mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			607 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			607 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Go
		
	
	
	
// Copyright 2012 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
// +build darwin dragonfly freebsd linux netbsd openbsd solaris
 | 
						|
 | 
						|
package runtime
 | 
						|
 | 
						|
import (
 | 
						|
	"runtime/internal/sys"
 | 
						|
	"unsafe"
 | 
						|
)
 | 
						|
 | 
						|
// For gccgo's C code to call:
 | 
						|
//go:linkname initsig runtime.initsig
 | 
						|
//go:linkname crash runtime.crash
 | 
						|
//go:linkname resetcpuprofiler runtime.resetcpuprofiler
 | 
						|
//go:linkname sigtrampgo runtime.sigtrampgo
 | 
						|
 | 
						|
//go:linkname os_sigpipe os.sigpipe
 | 
						|
func os_sigpipe() {
 | 
						|
	systemstack(sigpipe)
 | 
						|
}
 | 
						|
 | 
						|
func signame(sig uint32) string {
 | 
						|
	if sig >= uint32(len(sigtable)) {
 | 
						|
		return ""
 | 
						|
	}
 | 
						|
	return sigtable[sig].name
 | 
						|
}
 | 
						|
 | 
						|
const (
 | 
						|
	_SIG_DFL uintptr = 0
 | 
						|
	_SIG_IGN uintptr = 1
 | 
						|
)
 | 
						|
 | 
						|
// Stores the signal handlers registered before Go installed its own.
 | 
						|
// These signal handlers will be invoked in cases where Go doesn't want to
 | 
						|
// handle a particular signal (e.g., signal occurred on a non-Go thread).
 | 
						|
// See sigfwdgo() for more information on when the signals are forwarded.
 | 
						|
//
 | 
						|
// Signal forwarding is currently available only on Darwin and Linux.
 | 
						|
var fwdSig [_NSIG]uintptr
 | 
						|
 | 
						|
// channels for synchronizing signal mask updates with the signal mask
 | 
						|
// thread
 | 
						|
var (
 | 
						|
	disableSigChan  chan uint32
 | 
						|
	enableSigChan   chan uint32
 | 
						|
	maskUpdatedChan chan struct{}
 | 
						|
)
 | 
						|
 | 
						|
func init() {
 | 
						|
	// _NSIG is the number of signals on this operating system.
 | 
						|
	// sigtable should describe what to do for all the possible signals.
 | 
						|
	if len(sigtable) != _NSIG {
 | 
						|
		print("runtime: len(sigtable)=", len(sigtable), " _NSIG=", _NSIG, "\n")
 | 
						|
		throw("bad sigtable len")
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
var signalsOK bool
 | 
						|
 | 
						|
// Initialize signals.
 | 
						|
// Called by libpreinit so runtime may not be initialized.
 | 
						|
//go:nosplit
 | 
						|
//go:nowritebarrierrec
 | 
						|
func initsig(preinit bool) {
 | 
						|
	if preinit {
 | 
						|
		// preinit is only passed as true if isarchive should be true.
 | 
						|
		isarchive = true
 | 
						|
	}
 | 
						|
 | 
						|
	if !preinit {
 | 
						|
		// It's now OK for signal handlers to run.
 | 
						|
		signalsOK = true
 | 
						|
	}
 | 
						|
 | 
						|
	// For c-archive/c-shared this is called by libpreinit with
 | 
						|
	// preinit == true.
 | 
						|
	if (isarchive || islibrary) && !preinit {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	for i := uint32(0); i < _NSIG; i++ {
 | 
						|
		t := &sigtable[i]
 | 
						|
		if t.flags == 0 || t.flags&_SigDefault != 0 {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		fwdSig[i] = getsig(i)
 | 
						|
 | 
						|
		if !sigInstallGoHandler(i) {
 | 
						|
			// Even if we are not installing a signal handler,
 | 
						|
			// set SA_ONSTACK if necessary.
 | 
						|
			if fwdSig[i] != _SIG_DFL && fwdSig[i] != _SIG_IGN {
 | 
						|
				setsigstack(i)
 | 
						|
			}
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		t.flags |= _SigHandling
 | 
						|
		setsig(i, getSigtramp())
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
//go:nosplit
 | 
						|
//go:nowritebarrierrec
 | 
						|
func sigInstallGoHandler(sig uint32) bool {
 | 
						|
	// For some signals, we respect an inherited SIG_IGN handler
 | 
						|
	// rather than insist on installing our own default handler.
 | 
						|
	// Even these signals can be fetched using the os/signal package.
 | 
						|
	switch sig {
 | 
						|
	case _SIGHUP, _SIGINT:
 | 
						|
		if fwdSig[sig] == _SIG_IGN {
 | 
						|
			return false
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	t := &sigtable[sig]
 | 
						|
	if t.flags&_SigSetStack != 0 {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
 | 
						|
	// When built using c-archive or c-shared, only install signal
 | 
						|
	// handlers for synchronous signals.
 | 
						|
	if (isarchive || islibrary) && t.flags&_SigPanic == 0 {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
 | 
						|
	return true
 | 
						|
}
 | 
						|
 | 
						|
func sigenable(sig uint32) {
 | 
						|
	if sig >= uint32(len(sigtable)) {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	t := &sigtable[sig]
 | 
						|
	if t.flags&_SigNotify != 0 {
 | 
						|
		ensureSigM()
 | 
						|
		enableSigChan <- sig
 | 
						|
		<-maskUpdatedChan
 | 
						|
		if t.flags&_SigHandling == 0 {
 | 
						|
			t.flags |= _SigHandling
 | 
						|
			fwdSig[sig] = getsig(sig)
 | 
						|
			setsig(sig, getSigtramp())
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func sigdisable(sig uint32) {
 | 
						|
	if sig >= uint32(len(sigtable)) {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	t := &sigtable[sig]
 | 
						|
	if t.flags&_SigNotify != 0 {
 | 
						|
		ensureSigM()
 | 
						|
		disableSigChan <- sig
 | 
						|
		<-maskUpdatedChan
 | 
						|
 | 
						|
		// If initsig does not install a signal handler for a
 | 
						|
		// signal, then to go back to the state before Notify
 | 
						|
		// we should remove the one we installed.
 | 
						|
		if !sigInstallGoHandler(sig) {
 | 
						|
			t.flags &^= _SigHandling
 | 
						|
			setsig(sig, fwdSig[sig])
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func sigignore(sig uint32) {
 | 
						|
	if sig >= uint32(len(sigtable)) {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	t := &sigtable[sig]
 | 
						|
	if t.flags&_SigNotify != 0 {
 | 
						|
		t.flags &^= _SigHandling
 | 
						|
		setsig(sig, _SIG_IGN)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func resetcpuprofiler(hz int32) {
 | 
						|
	var it _itimerval
 | 
						|
	if hz == 0 {
 | 
						|
		setitimer(_ITIMER_PROF, &it, nil)
 | 
						|
	} else {
 | 
						|
		it.it_interval.tv_sec = 0
 | 
						|
		it.it_interval.set_usec(1000000 / hz)
 | 
						|
		it.it_value = it.it_interval
 | 
						|
		setitimer(_ITIMER_PROF, &it, nil)
 | 
						|
	}
 | 
						|
	_g_ := getg()
 | 
						|
	_g_.m.profilehz = hz
 | 
						|
}
 | 
						|
 | 
						|
func sigpipe() {
 | 
						|
	if sigsend(_SIGPIPE) {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	dieFromSignal(_SIGPIPE)
 | 
						|
}
 | 
						|
 | 
						|
// sigtrampgo is called from the signal handler function, sigtramp,
 | 
						|
// written in assembly code.
 | 
						|
// This is called by the signal handler, and the world may be stopped.
 | 
						|
//go:nosplit
 | 
						|
//go:nowritebarrierrec
 | 
						|
func sigtrampgo(sig uint32, info *_siginfo_t, ctx unsafe.Pointer) {
 | 
						|
	if sigfwdgo(sig, info, ctx) {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	g := getg()
 | 
						|
	if g == nil {
 | 
						|
		c := sigctxt{info, ctx}
 | 
						|
		if sig == _SIGPROF {
 | 
						|
			_, pc := getSiginfo(info, ctx)
 | 
						|
			sigprofNonGoPC(pc)
 | 
						|
			return
 | 
						|
		}
 | 
						|
		badsignal(uintptr(sig), &c)
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	setg(g.m.gsignal)
 | 
						|
	sighandler(sig, info, ctx, g)
 | 
						|
	setg(g)
 | 
						|
}
 | 
						|
 | 
						|
// sigpanic turns a synchronous signal into a run-time panic.
 | 
						|
// If the signal handler sees a synchronous panic, it arranges the
 | 
						|
// stack to look like the function where the signal occurred called
 | 
						|
// sigpanic, sets the signal's PC value to sigpanic, and returns from
 | 
						|
// the signal handler. The effect is that the program will act as
 | 
						|
// though the function that got the signal simply called sigpanic
 | 
						|
// instead.
 | 
						|
func sigpanic() {
 | 
						|
	g := getg()
 | 
						|
	if !canpanic(g) {
 | 
						|
		throw("unexpected signal during runtime execution")
 | 
						|
	}
 | 
						|
 | 
						|
	switch g.sig {
 | 
						|
	case _SIGBUS:
 | 
						|
		if g.sigcode0 == _BUS_ADRERR && g.sigcode1 < 0x1000 {
 | 
						|
			panicmem()
 | 
						|
		}
 | 
						|
		// Support runtime/debug.SetPanicOnFault.
 | 
						|
		if g.paniconfault {
 | 
						|
			panicmem()
 | 
						|
		}
 | 
						|
		print("unexpected fault address ", hex(g.sigcode1), "\n")
 | 
						|
		throw("fault")
 | 
						|
	case _SIGSEGV:
 | 
						|
		if (g.sigcode0 == 0 || g.sigcode0 == _SEGV_MAPERR || g.sigcode0 == _SEGV_ACCERR) && g.sigcode1 < 0x1000 {
 | 
						|
			panicmem()
 | 
						|
		}
 | 
						|
		// Support runtime/debug.SetPanicOnFault.
 | 
						|
		if g.paniconfault {
 | 
						|
			panicmem()
 | 
						|
		}
 | 
						|
		print("unexpected fault address ", hex(g.sigcode1), "\n")
 | 
						|
		throw("fault")
 | 
						|
	case _SIGFPE:
 | 
						|
		switch g.sigcode0 {
 | 
						|
		case _FPE_INTDIV:
 | 
						|
			panicdivide()
 | 
						|
		case _FPE_INTOVF:
 | 
						|
			panicoverflow()
 | 
						|
		}
 | 
						|
		panicfloat()
 | 
						|
	}
 | 
						|
 | 
						|
	if g.sig >= uint32(len(sigtable)) {
 | 
						|
		// can't happen: we looked up g.sig in sigtable to decide to call sigpanic
 | 
						|
		throw("unexpected signal value")
 | 
						|
	}
 | 
						|
	panic(errorString(sigtable[g.sig].name))
 | 
						|
}
 | 
						|
 | 
						|
// dieFromSignal kills the program with a signal.
 | 
						|
// This provides the expected exit status for the shell.
 | 
						|
// This is only called with fatal signals expected to kill the process.
 | 
						|
//go:nosplit
 | 
						|
//go:nowritebarrierrec
 | 
						|
func dieFromSignal(sig uint32) {
 | 
						|
	setsig(sig, _SIG_DFL)
 | 
						|
	unblocksig(sig)
 | 
						|
	raise(sig)
 | 
						|
 | 
						|
	// That should have killed us. On some systems, though, raise
 | 
						|
	// sends the signal to the whole process rather than to just
 | 
						|
	// the current thread, which means that the signal may not yet
 | 
						|
	// have been delivered. Give other threads a chance to run and
 | 
						|
	// pick up the signal.
 | 
						|
	osyield()
 | 
						|
	osyield()
 | 
						|
	osyield()
 | 
						|
 | 
						|
	// If we are still somehow running, just exit with the wrong status.
 | 
						|
	exit(2)
 | 
						|
}
 | 
						|
 | 
						|
// raisebadsignal is called when a signal is received on a non-Go
 | 
						|
// thread, and the Go program does not want to handle it (that is, the
 | 
						|
// program has not called os/signal.Notify for the signal).
 | 
						|
func raisebadsignal(sig uint32, c *sigctxt) {
 | 
						|
	if sig == _SIGPROF {
 | 
						|
		// Ignore profiling signals that arrive on non-Go threads.
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	var handler uintptr
 | 
						|
	if sig >= _NSIG {
 | 
						|
		handler = _SIG_DFL
 | 
						|
	} else {
 | 
						|
		handler = fwdSig[sig]
 | 
						|
	}
 | 
						|
 | 
						|
	// Reset the signal handler and raise the signal.
 | 
						|
	// We are currently running inside a signal handler, so the
 | 
						|
	// signal is blocked. We need to unblock it before raising the
 | 
						|
	// signal, or the signal we raise will be ignored until we return
 | 
						|
	// from the signal handler. We know that the signal was unblocked
 | 
						|
	// before entering the handler, or else we would not have received
 | 
						|
	// it. That means that we don't have to worry about blocking it
 | 
						|
	// again.
 | 
						|
	unblocksig(sig)
 | 
						|
	setsig(sig, handler)
 | 
						|
 | 
						|
	// If we're linked into a non-Go program we want to try to
 | 
						|
	// avoid modifying the original context in which the signal
 | 
						|
	// was raised. If the handler is the default, we know it
 | 
						|
	// is non-recoverable, so we don't have to worry about
 | 
						|
	// re-installing sighandler. At this point we can just
 | 
						|
	// return and the signal will be re-raised and caught by
 | 
						|
	// the default handler with the correct context.
 | 
						|
	if (isarchive || islibrary) && handler == _SIG_DFL && c.sigcode() != _SI_USER {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	raise(sig)
 | 
						|
 | 
						|
	// Give the signal a chance to be delivered.
 | 
						|
	// In almost all real cases the program is about to crash,
 | 
						|
	// so sleeping here is not a waste of time.
 | 
						|
	usleep(1000)
 | 
						|
 | 
						|
	// If the signal didn't cause the program to exit, restore the
 | 
						|
	// Go signal handler and carry on.
 | 
						|
	//
 | 
						|
	// We may receive another instance of the signal before we
 | 
						|
	// restore the Go handler, but that is not so bad: we know
 | 
						|
	// that the Go program has been ignoring the signal.
 | 
						|
	setsig(sig, getSigtramp())
 | 
						|
}
 | 
						|
 | 
						|
func crash() {
 | 
						|
	if GOOS == "darwin" {
 | 
						|
		// OS X core dumps are linear dumps of the mapped memory,
 | 
						|
		// from the first virtual byte to the last, with zeros in the gaps.
 | 
						|
		// Because of the way we arrange the address space on 64-bit systems,
 | 
						|
		// this means the OS X core file will be >128 GB and even on a zippy
 | 
						|
		// workstation can take OS X well over an hour to write (uninterruptible).
 | 
						|
		// Save users from making that mistake.
 | 
						|
		if sys.PtrSize == 8 {
 | 
						|
			return
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	dieFromSignal(_SIGABRT)
 | 
						|
}
 | 
						|
 | 
						|
// ensureSigM starts one global, sleeping thread to make sure at least one thread
 | 
						|
// is available to catch signals enabled for os/signal.
 | 
						|
func ensureSigM() {
 | 
						|
	if maskUpdatedChan != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	maskUpdatedChan = make(chan struct{})
 | 
						|
	disableSigChan = make(chan uint32)
 | 
						|
	enableSigChan = make(chan uint32)
 | 
						|
	go func() {
 | 
						|
		// Signal masks are per-thread, so make sure this goroutine stays on one
 | 
						|
		// thread.
 | 
						|
		LockOSThread()
 | 
						|
		defer UnlockOSThread()
 | 
						|
		// The sigBlocked mask contains the signals not active for os/signal,
 | 
						|
		// initially all signals except the essential. When signal.Notify()/Stop is called,
 | 
						|
		// sigenable/sigdisable in turn notify this thread to update its signal
 | 
						|
		// mask accordingly.
 | 
						|
		var sigBlocked sigset
 | 
						|
		sigfillset(&sigBlocked)
 | 
						|
		for i := range sigtable {
 | 
						|
			if sigtable[i].flags&_SigUnblock != 0 {
 | 
						|
				sigdelset(&sigBlocked, i)
 | 
						|
			}
 | 
						|
		}
 | 
						|
		sigprocmask(_SIG_SETMASK, &sigBlocked, nil)
 | 
						|
		for {
 | 
						|
			select {
 | 
						|
			case sig := <-enableSigChan:
 | 
						|
				if sig > 0 {
 | 
						|
					sigdelset(&sigBlocked, int(sig))
 | 
						|
				}
 | 
						|
			case sig := <-disableSigChan:
 | 
						|
				if sig > 0 {
 | 
						|
					sigaddset(&sigBlocked, int(sig))
 | 
						|
				}
 | 
						|
			}
 | 
						|
			sigprocmask(_SIG_SETMASK, &sigBlocked, nil)
 | 
						|
			maskUpdatedChan <- struct{}{}
 | 
						|
		}
 | 
						|
	}()
 | 
						|
}
 | 
						|
 | 
						|
// This is called when we receive a signal when there is no signal stack.
 | 
						|
// This can only happen if non-Go code calls sigaltstack to disable the
 | 
						|
// signal stack.
 | 
						|
func noSignalStack(sig uint32) {
 | 
						|
	println("signal", sig, "received on thread with no signal stack")
 | 
						|
	throw("non-Go code disabled sigaltstack")
 | 
						|
}
 | 
						|
 | 
						|
// This is called if we receive a signal when there is a signal stack
 | 
						|
// but we are not on it. This can only happen if non-Go code called
 | 
						|
// sigaction without setting the SS_ONSTACK flag.
 | 
						|
func sigNotOnStack(sig uint32) {
 | 
						|
	println("signal", sig, "received but handler not on signal stack")
 | 
						|
	throw("non-Go code set up signal handler without SA_ONSTACK flag")
 | 
						|
}
 | 
						|
 | 
						|
// This runs on a foreign stack, without an m or a g. No stack split.
 | 
						|
//go:nosplit
 | 
						|
//go:norace
 | 
						|
//go:nowritebarrierrec
 | 
						|
func badsignal(sig uintptr, c *sigctxt) {
 | 
						|
	needm(0)
 | 
						|
	if !sigsend(uint32(sig)) {
 | 
						|
		// A foreign thread received the signal sig, and the
 | 
						|
		// Go code does not want to handle it.
 | 
						|
		raisebadsignal(uint32(sig), c)
 | 
						|
	}
 | 
						|
	dropm()
 | 
						|
}
 | 
						|
 | 
						|
// Determines if the signal should be handled by Go and if not, forwards the
 | 
						|
// signal to the handler that was installed before Go's. Returns whether the
 | 
						|
// signal was forwarded.
 | 
						|
// This is called by the signal handler, and the world may be stopped.
 | 
						|
//go:nosplit
 | 
						|
//go:nowritebarrierrec
 | 
						|
func sigfwdgo(sig uint32, info *_siginfo_t, ctx unsafe.Pointer) bool {
 | 
						|
	if sig >= uint32(len(sigtable)) {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	fwdFn := fwdSig[sig]
 | 
						|
 | 
						|
	if !signalsOK {
 | 
						|
		// The only way we can get here is if we are in a
 | 
						|
		// library or archive, we installed a signal handler
 | 
						|
		// at program startup, but the Go runtime has not yet
 | 
						|
		// been initialized.
 | 
						|
		if fwdFn == _SIG_DFL {
 | 
						|
			dieFromSignal(sig)
 | 
						|
		} else {
 | 
						|
			sigfwd(fwdFn, sig, info, ctx)
 | 
						|
		}
 | 
						|
		return true
 | 
						|
	}
 | 
						|
 | 
						|
	flags := sigtable[sig].flags
 | 
						|
 | 
						|
	// If there is no handler to forward to, no need to forward.
 | 
						|
	if fwdFn == _SIG_DFL {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
 | 
						|
	// If we aren't handling the signal, forward it.
 | 
						|
	if flags&_SigHandling == 0 {
 | 
						|
		sigfwd(fwdFn, sig, info, ctx)
 | 
						|
		return true
 | 
						|
	}
 | 
						|
 | 
						|
	// Only forward synchronous signals.
 | 
						|
	c := sigctxt{info, ctx}
 | 
						|
	if c.sigcode() == _SI_USER || flags&_SigPanic == 0 {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	// Determine if the signal occurred inside Go code. We test that:
 | 
						|
	//   (1) we were in a goroutine (i.e., m.curg != nil), and
 | 
						|
	//   (2) we weren't in CGO (i.e., m.curg.syscallsp == 0).
 | 
						|
	g := getg()
 | 
						|
	if g != nil && g.m != nil && g.m.curg != nil && g.m.curg.syscallsp == 0 {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	// Signal not handled by Go, forward it.
 | 
						|
	if fwdFn != _SIG_IGN {
 | 
						|
		sigfwd(fwdFn, sig, info, ctx)
 | 
						|
	}
 | 
						|
	return true
 | 
						|
}
 | 
						|
 | 
						|
// msigsave saves the current thread's signal mask into mp.sigmask.
 | 
						|
// This is used to preserve the non-Go signal mask when a non-Go
 | 
						|
// thread calls a Go function.
 | 
						|
// This is nosplit and nowritebarrierrec because it is called by needm
 | 
						|
// which may be called on a non-Go thread with no g available.
 | 
						|
//go:nosplit
 | 
						|
//go:nowritebarrierrec
 | 
						|
func msigsave(mp *m) {
 | 
						|
	sigprocmask(_SIG_SETMASK, nil, &mp.sigmask)
 | 
						|
}
 | 
						|
 | 
						|
// msigrestore sets the current thread's signal mask to sigmask.
 | 
						|
// This is used to restore the non-Go signal mask when a non-Go thread
 | 
						|
// calls a Go function.
 | 
						|
// This is nosplit and nowritebarrierrec because it is called by dropm
 | 
						|
// after g has been cleared.
 | 
						|
//go:nosplit
 | 
						|
//go:nowritebarrierrec
 | 
						|
func msigrestore(sigmask sigset) {
 | 
						|
	sigprocmask(_SIG_SETMASK, &sigmask, nil)
 | 
						|
}
 | 
						|
 | 
						|
// sigblock blocks all signals in the current thread's signal mask.
 | 
						|
// This is used to block signals while setting up and tearing down g
 | 
						|
// when a non-Go thread calls a Go function.
 | 
						|
// The OS-specific code is expected to define sigset_all.
 | 
						|
// This is nosplit and nowritebarrierrec because it is called by needm
 | 
						|
// which may be called on a non-Go thread with no g available.
 | 
						|
//go:nosplit
 | 
						|
//go:nowritebarrierrec
 | 
						|
func sigblock() {
 | 
						|
	var set sigset
 | 
						|
	sigfillset(&set)
 | 
						|
	sigprocmask(_SIG_SETMASK, &set, nil)
 | 
						|
}
 | 
						|
 | 
						|
// unblocksig removes sig from the current thread's signal mask.
 | 
						|
// This is nosplit and nowritebarrierrec because it is called from
 | 
						|
// dieFromSignal, which can be called by sigfwdgo while running in the
 | 
						|
// signal handler, on the signal stack, with no g available.
 | 
						|
//go:nosplit
 | 
						|
//go:nowritebarrierrec
 | 
						|
func unblocksig(sig uint32) {
 | 
						|
	var set sigset
 | 
						|
	sigemptyset(&set)
 | 
						|
	sigaddset(&set, int(sig))
 | 
						|
	sigprocmask(_SIG_UNBLOCK, &set, nil)
 | 
						|
}
 | 
						|
 | 
						|
// minitSignals is called when initializing a new m to set the
 | 
						|
// thread's alternate signal stack and signal mask.
 | 
						|
func minitSignals() {
 | 
						|
	minitSignalStack()
 | 
						|
	minitSignalMask()
 | 
						|
}
 | 
						|
 | 
						|
// minitSignalStack is called when initializing a new m to set the
 | 
						|
// alternate signal stack. If the alternate signal stack is not set
 | 
						|
// for the thread (the normal case) then set the alternate signal
 | 
						|
// stack to the gsignal stack. If the alternate signal stack is set
 | 
						|
// for the thread (the case when a non-Go thread sets the alternate
 | 
						|
// signal stack and then calls a Go function) then set the gsignal
 | 
						|
// stack to the alternate signal stack. Record which choice was made
 | 
						|
// in newSigstack, so that it can be undone in unminit.
 | 
						|
func minitSignalStack() {
 | 
						|
	_g_ := getg()
 | 
						|
	var st _stack_t
 | 
						|
	sigaltstack(nil, &st)
 | 
						|
	if st.ss_flags&_SS_DISABLE != 0 {
 | 
						|
		signalstack(_g_.m.gsignalstack, _g_.m.gsignalstacksize)
 | 
						|
		_g_.m.newSigstack = true
 | 
						|
	} else {
 | 
						|
		_g_.m.newSigstack = false
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// minitSignalMask is called when initializing a new m to set the
 | 
						|
// thread's signal mask. When this is called all signals have been
 | 
						|
// blocked for the thread.  This starts with m.sigmask, which was set
 | 
						|
// either from initSigmask for a newly created thread or by calling
 | 
						|
// msigsave if this is a non-Go thread calling a Go function. It
 | 
						|
// removes all essential signals from the mask, thus causing those
 | 
						|
// signals to not be blocked. Then it sets the thread's signal mask.
 | 
						|
// After this is called the thread can receive signals.
 | 
						|
func minitSignalMask() {
 | 
						|
	nmask := getg().m.sigmask
 | 
						|
	for i := range sigtable {
 | 
						|
		if sigtable[i].flags&_SigUnblock != 0 {
 | 
						|
			sigdelset(&nmask, i)
 | 
						|
		}
 | 
						|
	}
 | 
						|
	sigprocmask(_SIG_SETMASK, &nmask, nil)
 | 
						|
}
 | 
						|
 | 
						|
// unminitSignals is called from dropm, via unminit, to undo the
 | 
						|
// effect of calling minit on a non-Go thread.
 | 
						|
//go:nosplit
 | 
						|
func unminitSignals() {
 | 
						|
	if getg().m.newSigstack {
 | 
						|
		signalstack(nil, 0)
 | 
						|
	}
 | 
						|
}
 |