mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			569 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			569 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
| // class template regex -*- C++ -*-
 | |
| 
 | |
| // Copyright (C) 2013-2019 Free Software Foundation, Inc.
 | |
| //
 | |
| // This file is part of the GNU ISO C++ Library.  This library is free
 | |
| // software; you can redistribute it and/or modify it under the
 | |
| // terms of the GNU General Public License as published by the
 | |
| // Free Software Foundation; either version 3, or (at your option)
 | |
| // any later version.
 | |
| 
 | |
| // This library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| // GNU General Public License for more details.
 | |
| 
 | |
| // Under Section 7 of GPL version 3, you are granted additional
 | |
| // permissions described in the GCC Runtime Library Exception, version
 | |
| // 3.1, as published by the Free Software Foundation.
 | |
| 
 | |
| // You should have received a copy of the GNU General Public License and
 | |
| // a copy of the GCC Runtime Library Exception along with this program;
 | |
| // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | |
| // <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| /**
 | |
|  *  @file bits/regex_executor.tcc
 | |
|  *  This is an internal header file, included by other library headers.
 | |
|  *  Do not attempt to use it directly. @headername{regex}
 | |
|  */
 | |
| 
 | |
| namespace std _GLIBCXX_VISIBILITY(default)
 | |
| {
 | |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION
 | |
| 
 | |
| namespace __detail
 | |
| {
 | |
|   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | |
| 	   bool __dfs_mode>
 | |
|     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | |
|     _M_search()
 | |
|     {
 | |
|       if (_M_search_from_first())
 | |
| 	return true;
 | |
|       if (_M_flags & regex_constants::match_continuous)
 | |
| 	return false;
 | |
|       _M_flags |= regex_constants::match_prev_avail;
 | |
|       while (_M_begin != _M_end)
 | |
| 	{
 | |
| 	  ++_M_begin;
 | |
| 	  if (_M_search_from_first())
 | |
| 	    return true;
 | |
| 	}
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|   // The _M_main function operates in different modes, DFS mode or BFS mode,
 | |
|   // indicated by template parameter __dfs_mode, and dispatches to one of the
 | |
|   // _M_main_dispatch overloads.
 | |
|   //
 | |
|   // ------------------------------------------------------------
 | |
|   //
 | |
|   // DFS mode:
 | |
|   //
 | |
|   // It applies a Depth-First-Search (aka backtracking) on given NFA and input
 | |
|   // string.
 | |
|   // At the very beginning the executor stands in the start state, then it
 | |
|   // tries every possible state transition in current state recursively. Some
 | |
|   // state transitions consume input string, say, a single-char-matcher or a
 | |
|   // back-reference matcher; some don't, like assertion or other anchor nodes.
 | |
|   // When the input is exhausted and/or the current state is an accepting
 | |
|   // state, the whole executor returns true.
 | |
|   //
 | |
|   // TODO: This approach is exponentially slow for certain input.
 | |
|   //       Try to compile the NFA to a DFA.
 | |
|   //
 | |
|   // Time complexity: \Omega(match_length), O(2^(_M_nfa.size()))
 | |
|   // Space complexity: \theta(match_results.size() + match_length)
 | |
|   //
 | |
|   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | |
| 	   bool __dfs_mode>
 | |
|     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | |
|     _M_main_dispatch(_Match_mode __match_mode, __dfs)
 | |
|     {
 | |
|       _M_has_sol = false;
 | |
|       *_M_states._M_get_sol_pos() = _BiIter();
 | |
|       _M_cur_results = _M_results;
 | |
|       _M_dfs(__match_mode, _M_states._M_start);
 | |
|       return _M_has_sol;
 | |
|     }
 | |
| 
 | |
|   // ------------------------------------------------------------
 | |
|   //
 | |
|   // BFS mode:
 | |
|   //
 | |
|   // Russ Cox's article (http://swtch.com/~rsc/regexp/regexp1.html)
 | |
|   // explained this algorithm clearly.
 | |
|   //
 | |
|   // It first computes epsilon closure (states that can be achieved without
 | |
|   // consuming characters) for every state that's still matching,
 | |
|   // using the same DFS algorithm, but doesn't re-enter states (using
 | |
|   // _M_states._M_visited to check), nor follow _S_opcode_match.
 | |
|   //
 | |
|   // Then apply DFS using every _S_opcode_match (in _M_states._M_match_queue)
 | |
|   // as the start state.
 | |
|   //
 | |
|   // It significantly reduces potential duplicate states, so has a better
 | |
|   // upper bound; but it requires more overhead.
 | |
|   //
 | |
|   // Time complexity: \Omega(match_length * match_results.size())
 | |
|   //                  O(match_length * _M_nfa.size() * match_results.size())
 | |
|   // Space complexity: \Omega(_M_nfa.size() + match_results.size())
 | |
|   //                   O(_M_nfa.size() * match_results.size())
 | |
|   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | |
| 	   bool __dfs_mode>
 | |
|     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | |
|     _M_main_dispatch(_Match_mode __match_mode, __bfs)
 | |
|     {
 | |
|       _M_states._M_queue(_M_states._M_start, _M_results);
 | |
|       bool __ret = false;
 | |
|       while (1)
 | |
| 	{
 | |
| 	  _M_has_sol = false;
 | |
| 	  if (_M_states._M_match_queue.empty())
 | |
| 	    break;
 | |
| 	  std::fill_n(_M_states._M_visited_states.get(), _M_nfa.size(), false);
 | |
| 	  auto __old_queue = std::move(_M_states._M_match_queue);
 | |
| 	  for (auto& __task : __old_queue)
 | |
| 	    {
 | |
| 	      _M_cur_results = std::move(__task.second);
 | |
| 	      _M_dfs(__match_mode, __task.first);
 | |
| 	    }
 | |
| 	  if (__match_mode == _Match_mode::_Prefix)
 | |
| 	    __ret |= _M_has_sol;
 | |
| 	  if (_M_current == _M_end)
 | |
| 	    break;
 | |
| 	  ++_M_current;
 | |
| 	}
 | |
|       if (__match_mode == _Match_mode::_Exact)
 | |
| 	__ret = _M_has_sol;
 | |
|       _M_states._M_match_queue.clear();
 | |
|       return __ret;
 | |
|     }
 | |
| 
 | |
|   // Return whether now match the given sub-NFA.
 | |
|   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | |
| 	   bool __dfs_mode>
 | |
|     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | |
|     _M_lookahead(_StateIdT __next)
 | |
|     {
 | |
|       // Backreferences may refer to captured content.
 | |
|       // We may want to make this faster by not copying,
 | |
|       // but let's not be clever prematurely.
 | |
|       _ResultsVec __what(_M_cur_results);
 | |
|       _Executor __sub(_M_current, _M_end, __what, _M_re, _M_flags);
 | |
|       __sub._M_states._M_start = __next;
 | |
|       if (__sub._M_search_from_first())
 | |
| 	{
 | |
| 	  for (size_t __i = 0; __i < __what.size(); __i++)
 | |
| 	    if (__what[__i].matched)
 | |
| 	      _M_cur_results[__i] = __what[__i];
 | |
| 	  return true;
 | |
| 	}
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|   // __rep_count records how many times (__rep_count.second)
 | |
|   // this node is visited under certain input iterator
 | |
|   // (__rep_count.first). This prevent the executor from entering
 | |
|   // infinite loop by refusing to continue when it's already been
 | |
|   // visited more than twice. It's `twice` instead of `once` because
 | |
|   // we need to spare one more time for potential group capture.
 | |
|   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | |
| 	   bool __dfs_mode>
 | |
|     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | |
|     _M_rep_once_more(_Match_mode __match_mode, _StateIdT __i)
 | |
|     {
 | |
|       const auto& __state = _M_nfa[__i];
 | |
|       auto& __rep_count = _M_rep_count[__i];
 | |
|       if (__rep_count.second == 0 || __rep_count.first != _M_current)
 | |
| 	{
 | |
| 	  auto __back = __rep_count;
 | |
| 	  __rep_count.first = _M_current;
 | |
| 	  __rep_count.second = 1;
 | |
| 	  _M_dfs(__match_mode, __state._M_alt);
 | |
| 	  __rep_count = __back;
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  if (__rep_count.second < 2)
 | |
| 	    {
 | |
| 	      __rep_count.second++;
 | |
| 	      _M_dfs(__match_mode, __state._M_alt);
 | |
| 	      __rep_count.second--;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   // _M_alt branch is "match once more", while _M_next is "get me out
 | |
|   // of this quantifier". Executing _M_next first or _M_alt first don't
 | |
|   // mean the same thing, and we need to choose the correct order under
 | |
|   // given greedy mode.
 | |
|   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | |
| 	   bool __dfs_mode>
 | |
|     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | |
|     _M_handle_repeat(_Match_mode __match_mode, _StateIdT __i)
 | |
|     {
 | |
|       const auto& __state = _M_nfa[__i];
 | |
| 
 | |
|       // Greedy.
 | |
|       if (!__state._M_neg)
 | |
| 	{
 | |
| 	  _M_rep_once_more(__match_mode, __i);
 | |
| 	  // If it's DFS executor and already accepted, we're done.
 | |
| 	  if (!__dfs_mode || !_M_has_sol)
 | |
| 	    _M_dfs(__match_mode, __state._M_next);
 | |
| 	}
 | |
|       else // Non-greedy mode
 | |
| 	{
 | |
| 	  if (__dfs_mode)
 | |
| 	    {
 | |
| 	      // vice-versa.
 | |
| 	      _M_dfs(__match_mode, __state._M_next);
 | |
| 	      if (!_M_has_sol)
 | |
| 		_M_rep_once_more(__match_mode, __i);
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      // DON'T attempt anything, because there's already another
 | |
| 	      // state with higher priority accepted. This state cannot
 | |
| 	      // be better by attempting its next node.
 | |
| 	      if (!_M_has_sol)
 | |
| 		{
 | |
| 		  _M_dfs(__match_mode, __state._M_next);
 | |
| 		  // DON'T attempt anything if it's already accepted. An
 | |
| 		  // accepted state *must* be better than a solution that
 | |
| 		  // matches a non-greedy quantifier one more time.
 | |
| 		  if (!_M_has_sol)
 | |
| 		    _M_rep_once_more(__match_mode, __i);
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | |
| 	   bool __dfs_mode>
 | |
|     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | |
|     _M_handle_subexpr_begin(_Match_mode __match_mode, _StateIdT __i)
 | |
|     {
 | |
|       const auto& __state = _M_nfa[__i];
 | |
| 
 | |
|       auto& __res = _M_cur_results[__state._M_subexpr];
 | |
|       auto __back = __res.first;
 | |
|       __res.first = _M_current;
 | |
|       _M_dfs(__match_mode, __state._M_next);
 | |
|       __res.first = __back;
 | |
|     }
 | |
| 
 | |
|   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | |
| 	   bool __dfs_mode>
 | |
|     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | |
|     _M_handle_subexpr_end(_Match_mode __match_mode, _StateIdT __i)
 | |
|     {
 | |
|       const auto& __state = _M_nfa[__i];
 | |
| 
 | |
|       auto& __res = _M_cur_results[__state._M_subexpr];
 | |
|       auto __back = __res;
 | |
|       __res.second = _M_current;
 | |
|       __res.matched = true;
 | |
|       _M_dfs(__match_mode, __state._M_next);
 | |
|       __res = __back;
 | |
|     }
 | |
| 
 | |
|   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | |
| 	   bool __dfs_mode>
 | |
|     inline void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | |
|     _M_handle_line_begin_assertion(_Match_mode __match_mode, _StateIdT __i)
 | |
|     {
 | |
|       const auto& __state = _M_nfa[__i];
 | |
|       if (_M_at_begin())
 | |
| 	_M_dfs(__match_mode, __state._M_next);
 | |
|     }
 | |
| 
 | |
|   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | |
| 	   bool __dfs_mode>
 | |
|     inline void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | |
|     _M_handle_line_end_assertion(_Match_mode __match_mode, _StateIdT __i)
 | |
|     {
 | |
|       const auto& __state = _M_nfa[__i];
 | |
|       if (_M_at_end())
 | |
| 	_M_dfs(__match_mode, __state._M_next);
 | |
|     }
 | |
| 
 | |
|   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | |
| 	   bool __dfs_mode>
 | |
|     inline void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | |
|     _M_handle_word_boundary(_Match_mode __match_mode, _StateIdT __i)
 | |
|     {
 | |
|       const auto& __state = _M_nfa[__i];
 | |
|       if (_M_word_boundary() == !__state._M_neg)
 | |
| 	_M_dfs(__match_mode, __state._M_next);
 | |
|     }
 | |
| 
 | |
|   // Here __state._M_alt offers a single start node for a sub-NFA.
 | |
|   // We recursively invoke our algorithm to match the sub-NFA.
 | |
|   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | |
| 	   bool __dfs_mode>
 | |
|     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | |
|     _M_handle_subexpr_lookahead(_Match_mode __match_mode, _StateIdT __i)
 | |
|     {
 | |
|       const auto& __state = _M_nfa[__i];
 | |
|       if (_M_lookahead(__state._M_alt) == !__state._M_neg)
 | |
| 	_M_dfs(__match_mode, __state._M_next);
 | |
|     }
 | |
| 
 | |
|   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | |
| 	   bool __dfs_mode>
 | |
|     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | |
|     _M_handle_match(_Match_mode __match_mode, _StateIdT __i)
 | |
|     {
 | |
|       const auto& __state = _M_nfa[__i];
 | |
| 
 | |
|       if (_M_current == _M_end)
 | |
| 	return;
 | |
|       if (__dfs_mode)
 | |
| 	{
 | |
| 	  if (__state._M_matches(*_M_current))
 | |
| 	    {
 | |
| 	      ++_M_current;
 | |
| 	      _M_dfs(__match_mode, __state._M_next);
 | |
| 	      --_M_current;
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	if (__state._M_matches(*_M_current))
 | |
| 	  _M_states._M_queue(__state._M_next, _M_cur_results);
 | |
|     }
 | |
| 
 | |
|   template<typename _BiIter, typename _TraitsT>
 | |
|     struct _Backref_matcher
 | |
|     {
 | |
|       _Backref_matcher(bool __icase, const _TraitsT& __traits)
 | |
|       : _M_traits(__traits) { }
 | |
| 
 | |
|       bool
 | |
|       _M_apply(_BiIter __expected_begin,
 | |
| 	       _BiIter __expected_end, _BiIter __actual_begin,
 | |
| 	       _BiIter __actual_end)
 | |
|       {
 | |
| 	return _M_traits.transform(__expected_begin, __expected_end)
 | |
| 	    == _M_traits.transform(__actual_begin, __actual_end);
 | |
|       }
 | |
| 
 | |
|       const _TraitsT& _M_traits;
 | |
|     };
 | |
| 
 | |
|   template<typename _BiIter, typename _CharT>
 | |
|     struct _Backref_matcher<_BiIter, std::regex_traits<_CharT>>
 | |
|     {
 | |
|       using _TraitsT = std::regex_traits<_CharT>;
 | |
|       _Backref_matcher(bool __icase, const _TraitsT& __traits)
 | |
|       : _M_icase(__icase), _M_traits(__traits) { }
 | |
| 
 | |
|       bool
 | |
|       _M_apply(_BiIter __expected_begin,
 | |
| 	       _BiIter __expected_end, _BiIter __actual_begin,
 | |
| 	       _BiIter __actual_end)
 | |
|       {
 | |
| 	if (!_M_icase)
 | |
| 	  return _GLIBCXX_STD_A::__equal4(__expected_begin, __expected_end,
 | |
| 			       __actual_begin, __actual_end);
 | |
| 	typedef std::ctype<_CharT> __ctype_type;
 | |
| 	const auto& __fctyp = use_facet<__ctype_type>(_M_traits.getloc());
 | |
| 	return _GLIBCXX_STD_A::__equal4(__expected_begin, __expected_end,
 | |
| 			     __actual_begin, __actual_end,
 | |
| 			     [this, &__fctyp](_CharT __lhs, _CharT __rhs)
 | |
| 			     {
 | |
| 			       return __fctyp.tolower(__lhs)
 | |
| 				 == __fctyp.tolower(__rhs);
 | |
| 			     });
 | |
|       }
 | |
| 
 | |
|       bool _M_icase;
 | |
|       const _TraitsT& _M_traits;
 | |
|     };
 | |
| 
 | |
|   // First fetch the matched result from _M_cur_results as __submatch;
 | |
|   // then compare it with
 | |
|   // (_M_current, _M_current + (__submatch.second - __submatch.first)).
 | |
|   // If matched, keep going; else just return and try another state.
 | |
|   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | |
| 	   bool __dfs_mode>
 | |
|     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | |
|     _M_handle_backref(_Match_mode __match_mode, _StateIdT __i)
 | |
|     {
 | |
|       __glibcxx_assert(__dfs_mode);
 | |
| 
 | |
|       const auto& __state = _M_nfa[__i];
 | |
|       auto& __submatch = _M_cur_results[__state._M_backref_index];
 | |
|       if (!__submatch.matched)
 | |
| 	return;
 | |
|       auto __last = _M_current;
 | |
|       for (auto __tmp = __submatch.first;
 | |
| 	   __last != _M_end && __tmp != __submatch.second;
 | |
| 	   ++__tmp)
 | |
| 	++__last;
 | |
|       if (_Backref_matcher<_BiIter, _TraitsT>(
 | |
| 	      _M_re.flags() & regex_constants::icase,
 | |
| 	      _M_re._M_automaton->_M_traits)._M_apply(
 | |
| 		  __submatch.first, __submatch.second, _M_current, __last))
 | |
| 	{
 | |
| 	  if (__last != _M_current)
 | |
| 	    {
 | |
| 	      auto __backup = _M_current;
 | |
| 	      _M_current = __last;
 | |
| 	      _M_dfs(__match_mode, __state._M_next);
 | |
| 	      _M_current = __backup;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    _M_dfs(__match_mode, __state._M_next);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | |
| 	   bool __dfs_mode>
 | |
|     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | |
|     _M_handle_accept(_Match_mode __match_mode, _StateIdT __i)
 | |
|     {
 | |
|       if (__dfs_mode)
 | |
| 	{
 | |
| 	  __glibcxx_assert(!_M_has_sol);
 | |
| 	  if (__match_mode == _Match_mode::_Exact)
 | |
| 	    _M_has_sol = _M_current == _M_end;
 | |
| 	  else
 | |
| 	    _M_has_sol = true;
 | |
| 	  if (_M_current == _M_begin
 | |
| 	      && (_M_flags & regex_constants::match_not_null))
 | |
| 	    _M_has_sol = false;
 | |
| 	  if (_M_has_sol)
 | |
| 	    {
 | |
| 	      if (_M_nfa._M_flags & regex_constants::ECMAScript)
 | |
| 		_M_results = _M_cur_results;
 | |
| 	      else // POSIX
 | |
| 		{
 | |
| 		  __glibcxx_assert(_M_states._M_get_sol_pos());
 | |
| 		  // Here's POSIX's logic: match the longest one. However
 | |
| 		  // we never know which one (lhs or rhs of "|") is longer
 | |
| 		  // unless we try both of them and compare the results.
 | |
| 		  // The member variable _M_sol_pos records the end
 | |
| 		  // position of the last successful match. It's better
 | |
| 		  // to be larger, because POSIX regex is always greedy.
 | |
| 		  // TODO: This could be slow.
 | |
| 		  if (*_M_states._M_get_sol_pos() == _BiIter()
 | |
| 		      || std::distance(_M_begin,
 | |
| 				       *_M_states._M_get_sol_pos())
 | |
| 			 < std::distance(_M_begin, _M_current))
 | |
| 		    {
 | |
| 		      *_M_states._M_get_sol_pos() = _M_current;
 | |
| 		      _M_results = _M_cur_results;
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  if (_M_current == _M_begin
 | |
| 	      && (_M_flags & regex_constants::match_not_null))
 | |
| 	    return;
 | |
| 	  if (__match_mode == _Match_mode::_Prefix || _M_current == _M_end)
 | |
| 	    if (!_M_has_sol)
 | |
| 	      {
 | |
| 		_M_has_sol = true;
 | |
| 		_M_results = _M_cur_results;
 | |
| 	      }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | |
| 	   bool __dfs_mode>
 | |
|     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | |
|     _M_handle_alternative(_Match_mode __match_mode, _StateIdT __i)
 | |
|     {
 | |
|       const auto& __state = _M_nfa[__i];
 | |
| 
 | |
|       if (_M_nfa._M_flags & regex_constants::ECMAScript)
 | |
| 	{
 | |
| 	  // TODO: Fix BFS support. It is wrong.
 | |
| 	  _M_dfs(__match_mode, __state._M_alt);
 | |
| 	  // Pick lhs if it matches. Only try rhs if it doesn't.
 | |
| 	  if (!_M_has_sol)
 | |
| 	    _M_dfs(__match_mode, __state._M_next);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  // Try both and compare the result.
 | |
| 	  // See "case _S_opcode_accept:" handling above.
 | |
| 	  _M_dfs(__match_mode, __state._M_alt);
 | |
| 	  auto __has_sol = _M_has_sol;
 | |
| 	  _M_has_sol = false;
 | |
| 	  _M_dfs(__match_mode, __state._M_next);
 | |
| 	  _M_has_sol |= __has_sol;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | |
| 	   bool __dfs_mode>
 | |
|     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | |
|     _M_dfs(_Match_mode __match_mode, _StateIdT __i)
 | |
|     {
 | |
|       if (_M_states._M_visited(__i))
 | |
| 	return;
 | |
| 
 | |
|       switch (_M_nfa[__i]._M_opcode())
 | |
| 	{
 | |
| 	case _S_opcode_repeat:
 | |
| 	  _M_handle_repeat(__match_mode, __i); break;
 | |
| 	case _S_opcode_subexpr_begin:
 | |
| 	  _M_handle_subexpr_begin(__match_mode, __i); break;
 | |
| 	case _S_opcode_subexpr_end:
 | |
| 	  _M_handle_subexpr_end(__match_mode, __i); break;
 | |
| 	case _S_opcode_line_begin_assertion:
 | |
| 	  _M_handle_line_begin_assertion(__match_mode, __i); break;
 | |
| 	case _S_opcode_line_end_assertion:
 | |
| 	  _M_handle_line_end_assertion(__match_mode, __i); break;
 | |
| 	case _S_opcode_word_boundary:
 | |
| 	  _M_handle_word_boundary(__match_mode, __i); break;
 | |
| 	case _S_opcode_subexpr_lookahead:
 | |
| 	  _M_handle_subexpr_lookahead(__match_mode, __i); break;
 | |
| 	case _S_opcode_match:
 | |
| 	  _M_handle_match(__match_mode, __i); break;
 | |
| 	case _S_opcode_backref:
 | |
| 	  _M_handle_backref(__match_mode, __i); break;
 | |
| 	case _S_opcode_accept:
 | |
| 	  _M_handle_accept(__match_mode, __i); break;
 | |
| 	case _S_opcode_alternative:
 | |
| 	  _M_handle_alternative(__match_mode, __i); break;
 | |
| 	default:
 | |
| 	  __glibcxx_assert(false);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   // Return whether now is at some word boundary.
 | |
|   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | |
| 	   bool __dfs_mode>
 | |
|     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | |
|     _M_word_boundary() const
 | |
|     {
 | |
|       if (_M_current == _M_begin && (_M_flags & regex_constants::match_not_bow))
 | |
| 	return false;
 | |
|       if (_M_current == _M_end && (_M_flags & regex_constants::match_not_eow))
 | |
| 	return false;
 | |
| 
 | |
|       bool __left_is_word = false;
 | |
|       if (_M_current != _M_begin
 | |
| 	  || (_M_flags & regex_constants::match_prev_avail))
 | |
| 	{
 | |
| 	  auto __prev = _M_current;
 | |
| 	  if (_M_is_word(*std::prev(__prev)))
 | |
| 	    __left_is_word = true;
 | |
| 	}
 | |
|       bool __right_is_word =
 | |
|         _M_current != _M_end && _M_is_word(*_M_current);
 | |
| 
 | |
|       return __left_is_word != __right_is_word;
 | |
|     }
 | |
| } // namespace __detail
 | |
| 
 | |
| _GLIBCXX_END_NAMESPACE_VERSION
 | |
| } // namespace
 |