec_checked_ds;
 | ||
| 
 | ||
|   /* Whether the live set valid or not.  */
 | ||
|   BOOL_BITFIELD live_valid_p : 1;
 | ||
|   /* Insn is an ASM.  */
 | ||
|   BOOL_BITFIELD asm_p : 1;
 | ||
| 
 | ||
|   /* True when an insn is scheduled after we've determined that a stall is
 | ||
|      required.
 | ||
|      This is used when emulating the Haifa scheduler for bundling.  */
 | ||
|   BOOL_BITFIELD after_stall_p : 1;
 | ||
| };
 | ||
| 
 | ||
| typedef struct _sel_insn_data sel_insn_data_def;
 | ||
| typedef sel_insn_data_def *sel_insn_data_t;
 | ||
| 
 | ||
| extern vec<sel_insn_data_def> s_i_d;
 | ||
| 
 | ||
| /* Accessor macros for s_i_d.  */
 | ||
| #define SID(INSN) (&s_i_d[INSN_LUID (INSN)])
 | ||
| #define SID_BY_UID(UID) (&s_i_d[LUID_BY_UID (UID)])
 | ||
| 
 | ||
| extern sel_insn_data_def insn_sid (insn_t);
 | ||
| 
 | ||
| #define INSN_ASM_P(INSN) (SID (INSN)->asm_p)
 | ||
| #define INSN_SCHED_NEXT(INSN) (SID (INSN)->sched_next)
 | ||
| #define INSN_ANALYZED_DEPS(INSN) (SID (INSN)->analyzed_deps)
 | ||
| #define INSN_FOUND_DEPS(INSN) (SID (INSN)->found_deps)
 | ||
| #define INSN_DEPS_CONTEXT(INSN) (SID (INSN)->deps_context)
 | ||
| #define INSN_ORIGINATORS(INSN) (SID (INSN)->originators)
 | ||
| #define INSN_ORIGINATORS_BY_UID(UID) (SID_BY_UID (UID)->originators)
 | ||
| #define INSN_TRANSFORMED_INSNS(INSN) (SID (INSN)->transformed_insns)
 | ||
| 
 | ||
| #define INSN_EXPR(INSN) (&SID (INSN)->expr)
 | ||
| #define INSN_LIVE(INSN) (SID (INSN)->live)
 | ||
| #define INSN_LIVE_VALID_P(INSN) (SID (INSN)->live_valid_p)
 | ||
| #define INSN_VINSN(INSN) (EXPR_VINSN (INSN_EXPR (INSN)))
 | ||
| #define INSN_TYPE(INSN) (VINSN_TYPE (INSN_VINSN (INSN)))
 | ||
| #define INSN_SIMPLEJUMP_P(INSN) (INSN_TYPE (INSN) == PC)
 | ||
| #define INSN_LHS(INSN) (VINSN_LHS (INSN_VINSN (INSN)))
 | ||
| #define INSN_RHS(INSN) (VINSN_RHS (INSN_VINSN (INSN)))
 | ||
| #define INSN_REG_SETS(INSN) (VINSN_REG_SETS (INSN_VINSN (INSN)))
 | ||
| #define INSN_REG_CLOBBERS(INSN) (VINSN_REG_CLOBBERS (INSN_VINSN (INSN)))
 | ||
| #define INSN_REG_USES(INSN) (VINSN_REG_USES (INSN_VINSN (INSN)))
 | ||
| #define INSN_SCHED_TIMES(INSN) (EXPR_SCHED_TIMES (INSN_EXPR (INSN)))
 | ||
| #define INSN_SEQNO(INSN) (SID (INSN)->seqno)
 | ||
| #define INSN_AFTER_STALL_P(INSN) (SID (INSN)->after_stall_p)
 | ||
| #define INSN_SCHED_CYCLE(INSN) (SID (INSN)->sched_cycle)
 | ||
| #define INSN_READY_CYCLE(INSN) (SID (INSN)->ready_cycle)
 | ||
| #define INSN_SPEC_CHECKED_DS(INSN) (SID (INSN)->spec_checked_ds)
 | ||
| 
 | ||
| /* A global level shows whether an insn is valid or not.  */
 | ||
| extern int global_level;
 | ||
| 
 | ||
| #define INSN_WS_LEVEL(INSN) (SID (INSN)->ws_level)
 | ||
| 
 | ||
| extern av_set_t get_av_set (insn_t);
 | ||
| extern int get_av_level (insn_t);
 | ||
| 
 | ||
| #define AV_SET(INSN) (get_av_set (INSN))
 | ||
| #define AV_LEVEL(INSN) (get_av_level (INSN))
 | ||
| #define AV_SET_VALID_P(INSN) (AV_LEVEL (INSN) == global_level)
 | ||
| 
 | ||
| /* A list of fences currently in the works.  */
 | ||
| extern flist_t fences;
 | ||
| 
 | ||
| /* A NOP pattern used as a placeholder for real insns.  */
 | ||
| extern rtx nop_pattern;
 | ||
| 
 | ||
| /* An insn that 'contained' in EXIT block.  */
 | ||
| extern rtx_insn *exit_insn;
 | ||
| 
 | ||
| /* Provide a separate luid for the insn.  */
 | ||
| #define INSN_INIT_TODO_LUID (1)
 | ||
| 
 | ||
| /* Initialize s_s_i_d.  */
 | ||
| #define INSN_INIT_TODO_SSID (2)
 | ||
| 
 | ||
| /* Initialize data for simplejump.  */
 | ||
| #define INSN_INIT_TODO_SIMPLEJUMP (4)
 | ||
| 
 | ||
| /* Return true if INSN is a local NOP.  The nop is local in the sense that
 | ||
|    it was emitted by the scheduler as a temporary insn and will soon be
 | ||
|    deleted.  These nops are identified by their pattern.  */
 | ||
| #define INSN_NOP_P(INSN) (PATTERN (INSN) == nop_pattern)
 | ||
| 
 | ||
| /* Return true if INSN is linked into instruction stream.
 | ||
|    NB: It is impossible for INSN to have one field null and the other not
 | ||
|    null: gcc_assert ((PREV_INSN (INSN) == NULL_RTX)
 | ||
|    == (NEXT_INSN (INSN) == NULL_RTX)) is valid.  */
 | ||
| #define INSN_IN_STREAM_P(INSN) (PREV_INSN (INSN) && NEXT_INSN (INSN))
 | ||
| 
 | ||
| /* Return true if INSN is in current fence.  */
 | ||
| #define IN_CURRENT_FENCE_P(INSN) (flist_lookup (fences, INSN) != NULL)
 | ||
| 
 | ||
| /* Marks loop as being considered for pipelining.  */
 | ||
| #define MARK_LOOP_FOR_PIPELINING(LOOP) ((LOOP)->aux = (void *)(size_t)(1))
 | ||
| #define LOOP_MARKED_FOR_PIPELINING_P(LOOP) ((size_t)((LOOP)->aux))
 | ||
| 
 | ||
| /* Saved loop preheader to transfer when scheduling the loop.  */
 | ||
| #define LOOP_PREHEADER_BLOCKS(LOOP) ((size_t)((LOOP)->aux) == 1         \
 | ||
|                                      ? NULL                             \
 | ||
|                                      : ((vec<basic_block> *) (LOOP)->aux))
 | ||
| #define SET_LOOP_PREHEADER_BLOCKS(LOOP,BLOCKS) ((LOOP)->aux             \
 | ||
|                                                 = (BLOCKS != NULL       \
 | ||
|                                                    ? BLOCKS             \
 | ||
|                                                    : (LOOP)->aux))
 | ||
| 
 | ||
| extern bitmap blocks_to_reschedule;
 | ||
| 
 | ||
| 
 | ||
| /* A variable to track which part of rtx we are scanning in
 | ||
|    sched-deps.c: sched_analyze_insn ().  */
 | ||
| enum deps_where_t
 | ||
| {
 | ||
|   DEPS_IN_INSN,
 | ||
|   DEPS_IN_LHS,
 | ||
|   DEPS_IN_RHS,
 | ||
|   DEPS_IN_NOWHERE
 | ||
| };
 | ||
| 
 | ||
| 
 | ||
| /* Per basic block data for the whole CFG.  */
 | ||
| struct sel_global_bb_info_def
 | ||
| {
 | ||
|   /* For each bb header this field contains a set of live registers.
 | ||
|      For all other insns this field has a NULL.
 | ||
|      We also need to know LV sets for the instructions, that are immediately
 | ||
|      after the border of the region.  */
 | ||
|   regset lv_set;
 | ||
| 
 | ||
|   /* Status of LV_SET.
 | ||
|      true - block has usable LV_SET.
 | ||
|      false - block's LV_SET should be recomputed.  */
 | ||
|   bool lv_set_valid_p;
 | ||
| };
 | ||
| 
 | ||
| typedef sel_global_bb_info_def *sel_global_bb_info_t;
 | ||
| 
 | ||
| 
 | ||
| /* Per basic block data.  This array is indexed by basic block index.  */
 | ||
| extern vec<sel_global_bb_info_def> sel_global_bb_info;
 | ||
| 
 | ||
| extern void sel_extend_global_bb_info (void);
 | ||
| extern void sel_finish_global_bb_info (void);
 | ||
| 
 | ||
| /* Get data for BB.  */
 | ||
| #define SEL_GLOBAL_BB_INFO(BB)					\
 | ||
|   (&sel_global_bb_info[(BB)->index])
 | ||
| 
 | ||
| /* Access macros.  */
 | ||
| #define BB_LV_SET(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set)
 | ||
| #define BB_LV_SET_VALID_P(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set_valid_p)
 | ||
| 
 | ||
| /* Per basic block data for the region.  */
 | ||
| struct sel_region_bb_info_def
 | ||
| {
 | ||
|   /* This insn stream is constructed in such a way that it should be
 | ||
|      traversed by PREV_INSN field - (*not* NEXT_INSN).  */
 | ||
|   rtx_insn *note_list;
 | ||
| 
 | ||
|   /* Cached availability set at the beginning of a block.
 | ||
|      See also AV_LEVEL () for conditions when this av_set can be used.  */
 | ||
|   av_set_t av_set;
 | ||
| 
 | ||
|   /* If (AV_LEVEL == GLOBAL_LEVEL) then AV is valid.  */
 | ||
|   int av_level;
 | ||
| };
 | ||
| 
 | ||
| typedef sel_region_bb_info_def *sel_region_bb_info_t;
 | ||
| 
 | ||
| 
 | ||
| /* Per basic block data.  This array is indexed by basic block index.  */
 | ||
| extern vec<sel_region_bb_info_def> sel_region_bb_info;
 | ||
| 
 | ||
| /* Get data for BB.  */
 | ||
| #define SEL_REGION_BB_INFO(BB) (&sel_region_bb_info[(BB)->index])
 | ||
| 
 | ||
| /* Get BB's note_list.
 | ||
|    A note_list is a list of various notes that was scattered across BB
 | ||
|    before scheduling, and will be appended at the beginning of BB after
 | ||
|    scheduling is finished.  */
 | ||
| #define BB_NOTE_LIST(BB) (SEL_REGION_BB_INFO (BB)->note_list)
 | ||
| 
 | ||
| #define BB_AV_SET(BB) (SEL_REGION_BB_INFO (BB)->av_set)
 | ||
| #define BB_AV_LEVEL(BB) (SEL_REGION_BB_INFO (BB)->av_level)
 | ||
| #define BB_AV_SET_VALID_P(BB) (BB_AV_LEVEL (BB) == global_level)
 | ||
| 
 | ||
| /* Used in bb_in_ebb_p.  */
 | ||
| extern bitmap_head *forced_ebb_heads;
 | ||
| 
 | ||
| /* The loop nest being pipelined.  */
 | ||
| extern struct loop *current_loop_nest;
 | ||
| 
 | ||
| /* Saves pipelined blocks.  Bitmap is indexed by bb->index.  */
 | ||
| extern sbitmap bbs_pipelined;
 | ||
| 
 | ||
| /* Various flags.  */
 | ||
| extern bool enable_moveup_set_path_p;
 | ||
| extern bool pipelining_p;
 | ||
| extern bool bookkeeping_p;
 | ||
| extern int max_insns_to_rename;
 | ||
| extern bool preheader_removed;
 | ||
| 
 | ||
| /* Software lookahead window size.
 | ||
|    According to the results in Nakatani and Ebcioglu [1993], window size of 16
 | ||
|    is enough to extract most ILP in integer code.  */
 | ||
| #define MAX_WS (PARAM_VALUE (PARAM_SELSCHED_MAX_LOOKAHEAD))
 | ||
| 
 | ||
| extern regset sel_all_regs;
 | ||
| 
 | ||
| 
 | ||
| /* Successor iterator backend.  */
 | ||
| struct succ_iterator
 | ||
| {
 | ||
|   /* True if we're at BB end.  */
 | ||
|   bool bb_end;
 | ||
| 
 | ||
|   /* An edge on which we're iterating.  */
 | ||
|   edge e1;
 | ||
| 
 | ||
|   /* The previous edge saved after skipping empty blocks.  */
 | ||
|   edge e2;
 | ||
| 
 | ||
|   /* Edge iterator used when there are successors in other basic blocks.  */
 | ||
|   edge_iterator ei;
 | ||
| 
 | ||
|   /* Successor block we're traversing.  */
 | ||
|   basic_block bb;
 | ||
| 
 | ||
|   /* Flags that are passed to the iterator.  We return only successors
 | ||
|      that comply to these flags.  */
 | ||
|   short flags;
 | ||
| 
 | ||
|   /* When flags include SUCCS_ALL, this will be set to the exact type
 | ||
|      of the successor we're traversing now.  */
 | ||
|   short current_flags;
 | ||
| 
 | ||
|   /* If skip to loop exits, save here information about loop exits.  */
 | ||
|   int current_exit;
 | ||
|   vec<edge> loop_exits;
 | ||
| };
 | ||
| 
 | ||
| /* A structure returning all successor's information.  */
 | ||
| struct succs_info
 | ||
| {
 | ||
|   /* Flags that these succcessors were computed with.  */
 | ||
|   short flags;
 | ||
| 
 | ||
|   /* Successors that correspond to the flags.  */
 | ||
|   insn_vec_t succs_ok;
 | ||
| 
 | ||
|   /* Their probabilities.  As of now, we don't need this for other
 | ||
|      successors.  */
 | ||
|   vec<int> probs_ok;
 | ||
| 
 | ||
|   /* Other successors.  */
 | ||
|   insn_vec_t succs_other;
 | ||
| 
 | ||
|   /* Probability of all successors.  */
 | ||
|   int all_prob;
 | ||
| 
 | ||
|   /* The number of all successors.  */
 | ||
|   int all_succs_n;
 | ||
| 
 | ||
|   /* The number of good successors.  */
 | ||
|   int succs_ok_n;
 | ||
| };
 | ||
| 
 | ||
| /* Some needed definitions.  */
 | ||
| extern basic_block after_recovery;
 | ||
| 
 | ||
| extern rtx_insn *sel_bb_head (basic_block);
 | ||
| extern rtx_insn *sel_bb_end (basic_block);
 | ||
| extern bool sel_bb_empty_p (basic_block);
 | ||
| extern bool in_current_region_p (basic_block);
 | ||
| 
 | ||
| /* True when BB is a header of the inner loop.  */
 | ||
| static inline bool
 | ||
| inner_loop_header_p (basic_block bb)
 | ||
| {
 | ||
|   struct loop *inner_loop;
 | ||
| 
 | ||
|   if (!current_loop_nest)
 | ||
|     return false;
 | ||
| 
 | ||
|   if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
 | ||
|     return false;
 | ||
| 
 | ||
|   inner_loop = bb->loop_father;
 | ||
|   if (inner_loop == current_loop_nest)
 | ||
|     return false;
 | ||
| 
 | ||
|   /* If successor belongs to another loop.  */
 | ||
|   if (bb == inner_loop->header
 | ||
|       && flow_bb_inside_loop_p (current_loop_nest, bb))
 | ||
|     {
 | ||
|       /* Could be '=' here because of wrong loop depths.  */
 | ||
|       gcc_assert (loop_depth (inner_loop) >= loop_depth (current_loop_nest));
 | ||
|       return true;
 | ||
|     }
 | ||
| 
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| /* Return exit edges of LOOP, filtering out edges with the same dest bb.  */
 | ||
| static inline vec<edge> 
 | ||
| get_loop_exit_edges_unique_dests (const struct loop *loop)
 | ||
| {
 | ||
|   vec<edge> edges = vNULL;
 | ||
|   struct loop_exit *exit;
 | ||
| 
 | ||
|   gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)
 | ||
|               && current_loops->state & LOOPS_HAVE_RECORDED_EXITS);
 | ||
| 
 | ||
|   for (exit = loop->exits->next; exit->e; exit = exit->next)
 | ||
|     {
 | ||
|       int i;
 | ||
|       edge e;
 | ||
|       bool was_dest = false;
 | ||
| 
 | ||
|       for (i = 0; edges.iterate (i, &e); i++)
 | ||
|         if (e->dest == exit->e->dest)
 | ||
|           {
 | ||
|             was_dest = true;
 | ||
|             break;
 | ||
|           }
 | ||
| 
 | ||
|       if (!was_dest)
 | ||
|         edges.safe_push (exit->e);
 | ||
|     }
 | ||
|   return edges;
 | ||
| }
 | ||
| 
 | ||
| static bool
 | ||
| sel_bb_empty_or_nop_p (basic_block bb)
 | ||
| {
 | ||
|   insn_t first = sel_bb_head (bb), last;
 | ||
| 
 | ||
|   if (first == NULL_RTX)
 | ||
|     return true;
 | ||
| 
 | ||
|   if (!INSN_NOP_P (first))
 | ||
|     return false;
 | ||
| 
 | ||
|   if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
 | ||
|     return false;
 | ||
| 
 | ||
|   last = sel_bb_end (bb);
 | ||
|   if (first != last)
 | ||
|     return false;
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| /* Collect all loop exits recursively, skipping empty BBs between them.
 | ||
|    E.g. if BB is a loop header which has several loop exits,
 | ||
|    traverse all of them and if any of them turns out to be another loop header
 | ||
|    (after skipping empty BBs), add its loop exits to the resulting vector
 | ||
|    as well.  */
 | ||
| static inline vec<edge> 
 | ||
| get_all_loop_exits (basic_block bb)
 | ||
| {
 | ||
|   vec<edge> exits = vNULL;
 | ||
| 
 | ||
|   /* If bb is empty, and we're skipping to loop exits, then
 | ||
|      consider bb as a possible gate to the inner loop now.  */
 | ||
|   while (sel_bb_empty_or_nop_p (bb)
 | ||
| 	 && in_current_region_p (bb)
 | ||
| 	 && EDGE_COUNT (bb->succs) > 0)
 | ||
|     {
 | ||
|       bb = single_succ (bb);
 | ||
| 
 | ||
|       /* This empty block could only lead outside the region.  */
 | ||
|       gcc_assert (! in_current_region_p (bb));
 | ||
|     }
 | ||
| 
 | ||
|   /* And now check whether we should skip over inner loop.  */
 | ||
|   if (inner_loop_header_p (bb))
 | ||
|     {
 | ||
|       struct loop *this_loop;
 | ||
|       struct loop *pred_loop = NULL;
 | ||
|       int i;
 | ||
|       edge e;
 | ||
| 
 | ||
|       for (this_loop = bb->loop_father;
 | ||
|            this_loop && this_loop != current_loop_nest;
 | ||
|            this_loop = loop_outer (this_loop))
 | ||
|         pred_loop = this_loop;
 | ||
| 
 | ||
|       this_loop = pred_loop;
 | ||
|       gcc_assert (this_loop != NULL);
 | ||
| 
 | ||
|       exits = get_loop_exit_edges_unique_dests (this_loop);
 | ||
| 
 | ||
|       /* Traverse all loop headers.  */
 | ||
|       for (i = 0; exits.iterate (i, &e); i++)
 | ||
| 	if (in_current_region_p (e->dest)
 | ||
| 	    || inner_loop_header_p (e->dest))
 | ||
| 	  {
 | ||
| 	    vec<edge> next_exits = get_all_loop_exits (e->dest);
 | ||
| 
 | ||
| 	    if (next_exits.exists ())
 | ||
| 	      {
 | ||
| 		int j;
 | ||
| 		edge ne;
 | ||
| 
 | ||
| 		/* Add all loop exits for the current edge into the
 | ||
| 		   resulting vector.  */
 | ||
| 		for (j = 0; next_exits.iterate (j, &ne); j++)
 | ||
| 		  exits.safe_push (ne);
 | ||
| 
 | ||
| 		/* Remove the original edge.  */
 | ||
| 		exits.ordered_remove (i);
 | ||
| 
 | ||
| 		/*  Decrease the loop counter so we won't skip anything.  */
 | ||
| 		i--;
 | ||
| 		continue;
 | ||
| 	      }
 | ||
| 	  }
 | ||
|     }
 | ||
| 
 | ||
|   return exits;
 | ||
| }
 | ||
| 
 | ||
| /* Flags to pass to compute_succs_info and FOR_EACH_SUCC.
 | ||
|    Any successor will fall into exactly one category.   */
 | ||
| 
 | ||
| /* Include normal successors.  */
 | ||
| #define SUCCS_NORMAL (1)
 | ||
| 
 | ||
| /* Include back-edge successors.  */
 | ||
| #define SUCCS_BACK (2)
 | ||
| 
 | ||
| /* Include successors that are outside of the current region.  */
 | ||
| #define SUCCS_OUT (4)
 | ||
| 
 | ||
| /* When pipelining of the outer loops is enabled, skip innermost loops
 | ||
|    to their exits.  */
 | ||
| #define SUCCS_SKIP_TO_LOOP_EXITS (8)
 | ||
| 
 | ||
| /* Include all successors.  */
 | ||
| #define SUCCS_ALL (SUCCS_NORMAL | SUCCS_BACK | SUCCS_OUT)
 | ||
| 
 | ||
| /* We need to return a succ_iterator to avoid 'unitialized' warning
 | ||
|    during bootstrap.  */
 | ||
| static inline succ_iterator
 | ||
| _succ_iter_start (insn_t *succp, insn_t insn, int flags)
 | ||
| {
 | ||
|   succ_iterator i;
 | ||
| 
 | ||
|   basic_block bb = BLOCK_FOR_INSN (insn);
 | ||
| 
 | ||
|   gcc_assert (INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn));
 | ||
| 
 | ||
|   i.flags = flags;
 | ||
| 
 | ||
|   /* Avoid 'uninitialized' warning.  */
 | ||
|   *succp = NULL;
 | ||
|   i.e1 = NULL;
 | ||
|   i.e2 = NULL;
 | ||
|   i.bb = bb;
 | ||
|   i.current_flags = 0;
 | ||
|   i.current_exit = -1;
 | ||
|   i.loop_exits.create (0);
 | ||
| 
 | ||
|   if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun) && BB_END (bb) != insn)
 | ||
|     {
 | ||
|       i.bb_end = false;
 | ||
| 
 | ||
|       /* Avoid 'uninitialized' warning.  */
 | ||
|       i.ei.index = 0;
 | ||
|       i.ei.container = 0;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       i.ei = ei_start (bb->succs);
 | ||
|       i.bb_end = true;
 | ||
|     }
 | ||
| 
 | ||
|   return i;
 | ||
| }
 | ||
| 
 | ||
| static inline bool
 | ||
| _succ_iter_cond (succ_iterator *ip, insn_t *succp, insn_t insn,
 | ||
|                  bool check (edge, succ_iterator *))
 | ||
| {
 | ||
|   if (!ip->bb_end)
 | ||
|     {
 | ||
|       /* When we're in a middle of a basic block, return
 | ||
|          the next insn immediately, but only when SUCCS_NORMAL is set.  */
 | ||
|       if (*succp != NULL || (ip->flags & SUCCS_NORMAL) == 0)
 | ||
|         return false;
 | ||
| 
 | ||
|       *succp = NEXT_INSN (insn);
 | ||
|       ip->current_flags = SUCCS_NORMAL;
 | ||
|       return true;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       while (1)
 | ||
|         {
 | ||
|           edge e_tmp = NULL;
 | ||
| 
 | ||
|           /* First, try loop exits, if we have them.  */
 | ||
|           if (ip->loop_exits.exists ())
 | ||
|             {
 | ||
|               do
 | ||
|                 {
 | ||
|                   ip->loop_exits.iterate (ip->current_exit, &e_tmp);
 | ||
|                   ip->current_exit++;
 | ||
|                 }
 | ||
| 	      while (e_tmp && !check (e_tmp, ip));
 | ||
| 
 | ||
|               if (!e_tmp)
 | ||
|                 ip->loop_exits.release ();
 | ||
|             }
 | ||
| 
 | ||
|           /* If we have found a successor, then great.  */
 | ||
|           if (e_tmp)
 | ||
|             {
 | ||
|               ip->e1 = e_tmp;
 | ||
|               break;
 | ||
|             }
 | ||
| 
 | ||
|           /* If not, then try the next edge.  */
 | ||
|           while (ei_cond (ip->ei, &(ip->e1)))
 | ||
|             {
 | ||
|               basic_block bb = ip->e1->dest;
 | ||
| 
 | ||
|               /* Consider bb as a possible loop header.  */
 | ||
|               if ((ip->flags & SUCCS_SKIP_TO_LOOP_EXITS)
 | ||
|                   && flag_sel_sched_pipelining_outer_loops
 | ||
| 		  && (!in_current_region_p (bb)
 | ||
| 		      || BLOCK_TO_BB (ip->bb->index)
 | ||
| 			 < BLOCK_TO_BB (bb->index)))
 | ||
|                 {
 | ||
| 		  /* Get all loop exits recursively.  */
 | ||
| 		  ip->loop_exits = get_all_loop_exits (bb);
 | ||
| 
 | ||
| 		  if (ip->loop_exits.exists ())
 | ||
| 		    {
 | ||
|   		      ip->current_exit = 0;
 | ||
| 		      /* Move the iterator now, because we won't do
 | ||
| 			 succ_iter_next until loop exits will end.  */
 | ||
| 		      ei_next (&(ip->ei));
 | ||
| 		      break;
 | ||
| 		    }
 | ||
|                 }
 | ||
| 
 | ||
|               /* bb is not a loop header, check as usual.  */
 | ||
|               if (check (ip->e1, ip))
 | ||
|                 break;
 | ||
| 
 | ||
|               ei_next (&(ip->ei));
 | ||
|             }
 | ||
| 
 | ||
|           /* If loop_exits are non null, we have found an inner loop;
 | ||
| 	     do one more iteration to fetch an edge from these exits.  */
 | ||
|           if (ip->loop_exits.exists ())
 | ||
|             continue;
 | ||
| 
 | ||
|           /* Otherwise, we've found an edge in a usual way.  Break now.  */
 | ||
|           break;
 | ||
|         }
 | ||
| 
 | ||
|       if (ip->e1)
 | ||
| 	{
 | ||
| 	  basic_block bb = ip->e2->dest;
 | ||
| 
 | ||
| 	  if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || bb == after_recovery)
 | ||
| 	    *succp = exit_insn;
 | ||
| 	  else
 | ||
| 	    {
 | ||
|               *succp = sel_bb_head (bb);
 | ||
| 
 | ||
|               gcc_assert (ip->flags != SUCCS_NORMAL
 | ||
|                           || *succp == NEXT_INSN (bb_note (bb)));
 | ||
| 	      gcc_assert (BLOCK_FOR_INSN (*succp) == bb);
 | ||
| 	    }
 | ||
| 
 | ||
| 	  return true;
 | ||
| 	}
 | ||
|       else
 | ||
| 	return false;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static inline void
 | ||
| _succ_iter_next (succ_iterator *ip)
 | ||
| {
 | ||
|   gcc_assert (!ip->e2 || ip->e1);
 | ||
| 
 | ||
|   if (ip->bb_end && ip->e1 && !ip->loop_exits.exists ())
 | ||
|     ei_next (&(ip->ei));
 | ||
| }
 | ||
| 
 | ||
| /* Returns true when E1 is an eligible successor edge, possibly skipping
 | ||
|    empty blocks.  When E2P is not null, the resulting edge is written there.
 | ||
|    FLAGS are used to specify whether back edges and out-of-region edges
 | ||
|    should be considered.  */
 | ||
| static inline bool
 | ||
| _eligible_successor_edge_p (edge e1, succ_iterator *ip)
 | ||
| {
 | ||
|   edge e2 = e1;
 | ||
|   basic_block bb;
 | ||
|   int flags = ip->flags;
 | ||
|   bool src_outside_rgn = !in_current_region_p (e1->src);
 | ||
| 
 | ||
|   gcc_assert (flags != 0);
 | ||
| 
 | ||
|   if (src_outside_rgn)
 | ||
|     {
 | ||
|       /* Any successor of the block that is outside current region is
 | ||
|          ineligible, except when we're skipping to loop exits.  */
 | ||
|       gcc_assert (flags & (SUCCS_OUT | SUCCS_SKIP_TO_LOOP_EXITS));
 | ||
| 
 | ||
|       if (flags & SUCCS_OUT)
 | ||
| 	return false;
 | ||
|     }
 | ||
| 
 | ||
|   bb = e2->dest;
 | ||
| 
 | ||
|   /* Skip empty blocks, but be careful not to leave the region.  */
 | ||
|   while (1)
 | ||
|     {
 | ||
|       if (!sel_bb_empty_p (bb))
 | ||
| 	{
 | ||
| 	  edge ne;
 | ||
| 	  basic_block nbb;
 | ||
| 
 | ||
| 	  if (!sel_bb_empty_or_nop_p (bb))
 | ||
| 	    break;
 | ||
| 
 | ||
| 	  ne = EDGE_SUCC (bb, 0);
 | ||
| 	  nbb = ne->dest;
 | ||
| 
 | ||
| 	  if (!in_current_region_p (nbb)
 | ||
| 	      && !(flags & SUCCS_OUT))
 | ||
| 	    break;
 | ||
| 
 | ||
| 	  e2 = ne;
 | ||
| 	  bb = nbb;
 | ||
| 	  continue;
 | ||
| 	}
 | ||
| 
 | ||
|       if (!in_current_region_p (bb)
 | ||
|           && !(flags & SUCCS_OUT))
 | ||
|         return false;
 | ||
| 
 | ||
|       if (EDGE_COUNT (bb->succs) == 0)
 | ||
| 	return false;
 | ||
| 
 | ||
|       e2 = EDGE_SUCC (bb, 0);
 | ||
|       bb = e2->dest;
 | ||
|     }
 | ||
| 
 | ||
|   /* Save the second edge for later checks.  */
 | ||
|   ip->e2 = e2;
 | ||
| 
 | ||
|   if (in_current_region_p (bb))
 | ||
|     {
 | ||
|       /* BLOCK_TO_BB sets topological order of the region here.
 | ||
|          It is important to use real predecessor here, which is ip->bb,
 | ||
|          as we may well have e1->src outside current region,
 | ||
|          when skipping to loop exits.  */
 | ||
|       bool succeeds_in_top_order = (BLOCK_TO_BB (ip->bb->index)
 | ||
| 				    < BLOCK_TO_BB (bb->index));
 | ||
| 
 | ||
|       /* This is true for the all cases except the last one.  */
 | ||
|       ip->current_flags = SUCCS_NORMAL;
 | ||
| 
 | ||
|       /* We are advancing forward in the region, as usual.  */
 | ||
|       if (succeeds_in_top_order)
 | ||
|         {
 | ||
|           /* We are skipping to loop exits here.  */
 | ||
|           gcc_assert (!src_outside_rgn
 | ||
|                       || flag_sel_sched_pipelining_outer_loops);
 | ||
|           return !!(flags & SUCCS_NORMAL);
 | ||
|         }
 | ||
| 
 | ||
|       /* This is a back edge.  During pipelining we ignore back edges,
 | ||
|          but only when it leads to the same loop.  It can lead to the header
 | ||
|          of the outer loop, which will also be the preheader of
 | ||
|          the current loop.  */
 | ||
|       if (pipelining_p
 | ||
|            && e1->src->loop_father == bb->loop_father)
 | ||
|         return !!(flags & SUCCS_NORMAL);
 | ||
| 
 | ||
|       /* A back edge should be requested explicitly.  */
 | ||
|       ip->current_flags = SUCCS_BACK;
 | ||
|       return !!(flags & SUCCS_BACK);
 | ||
|     }
 | ||
| 
 | ||
|   ip->current_flags = SUCCS_OUT;
 | ||
|   return !!(flags & SUCCS_OUT);
 | ||
| }
 | ||
| 
 | ||
| #define FOR_EACH_SUCC_1(SUCC, ITER, INSN, FLAGS)                        \
 | ||
|   for ((ITER) = _succ_iter_start (&(SUCC), (INSN), (FLAGS));            \
 | ||
|        _succ_iter_cond (&(ITER), &(SUCC), (INSN), _eligible_successor_edge_p); \
 | ||
|        _succ_iter_next (&(ITER)))
 | ||
| 
 | ||
| #define FOR_EACH_SUCC(SUCC, ITER, INSN)                 \
 | ||
|   FOR_EACH_SUCC_1 (SUCC, ITER, INSN, SUCCS_NORMAL)
 | ||
| 
 | ||
| /* Return the current edge along which a successor was built.  */
 | ||
| #define SUCC_ITER_EDGE(ITER) ((ITER)->e1)
 | ||
| 
 | ||
| /* Return the next block of BB not running into inconsistencies.  */
 | ||
| static inline basic_block
 | ||
| bb_next_bb (basic_block bb)
 | ||
| {
 | ||
|   switch (EDGE_COUNT (bb->succs))
 | ||
|     {
 | ||
|     case 0:
 | ||
|       return bb->next_bb;
 | ||
| 
 | ||
|     case 1:
 | ||
|       return single_succ (bb);
 | ||
| 
 | ||
|     case 2:
 | ||
|       return FALLTHRU_EDGE (bb)->dest;
 | ||
| 
 | ||
|     default:
 | ||
|       return bb->next_bb;
 | ||
|     }
 | ||
| 
 | ||
|   gcc_unreachable ();
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /* Functions that are used in sel-sched.c.  */
 | ||
| 
 | ||
| /* List functions.  */
 | ||
| extern ilist_t ilist_copy (ilist_t);
 | ||
| extern ilist_t ilist_invert (ilist_t);
 | ||
| extern void blist_add (blist_t *, insn_t, ilist_t, deps_t);
 | ||
| extern void blist_remove (blist_t *);
 | ||
| extern void flist_tail_init (flist_tail_t);
 | ||
| 
 | ||
| extern fence_t flist_lookup (flist_t, insn_t);
 | ||
| extern void flist_clear (flist_t *);
 | ||
| extern void def_list_add (def_list_t *, insn_t, bool);
 | ||
| 
 | ||
| /* Target context functions.  */
 | ||
| extern tc_t create_target_context (bool);
 | ||
| extern void set_target_context (tc_t);
 | ||
| extern void reset_target_context (tc_t, bool);
 | ||
| 
 | ||
| /* Deps context functions.  */
 | ||
| extern void advance_deps_context (deps_t, insn_t);
 | ||
| 
 | ||
| /* Fences functions.  */
 | ||
| extern void init_fences (insn_t);
 | ||
| extern void add_clean_fence_to_fences (flist_tail_t, insn_t, fence_t);
 | ||
| extern void add_dirty_fence_to_fences (flist_tail_t, insn_t, fence_t);
 | ||
| extern void move_fence_to_fences (flist_t, flist_tail_t);
 | ||
| 
 | ||
| /* Pool functions.  */
 | ||
| extern regset get_regset_from_pool (void);
 | ||
| extern regset get_clear_regset_from_pool (void);
 | ||
| extern void return_regset_to_pool (regset);
 | ||
| extern void free_regset_pool (void);
 | ||
| 
 | ||
| extern insn_t get_nop_from_pool (insn_t);
 | ||
| extern void return_nop_to_pool (insn_t, bool);
 | ||
| extern void free_nop_pool (void);
 | ||
| 
 | ||
| /* Vinsns functions.  */
 | ||
| extern bool vinsn_separable_p (vinsn_t);
 | ||
| extern bool vinsn_cond_branch_p (vinsn_t);
 | ||
| extern void recompute_vinsn_lhs_rhs (vinsn_t);
 | ||
| extern int sel_vinsn_cost (vinsn_t);
 | ||
| extern insn_t sel_gen_insn_from_rtx_after (rtx, expr_t, int, insn_t);
 | ||
| extern insn_t sel_gen_recovery_insn_from_rtx_after (rtx, expr_t, int, insn_t);
 | ||
| extern insn_t sel_gen_insn_from_expr_after (expr_t, vinsn_t, int, insn_t);
 | ||
| extern insn_t  sel_move_insn (expr_t, int, insn_t);
 | ||
| extern void vinsn_attach (vinsn_t);
 | ||
| extern void vinsn_detach (vinsn_t);
 | ||
| extern vinsn_t vinsn_copy (vinsn_t, bool);
 | ||
| extern bool vinsn_equal_p (vinsn_t, vinsn_t);
 | ||
| 
 | ||
| /* EXPR functions.  */
 | ||
| extern void copy_expr (expr_t, expr_t);
 | ||
| extern void copy_expr_onside (expr_t, expr_t);
 | ||
| extern void merge_expr_data (expr_t, expr_t, insn_t);
 | ||
| extern void merge_expr (expr_t, expr_t, insn_t);
 | ||
| extern void clear_expr (expr_t);
 | ||
| extern unsigned expr_dest_regno (expr_t);
 | ||
| extern rtx expr_dest_reg (expr_t);
 | ||
| extern int find_in_history_vect (vec<expr_history_def> ,
 | ||
|                                  rtx, vinsn_t, bool);
 | ||
| extern void insert_in_history_vect (vec<expr_history_def> *,
 | ||
|                                     unsigned, enum local_trans_type,
 | ||
|                                     vinsn_t, vinsn_t, ds_t);
 | ||
| extern void mark_unavailable_targets (av_set_t, av_set_t, regset);
 | ||
| extern int speculate_expr (expr_t, ds_t);
 | ||
| 
 | ||
| /* Av set functions.  */
 | ||
| extern void av_set_add (av_set_t *, expr_t);
 | ||
| extern void av_set_iter_remove (av_set_iterator *);
 | ||
| extern expr_t av_set_lookup (av_set_t, vinsn_t);
 | ||
| extern expr_t merge_with_other_exprs (av_set_t *, av_set_iterator *, expr_t);
 | ||
| extern bool av_set_is_in_p (av_set_t, vinsn_t);
 | ||
| extern av_set_t av_set_copy (av_set_t);
 | ||
| extern void av_set_union_and_clear (av_set_t *, av_set_t *, insn_t);
 | ||
| extern void av_set_union_and_live (av_set_t *, av_set_t *, regset, regset, insn_t);
 | ||
| extern void av_set_clear (av_set_t *);
 | ||
| extern void av_set_leave_one_nonspec (av_set_t *);
 | ||
| extern expr_t av_set_element (av_set_t, int);
 | ||
| extern void av_set_substract_cond_branches (av_set_t *);
 | ||
| extern void av_set_split_usefulness (av_set_t, int, int);
 | ||
| extern void av_set_code_motion_filter (av_set_t *, av_set_t);
 | ||
| 
 | ||
| extern void sel_save_haifa_priorities (void);
 | ||
| 
 | ||
| extern void sel_init_global_and_expr (bb_vec_t);
 | ||
| extern void sel_finish_global_and_expr (void);
 | ||
| 
 | ||
| extern regset compute_live (insn_t);
 | ||
| extern bool register_unavailable_p (regset, rtx);
 | ||
| 
 | ||
| /* Dependence analysis functions.  */
 | ||
| extern void sel_clear_has_dependence (void);
 | ||
| extern ds_t has_dependence_p (expr_t, insn_t, ds_t **);
 | ||
| 
 | ||
| extern int tick_check_p (expr_t, deps_t, fence_t);
 | ||
| 
 | ||
| /* Functions to work with insns.  */
 | ||
| extern bool lhs_of_insn_equals_to_dest_p (insn_t, rtx);
 | ||
| extern bool insn_eligible_for_subst_p (insn_t);
 | ||
| extern void get_dest_and_mode (rtx, rtx *, machine_mode *);
 | ||
| 
 | ||
| extern bool bookkeeping_can_be_created_if_moved_through_p (insn_t);
 | ||
| extern bool sel_remove_insn (insn_t, bool, bool);
 | ||
| extern bool bb_header_p (insn_t);
 | ||
| extern void sel_init_invalid_data_sets (insn_t);
 | ||
| extern bool insn_at_boundary_p (insn_t);
 | ||
| 
 | ||
| /* Basic block and CFG functions.  */
 | ||
| 
 | ||
| extern rtx_insn *sel_bb_head (basic_block);
 | ||
| extern bool sel_bb_head_p (insn_t);
 | ||
| extern rtx_insn *sel_bb_end (basic_block);
 | ||
| extern bool sel_bb_end_p (insn_t);
 | ||
| extern bool sel_bb_empty_p (basic_block);
 | ||
| 
 | ||
| extern bool in_current_region_p (basic_block);
 | ||
| extern basic_block fallthru_bb_of_jump (const rtx_insn *);
 | ||
| 
 | ||
| extern void sel_init_bbs (bb_vec_t);
 | ||
| extern void sel_finish_bbs (void);
 | ||
| 
 | ||
| extern struct succs_info * compute_succs_info (insn_t, short);
 | ||
| extern void free_succs_info (struct succs_info *);
 | ||
| extern bool sel_insn_has_single_succ_p (insn_t, int);
 | ||
| extern bool sel_num_cfg_preds_gt_1 (insn_t);
 | ||
| extern int get_seqno_by_preds (rtx_insn *);
 | ||
| 
 | ||
| extern bool bb_ends_ebb_p (basic_block);
 | ||
| extern bool in_same_ebb_p (insn_t, insn_t);
 | ||
| 
 | ||
| extern bool tidy_control_flow (basic_block, bool);
 | ||
| extern void free_bb_note_pool (void);
 | ||
| 
 | ||
| extern void purge_empty_blocks (void);
 | ||
| extern basic_block sel_split_edge (edge);
 | ||
| extern basic_block sel_create_recovery_block (insn_t);
 | ||
| extern bool sel_redirect_edge_and_branch (edge, basic_block);
 | ||
| extern void sel_redirect_edge_and_branch_force (edge, basic_block);
 | ||
| extern void sel_init_pipelining (void);
 | ||
| extern void sel_finish_pipelining (void);
 | ||
| extern void sel_sched_region (int);
 | ||
| extern loop_p get_loop_nest_for_rgn (unsigned int);
 | ||
| extern bool considered_for_pipelining_p (struct loop *);
 | ||
| extern void make_region_from_loop_preheader (vec<basic_block> *&);
 | ||
| extern void sel_add_loop_preheaders (bb_vec_t *);
 | ||
| extern bool sel_is_loop_preheader_p (basic_block);
 | ||
| extern void clear_outdated_rtx_info (basic_block);
 | ||
| extern void free_data_sets (basic_block);
 | ||
| extern void exchange_data_sets (basic_block, basic_block);
 | ||
| extern void copy_data_sets (basic_block, basic_block);
 | ||
| 
 | ||
| extern void sel_register_cfg_hooks (void);
 | ||
| extern void sel_unregister_cfg_hooks (void);
 | ||
| 
 | ||
| /* Expression transformation routines.  */
 | ||
| extern rtx_insn *create_insn_rtx_from_pattern (rtx, rtx);
 | ||
| extern vinsn_t create_vinsn_from_insn_rtx (rtx_insn *, bool);
 | ||
| extern rtx_insn *create_copy_of_insn_rtx (rtx);
 | ||
| extern void change_vinsn_in_expr (expr_t, vinsn_t);
 | ||
| 
 | ||
| /* Various initialization functions.  */
 | ||
| extern void init_lv_sets (void);
 | ||
| extern void free_lv_sets (void);
 | ||
| extern void setup_nop_and_exit_insns (void);
 | ||
| extern void free_nop_and_exit_insns (void);
 | ||
| extern void free_data_for_scheduled_insn (insn_t);
 | ||
| extern void setup_nop_vinsn (void);
 | ||
| extern void free_nop_vinsn (void);
 | ||
| extern void sel_set_sched_flags (void);
 | ||
| extern void sel_setup_sched_infos (void);
 | ||
| extern void alloc_sched_pools (void);
 | ||
| extern void free_sched_pools (void);
 | ||
| 
 | ||
| #endif /* GCC_SEL_SCHED_IR_H */
 |