mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			2223 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			2223 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			Go
		
	
	
	
// Copyright 2009 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
// Annotate Ref in Prog with C types by parsing gcc debug output.
 | 
						|
// Conversion of debug output to Go types.
 | 
						|
 | 
						|
package main
 | 
						|
 | 
						|
import (
 | 
						|
	"bytes"
 | 
						|
	"debug/dwarf"
 | 
						|
	"debug/elf"
 | 
						|
	"debug/macho"
 | 
						|
	"debug/pe"
 | 
						|
	"encoding/binary"
 | 
						|
	"errors"
 | 
						|
	"flag"
 | 
						|
	"fmt"
 | 
						|
	"go/ast"
 | 
						|
	"go/parser"
 | 
						|
	"go/token"
 | 
						|
	"os"
 | 
						|
	"strconv"
 | 
						|
	"strings"
 | 
						|
	"unicode"
 | 
						|
	"unicode/utf8"
 | 
						|
)
 | 
						|
 | 
						|
var debugDefine = flag.Bool("debug-define", false, "print relevant #defines")
 | 
						|
var debugGcc = flag.Bool("debug-gcc", false, "print gcc invocations")
 | 
						|
 | 
						|
var nameToC = map[string]string{
 | 
						|
	"schar":         "signed char",
 | 
						|
	"uchar":         "unsigned char",
 | 
						|
	"ushort":        "unsigned short",
 | 
						|
	"uint":          "unsigned int",
 | 
						|
	"ulong":         "unsigned long",
 | 
						|
	"longlong":      "long long",
 | 
						|
	"ulonglong":     "unsigned long long",
 | 
						|
	"complexfloat":  "float _Complex",
 | 
						|
	"complexdouble": "double _Complex",
 | 
						|
}
 | 
						|
 | 
						|
// cname returns the C name to use for C.s.
 | 
						|
// The expansions are listed in nameToC and also
 | 
						|
// struct_foo becomes "struct foo", and similarly for
 | 
						|
// union and enum.
 | 
						|
func cname(s string) string {
 | 
						|
	if t, ok := nameToC[s]; ok {
 | 
						|
		return t
 | 
						|
	}
 | 
						|
 | 
						|
	if strings.HasPrefix(s, "struct_") {
 | 
						|
		return "struct " + s[len("struct_"):]
 | 
						|
	}
 | 
						|
	if strings.HasPrefix(s, "union_") {
 | 
						|
		return "union " + s[len("union_"):]
 | 
						|
	}
 | 
						|
	if strings.HasPrefix(s, "enum_") {
 | 
						|
		return "enum " + s[len("enum_"):]
 | 
						|
	}
 | 
						|
	if strings.HasPrefix(s, "sizeof_") {
 | 
						|
		return "sizeof(" + cname(s[len("sizeof_"):]) + ")"
 | 
						|
	}
 | 
						|
	return s
 | 
						|
}
 | 
						|
 | 
						|
// DiscardCgoDirectives processes the import C preamble, and discards
 | 
						|
// all #cgo CFLAGS and LDFLAGS directives, so they don't make their
 | 
						|
// way into _cgo_export.h.
 | 
						|
func (f *File) DiscardCgoDirectives() {
 | 
						|
	linesIn := strings.Split(f.Preamble, "\n")
 | 
						|
	linesOut := make([]string, 0, len(linesIn))
 | 
						|
	for _, line := range linesIn {
 | 
						|
		l := strings.TrimSpace(line)
 | 
						|
		if len(l) < 5 || l[:4] != "#cgo" || !unicode.IsSpace(rune(l[4])) {
 | 
						|
			linesOut = append(linesOut, line)
 | 
						|
		} else {
 | 
						|
			linesOut = append(linesOut, "")
 | 
						|
		}
 | 
						|
	}
 | 
						|
	f.Preamble = strings.Join(linesOut, "\n")
 | 
						|
}
 | 
						|
 | 
						|
// addToFlag appends args to flag. All flags are later written out onto the
 | 
						|
// _cgo_flags file for the build system to use.
 | 
						|
func (p *Package) addToFlag(flag string, args []string) {
 | 
						|
	p.CgoFlags[flag] = append(p.CgoFlags[flag], args...)
 | 
						|
	if flag == "CFLAGS" {
 | 
						|
		// We'll also need these when preprocessing for dwarf information.
 | 
						|
		p.GccOptions = append(p.GccOptions, args...)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// splitQuoted splits the string s around each instance of one or more consecutive
 | 
						|
// white space characters while taking into account quotes and escaping, and
 | 
						|
// returns an array of substrings of s or an empty list if s contains only white space.
 | 
						|
// Single quotes and double quotes are recognized to prevent splitting within the
 | 
						|
// quoted region, and are removed from the resulting substrings. If a quote in s
 | 
						|
// isn't closed err will be set and r will have the unclosed argument as the
 | 
						|
// last element. The backslash is used for escaping.
 | 
						|
//
 | 
						|
// For example, the following string:
 | 
						|
//
 | 
						|
//     `a b:"c d" 'e''f'  "g\""`
 | 
						|
//
 | 
						|
// Would be parsed as:
 | 
						|
//
 | 
						|
//     []string{"a", "b:c d", "ef", `g"`}
 | 
						|
//
 | 
						|
func splitQuoted(s string) (r []string, err error) {
 | 
						|
	var args []string
 | 
						|
	arg := make([]rune, len(s))
 | 
						|
	escaped := false
 | 
						|
	quoted := false
 | 
						|
	quote := '\x00'
 | 
						|
	i := 0
 | 
						|
	for _, r := range s {
 | 
						|
		switch {
 | 
						|
		case escaped:
 | 
						|
			escaped = false
 | 
						|
		case r == '\\':
 | 
						|
			escaped = true
 | 
						|
			continue
 | 
						|
		case quote != 0:
 | 
						|
			if r == quote {
 | 
						|
				quote = 0
 | 
						|
				continue
 | 
						|
			}
 | 
						|
		case r == '"' || r == '\'':
 | 
						|
			quoted = true
 | 
						|
			quote = r
 | 
						|
			continue
 | 
						|
		case unicode.IsSpace(r):
 | 
						|
			if quoted || i > 0 {
 | 
						|
				quoted = false
 | 
						|
				args = append(args, string(arg[:i]))
 | 
						|
				i = 0
 | 
						|
			}
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		arg[i] = r
 | 
						|
		i++
 | 
						|
	}
 | 
						|
	if quoted || i > 0 {
 | 
						|
		args = append(args, string(arg[:i]))
 | 
						|
	}
 | 
						|
	if quote != 0 {
 | 
						|
		err = errors.New("unclosed quote")
 | 
						|
	} else if escaped {
 | 
						|
		err = errors.New("unfinished escaping")
 | 
						|
	}
 | 
						|
	return args, err
 | 
						|
}
 | 
						|
 | 
						|
// Translate rewrites f.AST, the original Go input, to remove
 | 
						|
// references to the imported package C, replacing them with
 | 
						|
// references to the equivalent Go types, functions, and variables.
 | 
						|
func (p *Package) Translate(f *File) {
 | 
						|
	for _, cref := range f.Ref {
 | 
						|
		// Convert C.ulong to C.unsigned long, etc.
 | 
						|
		cref.Name.C = cname(cref.Name.Go)
 | 
						|
	}
 | 
						|
	p.loadDefines(f)
 | 
						|
	needType := p.guessKinds(f)
 | 
						|
	if len(needType) > 0 {
 | 
						|
		p.loadDWARF(f, needType)
 | 
						|
	}
 | 
						|
	p.rewriteCalls(f)
 | 
						|
	p.rewriteRef(f)
 | 
						|
}
 | 
						|
 | 
						|
// loadDefines coerces gcc into spitting out the #defines in use
 | 
						|
// in the file f and saves relevant renamings in f.Name[name].Define.
 | 
						|
func (p *Package) loadDefines(f *File) {
 | 
						|
	var b bytes.Buffer
 | 
						|
	b.WriteString(f.Preamble)
 | 
						|
	b.WriteString(builtinProlog)
 | 
						|
	stdout := p.gccDefines(b.Bytes())
 | 
						|
 | 
						|
	for _, line := range strings.Split(stdout, "\n") {
 | 
						|
		if len(line) < 9 || line[0:7] != "#define" {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		line = strings.TrimSpace(line[8:])
 | 
						|
 | 
						|
		var key, val string
 | 
						|
		spaceIndex := strings.Index(line, " ")
 | 
						|
		tabIndex := strings.Index(line, "\t")
 | 
						|
 | 
						|
		if spaceIndex == -1 && tabIndex == -1 {
 | 
						|
			continue
 | 
						|
		} else if tabIndex == -1 || (spaceIndex != -1 && spaceIndex < tabIndex) {
 | 
						|
			key = line[0:spaceIndex]
 | 
						|
			val = strings.TrimSpace(line[spaceIndex:])
 | 
						|
		} else {
 | 
						|
			key = line[0:tabIndex]
 | 
						|
			val = strings.TrimSpace(line[tabIndex:])
 | 
						|
		}
 | 
						|
 | 
						|
		if key == "__clang__" {
 | 
						|
			p.GccIsClang = true
 | 
						|
		}
 | 
						|
 | 
						|
		if n := f.Name[key]; n != nil {
 | 
						|
			if *debugDefine {
 | 
						|
				fmt.Fprintf(os.Stderr, "#define %s %s\n", key, val)
 | 
						|
			}
 | 
						|
			n.Define = val
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// guessKinds tricks gcc into revealing the kind of each
 | 
						|
// name xxx for the references C.xxx in the Go input.
 | 
						|
// The kind is either a constant, type, or variable.
 | 
						|
func (p *Package) guessKinds(f *File) []*Name {
 | 
						|
	// Determine kinds for names we already know about,
 | 
						|
	// like #defines or 'struct foo', before bothering with gcc.
 | 
						|
	var names, needType []*Name
 | 
						|
	for _, key := range nameKeys(f.Name) {
 | 
						|
		n := f.Name[key]
 | 
						|
		// If we've already found this name as a #define
 | 
						|
		// and we can translate it as a constant value, do so.
 | 
						|
		if n.Define != "" {
 | 
						|
			isConst := false
 | 
						|
			if _, err := strconv.Atoi(n.Define); err == nil {
 | 
						|
				isConst = true
 | 
						|
			} else if n.Define[0] == '"' || n.Define[0] == '\'' {
 | 
						|
				if _, err := parser.ParseExpr(n.Define); err == nil {
 | 
						|
					isConst = true
 | 
						|
				}
 | 
						|
			}
 | 
						|
			if isConst {
 | 
						|
				n.Kind = "const"
 | 
						|
				// Turn decimal into hex, just for consistency
 | 
						|
				// with enum-derived constants. Otherwise
 | 
						|
				// in the cgo -godefs output half the constants
 | 
						|
				// are in hex and half are in whatever the #define used.
 | 
						|
				i, err := strconv.ParseInt(n.Define, 0, 64)
 | 
						|
				if err == nil {
 | 
						|
					n.Const = fmt.Sprintf("%#x", i)
 | 
						|
				} else {
 | 
						|
					n.Const = n.Define
 | 
						|
				}
 | 
						|
				continue
 | 
						|
			}
 | 
						|
 | 
						|
			if isName(n.Define) {
 | 
						|
				n.C = n.Define
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		needType = append(needType, n)
 | 
						|
 | 
						|
		// If this is a struct, union, or enum type name, no need to guess the kind.
 | 
						|
		if strings.HasPrefix(n.C, "struct ") || strings.HasPrefix(n.C, "union ") || strings.HasPrefix(n.C, "enum ") {
 | 
						|
			n.Kind = "type"
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		// Otherwise, we'll need to find out from gcc.
 | 
						|
		names = append(names, n)
 | 
						|
	}
 | 
						|
 | 
						|
	// Bypass gcc if there's nothing left to find out.
 | 
						|
	if len(names) == 0 {
 | 
						|
		return needType
 | 
						|
	}
 | 
						|
 | 
						|
	// Coerce gcc into telling us whether each name is a type, a value, or undeclared.
 | 
						|
	// For names, find out whether they are integer constants.
 | 
						|
	// We used to look at specific warning or error messages here, but that tied the
 | 
						|
	// behavior too closely to specific versions of the compilers.
 | 
						|
	// Instead, arrange that we can infer what we need from only the presence or absence
 | 
						|
	// of an error on a specific line.
 | 
						|
	//
 | 
						|
	// For each name, we generate these lines, where xxx is the index in toSniff plus one.
 | 
						|
	//
 | 
						|
	//	#line xxx "not-declared"
 | 
						|
	//	void __cgo_f_xxx_1(void) { __typeof__(name) *__cgo_undefined__; }
 | 
						|
	//	#line xxx "not-type"
 | 
						|
	//	void __cgo_f_xxx_2(void) { name *__cgo_undefined__; }
 | 
						|
	//	#line xxx "not-const"
 | 
						|
	//	void __cgo_f_xxx_3(void) { enum { __cgo_undefined__ = (name)*1 }; }
 | 
						|
	//
 | 
						|
	// If we see an error at not-declared:xxx, the corresponding name is not declared.
 | 
						|
	// If we see an error at not-type:xxx, the corresponding name is a type.
 | 
						|
	// If we see an error at not-const:xxx, the corresponding name is not an integer constant.
 | 
						|
	// If we see no errors, we assume the name is an expression but not a constant
 | 
						|
	// (so a variable or a function).
 | 
						|
	//
 | 
						|
	// The specific input forms are chosen so that they are valid C syntax regardless of
 | 
						|
	// whether name denotes a type or an expression.
 | 
						|
 | 
						|
	var b bytes.Buffer
 | 
						|
	b.WriteString(f.Preamble)
 | 
						|
	b.WriteString(builtinProlog)
 | 
						|
 | 
						|
	for i, n := range names {
 | 
						|
		fmt.Fprintf(&b, "#line %d \"not-declared\"\n"+
 | 
						|
			"void __cgo_f_%d_1(void) { __typeof__(%s) *__cgo_undefined__; }\n"+
 | 
						|
			"#line %d \"not-type\"\n"+
 | 
						|
			"void __cgo_f_%d_2(void) { %s *__cgo_undefined__; }\n"+
 | 
						|
			"#line %d \"not-const\"\n"+
 | 
						|
			"void __cgo_f_%d_3(void) { enum { __cgo__undefined__ = (%s)*1 }; }\n",
 | 
						|
			i+1, i+1, n.C,
 | 
						|
			i+1, i+1, n.C,
 | 
						|
			i+1, i+1, n.C)
 | 
						|
	}
 | 
						|
	fmt.Fprintf(&b, "#line 1 \"completed\"\n"+
 | 
						|
		"int __cgo__1 = __cgo__2;\n")
 | 
						|
 | 
						|
	stderr := p.gccErrors(b.Bytes())
 | 
						|
	if stderr == "" {
 | 
						|
		fatalf("%s produced no output\non input:\n%s", p.gccBaseCmd()[0], b.Bytes())
 | 
						|
	}
 | 
						|
 | 
						|
	completed := false
 | 
						|
	sniff := make([]int, len(names))
 | 
						|
	const (
 | 
						|
		notType = 1 << iota
 | 
						|
		notConst
 | 
						|
		notDeclared
 | 
						|
	)
 | 
						|
	for _, line := range strings.Split(stderr, "\n") {
 | 
						|
		if !strings.Contains(line, ": error:") {
 | 
						|
			// we only care about errors.
 | 
						|
			// we tried to turn off warnings on the command line, but one never knows.
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		c1 := strings.Index(line, ":")
 | 
						|
		if c1 < 0 {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		c2 := strings.Index(line[c1+1:], ":")
 | 
						|
		if c2 < 0 {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		c2 += c1 + 1
 | 
						|
 | 
						|
		filename := line[:c1]
 | 
						|
		i, _ := strconv.Atoi(line[c1+1 : c2])
 | 
						|
		i--
 | 
						|
		if i < 0 || i >= len(names) {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		switch filename {
 | 
						|
		case "completed":
 | 
						|
			// Strictly speaking, there is no guarantee that seeing the error at completed:1
 | 
						|
			// (at the end of the file) means we've seen all the errors from earlier in the file,
 | 
						|
			// but usually it does. Certainly if we don't see the completed:1 error, we did
 | 
						|
			// not get all the errors we expected.
 | 
						|
			completed = true
 | 
						|
 | 
						|
		case "not-declared":
 | 
						|
			sniff[i] |= notDeclared
 | 
						|
		case "not-type":
 | 
						|
			sniff[i] |= notType
 | 
						|
		case "not-const":
 | 
						|
			sniff[i] |= notConst
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if !completed {
 | 
						|
		fatalf("%s did not produce error at completed:1\non input:\n%s\nfull error output:\n%s", p.gccBaseCmd()[0], b.Bytes(), stderr)
 | 
						|
	}
 | 
						|
 | 
						|
	for i, n := range names {
 | 
						|
		switch sniff[i] {
 | 
						|
		default:
 | 
						|
			error_(token.NoPos, "could not determine kind of name for C.%s", fixGo(n.Go))
 | 
						|
		case notType:
 | 
						|
			n.Kind = "const"
 | 
						|
		case notConst:
 | 
						|
			n.Kind = "type"
 | 
						|
		case notConst | notType:
 | 
						|
			n.Kind = "not-type"
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if nerrors > 0 {
 | 
						|
		// Check if compiling the preamble by itself causes any errors,
 | 
						|
		// because the messages we've printed out so far aren't helpful
 | 
						|
		// to users debugging preamble mistakes. See issue 8442.
 | 
						|
		preambleErrors := p.gccErrors([]byte(f.Preamble))
 | 
						|
		if len(preambleErrors) > 0 {
 | 
						|
			error_(token.NoPos, "\n%s errors for preamble:\n%s", p.gccBaseCmd()[0], preambleErrors)
 | 
						|
		}
 | 
						|
 | 
						|
		fatalf("unresolved names")
 | 
						|
	}
 | 
						|
 | 
						|
	needType = append(needType, names...)
 | 
						|
	return needType
 | 
						|
}
 | 
						|
 | 
						|
// loadDWARF parses the DWARF debug information generated
 | 
						|
// by gcc to learn the details of the constants, variables, and types
 | 
						|
// being referred to as C.xxx.
 | 
						|
func (p *Package) loadDWARF(f *File, names []*Name) {
 | 
						|
	// Extract the types from the DWARF section of an object
 | 
						|
	// from a well-formed C program. Gcc only generates DWARF info
 | 
						|
	// for symbols in the object file, so it is not enough to print the
 | 
						|
	// preamble and hope the symbols we care about will be there.
 | 
						|
	// Instead, emit
 | 
						|
	//	__typeof__(names[i]) *__cgo__i;
 | 
						|
	// for each entry in names and then dereference the type we
 | 
						|
	// learn for __cgo__i.
 | 
						|
	var b bytes.Buffer
 | 
						|
	b.WriteString(f.Preamble)
 | 
						|
	b.WriteString(builtinProlog)
 | 
						|
	for i, n := range names {
 | 
						|
		fmt.Fprintf(&b, "__typeof__(%s) *__cgo__%d;\n", n.C, i)
 | 
						|
		if n.Kind == "const" {
 | 
						|
			fmt.Fprintf(&b, "enum { __cgo_enum__%d = %s };\n", i, n.C)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Apple's LLVM-based gcc does not include the enumeration
 | 
						|
	// names and values in its DWARF debug output. In case we're
 | 
						|
	// using such a gcc, create a data block initialized with the values.
 | 
						|
	// We can read them out of the object file.
 | 
						|
	fmt.Fprintf(&b, "long long __cgodebug_data[] = {\n")
 | 
						|
	for _, n := range names {
 | 
						|
		if n.Kind == "const" {
 | 
						|
			fmt.Fprintf(&b, "\t%s,\n", n.C)
 | 
						|
		} else {
 | 
						|
			fmt.Fprintf(&b, "\t0,\n")
 | 
						|
		}
 | 
						|
	}
 | 
						|
	// for the last entry, we cannot use 0, otherwise
 | 
						|
	// in case all __cgodebug_data is zero initialized,
 | 
						|
	// LLVM-based gcc will place the it in the __DATA.__common
 | 
						|
	// zero-filled section (our debug/macho doesn't support
 | 
						|
	// this)
 | 
						|
	fmt.Fprintf(&b, "\t1\n")
 | 
						|
	fmt.Fprintf(&b, "};\n")
 | 
						|
 | 
						|
	d, bo, debugData := p.gccDebug(b.Bytes())
 | 
						|
	enumVal := make([]int64, len(debugData)/8)
 | 
						|
	for i := range enumVal {
 | 
						|
		enumVal[i] = int64(bo.Uint64(debugData[i*8:]))
 | 
						|
	}
 | 
						|
 | 
						|
	// Scan DWARF info for top-level TagVariable entries with AttrName __cgo__i.
 | 
						|
	types := make([]dwarf.Type, len(names))
 | 
						|
	enums := make([]dwarf.Offset, len(names))
 | 
						|
	nameToIndex := make(map[*Name]int)
 | 
						|
	for i, n := range names {
 | 
						|
		nameToIndex[n] = i
 | 
						|
	}
 | 
						|
	nameToRef := make(map[*Name]*Ref)
 | 
						|
	for _, ref := range f.Ref {
 | 
						|
		nameToRef[ref.Name] = ref
 | 
						|
	}
 | 
						|
	r := d.Reader()
 | 
						|
	for {
 | 
						|
		e, err := r.Next()
 | 
						|
		if err != nil {
 | 
						|
			fatalf("reading DWARF entry: %s", err)
 | 
						|
		}
 | 
						|
		if e == nil {
 | 
						|
			break
 | 
						|
		}
 | 
						|
		switch e.Tag {
 | 
						|
		case dwarf.TagEnumerationType:
 | 
						|
			offset := e.Offset
 | 
						|
			for {
 | 
						|
				e, err := r.Next()
 | 
						|
				if err != nil {
 | 
						|
					fatalf("reading DWARF entry: %s", err)
 | 
						|
				}
 | 
						|
				if e.Tag == 0 {
 | 
						|
					break
 | 
						|
				}
 | 
						|
				if e.Tag == dwarf.TagEnumerator {
 | 
						|
					entryName := e.Val(dwarf.AttrName).(string)
 | 
						|
					if strings.HasPrefix(entryName, "__cgo_enum__") {
 | 
						|
						n, _ := strconv.Atoi(entryName[len("__cgo_enum__"):])
 | 
						|
						if 0 <= n && n < len(names) {
 | 
						|
							enums[n] = offset
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		case dwarf.TagVariable:
 | 
						|
			name, _ := e.Val(dwarf.AttrName).(string)
 | 
						|
			typOff, _ := e.Val(dwarf.AttrType).(dwarf.Offset)
 | 
						|
			if name == "" || typOff == 0 {
 | 
						|
				if e.Val(dwarf.AttrSpecification) != nil {
 | 
						|
					// Since we are reading all the DWARF,
 | 
						|
					// assume we will see the variable elsewhere.
 | 
						|
					break
 | 
						|
				}
 | 
						|
				fatalf("malformed DWARF TagVariable entry")
 | 
						|
			}
 | 
						|
			if !strings.HasPrefix(name, "__cgo__") {
 | 
						|
				break
 | 
						|
			}
 | 
						|
			typ, err := d.Type(typOff)
 | 
						|
			if err != nil {
 | 
						|
				fatalf("loading DWARF type: %s", err)
 | 
						|
			}
 | 
						|
			t, ok := typ.(*dwarf.PtrType)
 | 
						|
			if !ok || t == nil {
 | 
						|
				fatalf("internal error: %s has non-pointer type", name)
 | 
						|
			}
 | 
						|
			i, err := strconv.Atoi(name[7:])
 | 
						|
			if err != nil {
 | 
						|
				fatalf("malformed __cgo__ name: %s", name)
 | 
						|
			}
 | 
						|
			if enums[i] != 0 {
 | 
						|
				t, err := d.Type(enums[i])
 | 
						|
				if err != nil {
 | 
						|
					fatalf("loading DWARF type: %s", err)
 | 
						|
				}
 | 
						|
				types[i] = t
 | 
						|
			} else {
 | 
						|
				types[i] = t.Type
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if e.Tag != dwarf.TagCompileUnit {
 | 
						|
			r.SkipChildren()
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Record types and typedef information.
 | 
						|
	var conv typeConv
 | 
						|
	conv.Init(p.PtrSize, p.IntSize)
 | 
						|
	for i, n := range names {
 | 
						|
		if types[i] == nil {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		pos := token.NoPos
 | 
						|
		if ref, ok := nameToRef[n]; ok {
 | 
						|
			pos = ref.Pos()
 | 
						|
		}
 | 
						|
		f, fok := types[i].(*dwarf.FuncType)
 | 
						|
		if n.Kind != "type" && fok {
 | 
						|
			n.Kind = "func"
 | 
						|
			n.FuncType = conv.FuncType(f, pos)
 | 
						|
		} else {
 | 
						|
			n.Type = conv.Type(types[i], pos)
 | 
						|
			if enums[i] != 0 && n.Type.EnumValues != nil {
 | 
						|
				k := fmt.Sprintf("__cgo_enum__%d", i)
 | 
						|
				n.Kind = "const"
 | 
						|
				n.Const = fmt.Sprintf("%#x", n.Type.EnumValues[k])
 | 
						|
				// Remove injected enum to ensure the value will deep-compare
 | 
						|
				// equally in future loads of the same constant.
 | 
						|
				delete(n.Type.EnumValues, k)
 | 
						|
			}
 | 
						|
			// Prefer debug data over DWARF debug output, if we have it.
 | 
						|
			if n.Kind == "const" && i < len(enumVal) {
 | 
						|
				n.Const = fmt.Sprintf("%#x", enumVal[i])
 | 
						|
			}
 | 
						|
		}
 | 
						|
		conv.FinishType(pos)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// mangleName does name mangling to translate names
 | 
						|
// from the original Go source files to the names
 | 
						|
// used in the final Go files generated by cgo.
 | 
						|
func (p *Package) mangleName(n *Name) {
 | 
						|
	// When using gccgo variables have to be
 | 
						|
	// exported so that they become global symbols
 | 
						|
	// that the C code can refer to.
 | 
						|
	prefix := "_C"
 | 
						|
	if *gccgo && n.IsVar() {
 | 
						|
		prefix = "C"
 | 
						|
	}
 | 
						|
	n.Mangle = prefix + n.Kind + "_" + n.Go
 | 
						|
}
 | 
						|
 | 
						|
// rewriteCalls rewrites all calls that pass pointers to check that
 | 
						|
// they follow the rules for passing pointers between Go and C.
 | 
						|
func (p *Package) rewriteCalls(f *File) {
 | 
						|
	for _, call := range f.Calls {
 | 
						|
		// This is a call to C.xxx; set goname to "xxx".
 | 
						|
		goname := call.Call.Fun.(*ast.SelectorExpr).Sel.Name
 | 
						|
		if goname == "malloc" {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		name := f.Name[goname]
 | 
						|
		if name.Kind != "func" {
 | 
						|
			// Probably a type conversion.
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		p.rewriteCall(f, call, name)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// rewriteCall rewrites one call to add pointer checks. We replace
 | 
						|
// each pointer argument x with _cgoCheckPointer(x).(T).
 | 
						|
func (p *Package) rewriteCall(f *File, call *Call, name *Name) {
 | 
						|
	// Avoid a crash if the number of arguments is
 | 
						|
	// less than the number of parameters.
 | 
						|
	// This will be caught when the generated file is compiled.
 | 
						|
	if len(call.Call.Args) < len(name.FuncType.Params) {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	any := false
 | 
						|
	for i, param := range name.FuncType.Params {
 | 
						|
		if p.needsPointerCheck(f, param.Go, call.Call.Args[i]) {
 | 
						|
			any = true
 | 
						|
			break
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if !any {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	// We need to rewrite this call.
 | 
						|
	//
 | 
						|
	// We are going to rewrite C.f(p) to C.f(_cgoCheckPointer(p)).
 | 
						|
	// If the call to C.f is deferred, that will check p at the
 | 
						|
	// point of the defer statement, not when the function is called, so
 | 
						|
	// rewrite to func(_cgo0 ptype) { C.f(_cgoCheckPointer(_cgo0)) }(p)
 | 
						|
 | 
						|
	var dargs []ast.Expr
 | 
						|
	if call.Deferred {
 | 
						|
		dargs = make([]ast.Expr, len(name.FuncType.Params))
 | 
						|
	}
 | 
						|
	for i, param := range name.FuncType.Params {
 | 
						|
		origArg := call.Call.Args[i]
 | 
						|
		darg := origArg
 | 
						|
 | 
						|
		if call.Deferred {
 | 
						|
			dargs[i] = darg
 | 
						|
			darg = ast.NewIdent(fmt.Sprintf("_cgo%d", i))
 | 
						|
			call.Call.Args[i] = darg
 | 
						|
		}
 | 
						|
 | 
						|
		if !p.needsPointerCheck(f, param.Go, origArg) {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		c := &ast.CallExpr{
 | 
						|
			Fun: ast.NewIdent("_cgoCheckPointer"),
 | 
						|
			Args: []ast.Expr{
 | 
						|
				darg,
 | 
						|
			},
 | 
						|
		}
 | 
						|
 | 
						|
		// Add optional additional arguments for an address
 | 
						|
		// expression.
 | 
						|
		c.Args = p.checkAddrArgs(f, c.Args, origArg)
 | 
						|
 | 
						|
		// _cgoCheckPointer returns interface{}.
 | 
						|
		// We need to type assert that to the type we want.
 | 
						|
		// If the Go version of this C type uses
 | 
						|
		// unsafe.Pointer, we can't use a type assertion,
 | 
						|
		// because the Go file might not import unsafe.
 | 
						|
		// Instead we use a local variant of _cgoCheckPointer.
 | 
						|
 | 
						|
		var arg ast.Expr
 | 
						|
		if n := p.unsafeCheckPointerName(param.Go, call.Deferred); n != "" {
 | 
						|
			c.Fun = ast.NewIdent(n)
 | 
						|
			arg = c
 | 
						|
		} else {
 | 
						|
			// In order for the type assertion to succeed,
 | 
						|
			// we need it to match the actual type of the
 | 
						|
			// argument. The only type we have is the
 | 
						|
			// type of the function parameter. We know
 | 
						|
			// that the argument type must be assignable
 | 
						|
			// to the function parameter type, or the code
 | 
						|
			// would not compile, but there is nothing
 | 
						|
			// requiring that the types be exactly the
 | 
						|
			// same. Add a type conversion to the
 | 
						|
			// argument so that the type assertion will
 | 
						|
			// succeed.
 | 
						|
			c.Args[0] = &ast.CallExpr{
 | 
						|
				Fun: param.Go,
 | 
						|
				Args: []ast.Expr{
 | 
						|
					c.Args[0],
 | 
						|
				},
 | 
						|
			}
 | 
						|
 | 
						|
			arg = &ast.TypeAssertExpr{
 | 
						|
				X:    c,
 | 
						|
				Type: param.Go,
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		call.Call.Args[i] = arg
 | 
						|
	}
 | 
						|
 | 
						|
	if call.Deferred {
 | 
						|
		params := make([]*ast.Field, len(name.FuncType.Params))
 | 
						|
		for i, param := range name.FuncType.Params {
 | 
						|
			ptype := param.Go
 | 
						|
			if p.hasUnsafePointer(ptype) {
 | 
						|
				// Avoid generating unsafe.Pointer by using
 | 
						|
				// interface{}. This works because we are
 | 
						|
				// going to call a _cgoCheckPointer function
 | 
						|
				// anyhow.
 | 
						|
				ptype = &ast.InterfaceType{
 | 
						|
					Methods: &ast.FieldList{},
 | 
						|
				}
 | 
						|
			}
 | 
						|
			params[i] = &ast.Field{
 | 
						|
				Names: []*ast.Ident{
 | 
						|
					ast.NewIdent(fmt.Sprintf("_cgo%d", i)),
 | 
						|
				},
 | 
						|
				Type: ptype,
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		dbody := &ast.CallExpr{
 | 
						|
			Fun:  call.Call.Fun,
 | 
						|
			Args: call.Call.Args,
 | 
						|
		}
 | 
						|
		call.Call.Fun = &ast.FuncLit{
 | 
						|
			Type: &ast.FuncType{
 | 
						|
				Params: &ast.FieldList{
 | 
						|
					List: params,
 | 
						|
				},
 | 
						|
			},
 | 
						|
			Body: &ast.BlockStmt{
 | 
						|
				List: []ast.Stmt{
 | 
						|
					&ast.ExprStmt{
 | 
						|
						X: dbody,
 | 
						|
					},
 | 
						|
				},
 | 
						|
			},
 | 
						|
		}
 | 
						|
		call.Call.Args = dargs
 | 
						|
		call.Call.Lparen = token.NoPos
 | 
						|
		call.Call.Rparen = token.NoPos
 | 
						|
 | 
						|
		// There is a Ref pointing to the old call.Call.Fun.
 | 
						|
		for _, ref := range f.Ref {
 | 
						|
			if ref.Expr == &call.Call.Fun {
 | 
						|
				ref.Expr = &dbody.Fun
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// needsPointerCheck returns whether the type t needs a pointer check.
 | 
						|
// This is true if t is a pointer and if the value to which it points
 | 
						|
// might contain a pointer.
 | 
						|
func (p *Package) needsPointerCheck(f *File, t ast.Expr, arg ast.Expr) bool {
 | 
						|
	// An untyped nil does not need a pointer check, and when
 | 
						|
	// _cgoCheckPointer returns the untyped nil the type assertion we
 | 
						|
	// are going to insert will fail.  Easier to just skip nil arguments.
 | 
						|
	// TODO: Note that this fails if nil is shadowed.
 | 
						|
	if id, ok := arg.(*ast.Ident); ok && id.Name == "nil" {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
 | 
						|
	return p.hasPointer(f, t, true)
 | 
						|
}
 | 
						|
 | 
						|
// hasPointer is used by needsPointerCheck. If top is true it returns
 | 
						|
// whether t is or contains a pointer that might point to a pointer.
 | 
						|
// If top is false it returns whether t is or contains a pointer.
 | 
						|
// f may be nil.
 | 
						|
func (p *Package) hasPointer(f *File, t ast.Expr, top bool) bool {
 | 
						|
	switch t := t.(type) {
 | 
						|
	case *ast.ArrayType:
 | 
						|
		if t.Len == nil {
 | 
						|
			if !top {
 | 
						|
				return true
 | 
						|
			}
 | 
						|
			return p.hasPointer(f, t.Elt, false)
 | 
						|
		}
 | 
						|
		return p.hasPointer(f, t.Elt, top)
 | 
						|
	case *ast.StructType:
 | 
						|
		for _, field := range t.Fields.List {
 | 
						|
			if p.hasPointer(f, field.Type, top) {
 | 
						|
				return true
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return false
 | 
						|
	case *ast.StarExpr: // Pointer type.
 | 
						|
		if !top {
 | 
						|
			return true
 | 
						|
		}
 | 
						|
		return p.hasPointer(f, t.X, false)
 | 
						|
	case *ast.FuncType, *ast.InterfaceType, *ast.MapType, *ast.ChanType:
 | 
						|
		return true
 | 
						|
	case *ast.Ident:
 | 
						|
		// TODO: Handle types defined within function.
 | 
						|
		for _, d := range p.Decl {
 | 
						|
			gd, ok := d.(*ast.GenDecl)
 | 
						|
			if !ok || gd.Tok != token.TYPE {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			for _, spec := range gd.Specs {
 | 
						|
				ts, ok := spec.(*ast.TypeSpec)
 | 
						|
				if !ok {
 | 
						|
					continue
 | 
						|
				}
 | 
						|
				if ts.Name.Name == t.Name {
 | 
						|
					return p.hasPointer(f, ts.Type, top)
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if def := typedef[t.Name]; def != nil {
 | 
						|
			return p.hasPointer(f, def.Go, top)
 | 
						|
		}
 | 
						|
		if t.Name == "string" {
 | 
						|
			return !top
 | 
						|
		}
 | 
						|
		if t.Name == "error" {
 | 
						|
			return true
 | 
						|
		}
 | 
						|
		if goTypes[t.Name] != nil {
 | 
						|
			return false
 | 
						|
		}
 | 
						|
		// We can't figure out the type. Conservative
 | 
						|
		// approach is to assume it has a pointer.
 | 
						|
		return true
 | 
						|
	case *ast.SelectorExpr:
 | 
						|
		if l, ok := t.X.(*ast.Ident); !ok || l.Name != "C" {
 | 
						|
			// Type defined in a different package.
 | 
						|
			// Conservative approach is to assume it has a
 | 
						|
			// pointer.
 | 
						|
			return true
 | 
						|
		}
 | 
						|
		if f == nil {
 | 
						|
			// Conservative approach: assume pointer.
 | 
						|
			return true
 | 
						|
		}
 | 
						|
		name := f.Name[t.Sel.Name]
 | 
						|
		if name != nil && name.Kind == "type" && name.Type != nil && name.Type.Go != nil {
 | 
						|
			return p.hasPointer(f, name.Type.Go, top)
 | 
						|
		}
 | 
						|
		// We can't figure out the type. Conservative
 | 
						|
		// approach is to assume it has a pointer.
 | 
						|
		return true
 | 
						|
	default:
 | 
						|
		error_(t.Pos(), "could not understand type %s", gofmt(t))
 | 
						|
		return true
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// checkAddrArgs tries to add arguments to the call of
 | 
						|
// _cgoCheckPointer when the argument is an address expression. We
 | 
						|
// pass true to mean that the argument is an address operation of
 | 
						|
// something other than a slice index, which means that it's only
 | 
						|
// necessary to check the specific element pointed to, not the entire
 | 
						|
// object. This is for &s.f, where f is a field in a struct. We can
 | 
						|
// pass a slice or array, meaning that we should check the entire
 | 
						|
// slice or array but need not check any other part of the object.
 | 
						|
// This is for &s.a[i], where we need to check all of a. However, we
 | 
						|
// only pass the slice or array if we can refer to it without side
 | 
						|
// effects.
 | 
						|
func (p *Package) checkAddrArgs(f *File, args []ast.Expr, x ast.Expr) []ast.Expr {
 | 
						|
	// Strip type conversions.
 | 
						|
	for {
 | 
						|
		c, ok := x.(*ast.CallExpr)
 | 
						|
		if !ok || len(c.Args) != 1 || !p.isType(c.Fun) {
 | 
						|
			break
 | 
						|
		}
 | 
						|
		x = c.Args[0]
 | 
						|
	}
 | 
						|
	u, ok := x.(*ast.UnaryExpr)
 | 
						|
	if !ok || u.Op != token.AND {
 | 
						|
		return args
 | 
						|
	}
 | 
						|
	index, ok := u.X.(*ast.IndexExpr)
 | 
						|
	if !ok {
 | 
						|
		// This is the address of something that is not an
 | 
						|
		// index expression. We only need to examine the
 | 
						|
		// single value to which it points.
 | 
						|
		// TODO: what if true is shadowed?
 | 
						|
		return append(args, ast.NewIdent("true"))
 | 
						|
	}
 | 
						|
	if !p.hasSideEffects(f, index.X) {
 | 
						|
		// Examine the entire slice.
 | 
						|
		return append(args, index.X)
 | 
						|
	}
 | 
						|
	// Treat the pointer as unknown.
 | 
						|
	return args
 | 
						|
}
 | 
						|
 | 
						|
// hasSideEffects returns whether the expression x has any side
 | 
						|
// effects.  x is an expression, not a statement, so the only side
 | 
						|
// effect is a function call.
 | 
						|
func (p *Package) hasSideEffects(f *File, x ast.Expr) bool {
 | 
						|
	found := false
 | 
						|
	f.walk(x, "expr",
 | 
						|
		func(f *File, x interface{}, context string) {
 | 
						|
			switch x.(type) {
 | 
						|
			case *ast.CallExpr:
 | 
						|
				found = true
 | 
						|
			}
 | 
						|
		})
 | 
						|
	return found
 | 
						|
}
 | 
						|
 | 
						|
// isType returns whether the expression is definitely a type.
 | 
						|
// This is conservative--it returns false for an unknown identifier.
 | 
						|
func (p *Package) isType(t ast.Expr) bool {
 | 
						|
	switch t := t.(type) {
 | 
						|
	case *ast.SelectorExpr:
 | 
						|
		id, ok := t.X.(*ast.Ident)
 | 
						|
		if !ok {
 | 
						|
			return false
 | 
						|
		}
 | 
						|
		if id.Name == "unsafe" && t.Sel.Name == "Pointer" {
 | 
						|
			return true
 | 
						|
		}
 | 
						|
		if id.Name == "C" && typedef["_Ctype_"+t.Sel.Name] != nil {
 | 
						|
			return true
 | 
						|
		}
 | 
						|
		return false
 | 
						|
	case *ast.Ident:
 | 
						|
		// TODO: This ignores shadowing.
 | 
						|
		switch t.Name {
 | 
						|
		case "unsafe.Pointer", "bool", "byte",
 | 
						|
			"complex64", "complex128",
 | 
						|
			"error",
 | 
						|
			"float32", "float64",
 | 
						|
			"int", "int8", "int16", "int32", "int64",
 | 
						|
			"rune", "string",
 | 
						|
			"uint", "uint8", "uint16", "uint32", "uint64", "uintptr":
 | 
						|
 | 
						|
			return true
 | 
						|
		}
 | 
						|
	case *ast.StarExpr:
 | 
						|
		return p.isType(t.X)
 | 
						|
	case *ast.ArrayType, *ast.StructType, *ast.FuncType, *ast.InterfaceType,
 | 
						|
		*ast.MapType, *ast.ChanType:
 | 
						|
 | 
						|
		return true
 | 
						|
	}
 | 
						|
	return false
 | 
						|
}
 | 
						|
 | 
						|
// unsafeCheckPointerName is given the Go version of a C type. If the
 | 
						|
// type uses unsafe.Pointer, we arrange to build a version of
 | 
						|
// _cgoCheckPointer that returns that type. This avoids using a type
 | 
						|
// assertion to unsafe.Pointer in our copy of user code. We return
 | 
						|
// the name of the _cgoCheckPointer function we are going to build, or
 | 
						|
// the empty string if the type does not use unsafe.Pointer.
 | 
						|
//
 | 
						|
// The deferred parameter is true if this check is for the argument of
 | 
						|
// a deferred function. In that case we need to use an empty interface
 | 
						|
// as the argument type, because the deferred function we introduce in
 | 
						|
// rewriteCall will use an empty interface type, and we can't add a
 | 
						|
// type assertion. This is handled by keeping a separate list, and
 | 
						|
// writing out the lists separately in writeDefs.
 | 
						|
func (p *Package) unsafeCheckPointerName(t ast.Expr, deferred bool) string {
 | 
						|
	if !p.hasUnsafePointer(t) {
 | 
						|
		return ""
 | 
						|
	}
 | 
						|
	var buf bytes.Buffer
 | 
						|
	conf.Fprint(&buf, fset, t)
 | 
						|
	s := buf.String()
 | 
						|
	checks := &p.CgoChecks
 | 
						|
	if deferred {
 | 
						|
		checks = &p.DeferredCgoChecks
 | 
						|
	}
 | 
						|
	for i, t := range *checks {
 | 
						|
		if s == t {
 | 
						|
			return p.unsafeCheckPointerNameIndex(i, deferred)
 | 
						|
		}
 | 
						|
	}
 | 
						|
	*checks = append(*checks, s)
 | 
						|
	return p.unsafeCheckPointerNameIndex(len(*checks)-1, deferred)
 | 
						|
}
 | 
						|
 | 
						|
// hasUnsafePointer returns whether the Go type t uses unsafe.Pointer.
 | 
						|
// t is the Go version of a C type, so we don't need to handle every case.
 | 
						|
// We only care about direct references, not references via typedefs.
 | 
						|
func (p *Package) hasUnsafePointer(t ast.Expr) bool {
 | 
						|
	switch t := t.(type) {
 | 
						|
	case *ast.Ident:
 | 
						|
		// We don't see a SelectorExpr for unsafe.Pointer;
 | 
						|
		// this is created by code in this file.
 | 
						|
		return t.Name == "unsafe.Pointer"
 | 
						|
	case *ast.ArrayType:
 | 
						|
		return p.hasUnsafePointer(t.Elt)
 | 
						|
	case *ast.StructType:
 | 
						|
		for _, f := range t.Fields.List {
 | 
						|
			if p.hasUnsafePointer(f.Type) {
 | 
						|
				return true
 | 
						|
			}
 | 
						|
		}
 | 
						|
	case *ast.StarExpr: // Pointer type.
 | 
						|
		return p.hasUnsafePointer(t.X)
 | 
						|
	}
 | 
						|
	return false
 | 
						|
}
 | 
						|
 | 
						|
// unsafeCheckPointerNameIndex returns the name to use for a
 | 
						|
// _cgoCheckPointer variant based on the index in the CgoChecks slice.
 | 
						|
func (p *Package) unsafeCheckPointerNameIndex(i int, deferred bool) string {
 | 
						|
	if deferred {
 | 
						|
		return fmt.Sprintf("_cgoCheckPointerInDefer%d", i)
 | 
						|
	}
 | 
						|
	return fmt.Sprintf("_cgoCheckPointer%d", i)
 | 
						|
}
 | 
						|
 | 
						|
// rewriteRef rewrites all the C.xxx references in f.AST to refer to the
 | 
						|
// Go equivalents, now that we have figured out the meaning of all
 | 
						|
// the xxx. In *godefs mode, rewriteRef replaces the names
 | 
						|
// with full definitions instead of mangled names.
 | 
						|
func (p *Package) rewriteRef(f *File) {
 | 
						|
	// Keep a list of all the functions, to remove the ones
 | 
						|
	// only used as expressions and avoid generating bridge
 | 
						|
	// code for them.
 | 
						|
	functions := make(map[string]bool)
 | 
						|
 | 
						|
	// Assign mangled names.
 | 
						|
	for _, n := range f.Name {
 | 
						|
		if n.Kind == "not-type" {
 | 
						|
			n.Kind = "var"
 | 
						|
		}
 | 
						|
		if n.Mangle == "" {
 | 
						|
			p.mangleName(n)
 | 
						|
		}
 | 
						|
		if n.Kind == "func" {
 | 
						|
			functions[n.Go] = false
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Now that we have all the name types filled in,
 | 
						|
	// scan through the Refs to identify the ones that
 | 
						|
	// are trying to do a ,err call. Also check that
 | 
						|
	// functions are only used in calls.
 | 
						|
	for _, r := range f.Ref {
 | 
						|
		if r.Name.Kind == "const" && r.Name.Const == "" {
 | 
						|
			error_(r.Pos(), "unable to find value of constant C.%s", fixGo(r.Name.Go))
 | 
						|
		}
 | 
						|
		var expr ast.Expr = ast.NewIdent(r.Name.Mangle) // default
 | 
						|
		switch r.Context {
 | 
						|
		case "call", "call2":
 | 
						|
			if r.Name.Kind != "func" {
 | 
						|
				if r.Name.Kind == "type" {
 | 
						|
					r.Context = "type"
 | 
						|
					if r.Name.Type == nil {
 | 
						|
						error_(r.Pos(), "invalid conversion to C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C)
 | 
						|
						break
 | 
						|
					}
 | 
						|
					expr = r.Name.Type.Go
 | 
						|
					break
 | 
						|
				}
 | 
						|
				error_(r.Pos(), "call of non-function C.%s", fixGo(r.Name.Go))
 | 
						|
				break
 | 
						|
			}
 | 
						|
			functions[r.Name.Go] = true
 | 
						|
			if r.Context == "call2" {
 | 
						|
				if r.Name.Go == "_CMalloc" {
 | 
						|
					error_(r.Pos(), "no two-result form for C.malloc")
 | 
						|
					break
 | 
						|
				}
 | 
						|
				// Invent new Name for the two-result function.
 | 
						|
				n := f.Name["2"+r.Name.Go]
 | 
						|
				if n == nil {
 | 
						|
					n = new(Name)
 | 
						|
					*n = *r.Name
 | 
						|
					n.AddError = true
 | 
						|
					n.Mangle = "_C2func_" + n.Go
 | 
						|
					f.Name["2"+r.Name.Go] = n
 | 
						|
				}
 | 
						|
				expr = ast.NewIdent(n.Mangle)
 | 
						|
				r.Name = n
 | 
						|
				break
 | 
						|
			}
 | 
						|
		case "expr":
 | 
						|
			if r.Name.Kind == "func" {
 | 
						|
				// Function is being used in an expression, to e.g. pass around a C function pointer.
 | 
						|
				// Create a new Name for this Ref which causes the variable to be declared in Go land.
 | 
						|
				fpName := "fp_" + r.Name.Go
 | 
						|
				name := f.Name[fpName]
 | 
						|
				if name == nil {
 | 
						|
					name = &Name{
 | 
						|
						Go:   fpName,
 | 
						|
						C:    r.Name.C,
 | 
						|
						Kind: "fpvar",
 | 
						|
						Type: &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*"), Go: ast.NewIdent("unsafe.Pointer")},
 | 
						|
					}
 | 
						|
					p.mangleName(name)
 | 
						|
					f.Name[fpName] = name
 | 
						|
				}
 | 
						|
				r.Name = name
 | 
						|
				// Rewrite into call to _Cgo_ptr to prevent assignments. The _Cgo_ptr
 | 
						|
				// function is defined in out.go and simply returns its argument. See
 | 
						|
				// issue 7757.
 | 
						|
				expr = &ast.CallExpr{
 | 
						|
					Fun:  &ast.Ident{NamePos: (*r.Expr).Pos(), Name: "_Cgo_ptr"},
 | 
						|
					Args: []ast.Expr{ast.NewIdent(name.Mangle)},
 | 
						|
				}
 | 
						|
			} else if r.Name.Kind == "type" {
 | 
						|
				// Okay - might be new(T)
 | 
						|
				if r.Name.Type == nil {
 | 
						|
					error_(r.Pos(), "expression C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C)
 | 
						|
					break
 | 
						|
				}
 | 
						|
				expr = r.Name.Type.Go
 | 
						|
			} else if r.Name.Kind == "var" {
 | 
						|
				expr = &ast.StarExpr{Star: (*r.Expr).Pos(), X: expr}
 | 
						|
			}
 | 
						|
 | 
						|
		case "selector":
 | 
						|
			if r.Name.Kind == "var" {
 | 
						|
				expr = &ast.StarExpr{Star: (*r.Expr).Pos(), X: expr}
 | 
						|
			} else {
 | 
						|
				error_(r.Pos(), "only C variables allowed in selector expression %s", fixGo(r.Name.Go))
 | 
						|
			}
 | 
						|
 | 
						|
		case "type":
 | 
						|
			if r.Name.Kind != "type" {
 | 
						|
				error_(r.Pos(), "expression C.%s used as type", fixGo(r.Name.Go))
 | 
						|
			} else if r.Name.Type == nil {
 | 
						|
				// Use of C.enum_x, C.struct_x or C.union_x without C definition.
 | 
						|
				// GCC won't raise an error when using pointers to such unknown types.
 | 
						|
				error_(r.Pos(), "type C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C)
 | 
						|
			} else {
 | 
						|
				expr = r.Name.Type.Go
 | 
						|
			}
 | 
						|
		default:
 | 
						|
			if r.Name.Kind == "func" {
 | 
						|
				error_(r.Pos(), "must call C.%s", fixGo(r.Name.Go))
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if *godefs {
 | 
						|
			// Substitute definition for mangled type name.
 | 
						|
			if id, ok := expr.(*ast.Ident); ok {
 | 
						|
				if t := typedef[id.Name]; t != nil {
 | 
						|
					expr = t.Go
 | 
						|
				}
 | 
						|
				if id.Name == r.Name.Mangle && r.Name.Const != "" {
 | 
						|
					expr = ast.NewIdent(r.Name.Const)
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		// Copy position information from old expr into new expr,
 | 
						|
		// in case expression being replaced is first on line.
 | 
						|
		// See golang.org/issue/6563.
 | 
						|
		pos := (*r.Expr).Pos()
 | 
						|
		switch x := expr.(type) {
 | 
						|
		case *ast.Ident:
 | 
						|
			expr = &ast.Ident{NamePos: pos, Name: x.Name}
 | 
						|
		}
 | 
						|
 | 
						|
		*r.Expr = expr
 | 
						|
	}
 | 
						|
 | 
						|
	// Remove functions only used as expressions, so their respective
 | 
						|
	// bridge functions are not generated.
 | 
						|
	for name, used := range functions {
 | 
						|
		if !used {
 | 
						|
			delete(f.Name, name)
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// gccBaseCmd returns the start of the compiler command line.
 | 
						|
// It uses $CC if set, or else $GCC, or else the compiler recorded
 | 
						|
// during the initial build as defaultCC.
 | 
						|
// defaultCC is defined in zdefaultcc.go, written by cmd/dist.
 | 
						|
func (p *Package) gccBaseCmd() []string {
 | 
						|
	// Use $CC if set, since that's what the build uses.
 | 
						|
	if ret := strings.Fields(os.Getenv("CC")); len(ret) > 0 {
 | 
						|
		return ret
 | 
						|
	}
 | 
						|
	// Try $GCC if set, since that's what we used to use.
 | 
						|
	if ret := strings.Fields(os.Getenv("GCC")); len(ret) > 0 {
 | 
						|
		return ret
 | 
						|
	}
 | 
						|
	return strings.Fields(defaultCC)
 | 
						|
}
 | 
						|
 | 
						|
// gccMachine returns the gcc -m flag to use, either "-m32", "-m64" or "-marm".
 | 
						|
func (p *Package) gccMachine() []string {
 | 
						|
	switch goarch {
 | 
						|
	case "amd64":
 | 
						|
		return []string{"-m64"}
 | 
						|
	case "386":
 | 
						|
		return []string{"-m32"}
 | 
						|
	case "arm":
 | 
						|
		return []string{"-marm"} // not thumb
 | 
						|
	case "s390":
 | 
						|
		return []string{"-m31"}
 | 
						|
	case "s390x":
 | 
						|
		return []string{"-m64"}
 | 
						|
	case "mips64", "mips64le":
 | 
						|
		return []string{"-mabi=64"}
 | 
						|
	}
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
func gccTmp() string {
 | 
						|
	return *objDir + "_cgo_.o"
 | 
						|
}
 | 
						|
 | 
						|
// gccCmd returns the gcc command line to use for compiling
 | 
						|
// the input.
 | 
						|
func (p *Package) gccCmd() []string {
 | 
						|
	c := append(p.gccBaseCmd(),
 | 
						|
		"-w",          // no warnings
 | 
						|
		"-Wno-error",  // warnings are not errors
 | 
						|
		"-o"+gccTmp(), // write object to tmp
 | 
						|
		"-gdwarf-2",   // generate DWARF v2 debugging symbols
 | 
						|
		"-c",          // do not link
 | 
						|
		"-xc",         // input language is C
 | 
						|
	)
 | 
						|
	if p.GccIsClang {
 | 
						|
		c = append(c,
 | 
						|
			"-ferror-limit=0",
 | 
						|
			// Apple clang version 1.7 (tags/Apple/clang-77) (based on LLVM 2.9svn)
 | 
						|
			// doesn't have -Wno-unneeded-internal-declaration, so we need yet another
 | 
						|
			// flag to disable the warning. Yes, really good diagnostics, clang.
 | 
						|
			"-Wno-unknown-warning-option",
 | 
						|
			"-Wno-unneeded-internal-declaration",
 | 
						|
			"-Wno-unused-function",
 | 
						|
			"-Qunused-arguments",
 | 
						|
			// Clang embeds prototypes for some builtin functions,
 | 
						|
			// like malloc and calloc, but all size_t parameters are
 | 
						|
			// incorrectly typed unsigned long. We work around that
 | 
						|
			// by disabling the builtin functions (this is safe as
 | 
						|
			// it won't affect the actual compilation of the C code).
 | 
						|
			// See: https://golang.org/issue/6506.
 | 
						|
			"-fno-builtin",
 | 
						|
		)
 | 
						|
	}
 | 
						|
 | 
						|
	c = append(c, p.GccOptions...)
 | 
						|
	c = append(c, p.gccMachine()...)
 | 
						|
	c = append(c, "-") //read input from standard input
 | 
						|
	return c
 | 
						|
}
 | 
						|
 | 
						|
// gccDebug runs gcc -gdwarf-2 over the C program stdin and
 | 
						|
// returns the corresponding DWARF data and, if present, debug data block.
 | 
						|
func (p *Package) gccDebug(stdin []byte) (*dwarf.Data, binary.ByteOrder, []byte) {
 | 
						|
	runGcc(stdin, p.gccCmd())
 | 
						|
 | 
						|
	isDebugData := func(s string) bool {
 | 
						|
		// Some systems use leading _ to denote non-assembly symbols.
 | 
						|
		return s == "__cgodebug_data" || s == "___cgodebug_data"
 | 
						|
	}
 | 
						|
 | 
						|
	if f, err := macho.Open(gccTmp()); err == nil {
 | 
						|
		defer f.Close()
 | 
						|
		d, err := f.DWARF()
 | 
						|
		if err != nil {
 | 
						|
			fatalf("cannot load DWARF output from %s: %v", gccTmp(), err)
 | 
						|
		}
 | 
						|
		var data []byte
 | 
						|
		if f.Symtab != nil {
 | 
						|
			for i := range f.Symtab.Syms {
 | 
						|
				s := &f.Symtab.Syms[i]
 | 
						|
				if isDebugData(s.Name) {
 | 
						|
					// Found it. Now find data section.
 | 
						|
					if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) {
 | 
						|
						sect := f.Sections[i]
 | 
						|
						if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
 | 
						|
							if sdat, err := sect.Data(); err == nil {
 | 
						|
								data = sdat[s.Value-sect.Addr:]
 | 
						|
							}
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return d, f.ByteOrder, data
 | 
						|
	}
 | 
						|
 | 
						|
	if f, err := elf.Open(gccTmp()); err == nil {
 | 
						|
		defer f.Close()
 | 
						|
		d, err := f.DWARF()
 | 
						|
		if err != nil {
 | 
						|
			fatalf("cannot load DWARF output from %s: %v", gccTmp(), err)
 | 
						|
		}
 | 
						|
		var data []byte
 | 
						|
		symtab, err := f.Symbols()
 | 
						|
		if err == nil {
 | 
						|
			for i := range symtab {
 | 
						|
				s := &symtab[i]
 | 
						|
				if isDebugData(s.Name) {
 | 
						|
					// Found it. Now find data section.
 | 
						|
					if i := int(s.Section); 0 <= i && i < len(f.Sections) {
 | 
						|
						sect := f.Sections[i]
 | 
						|
						if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
 | 
						|
							if sdat, err := sect.Data(); err == nil {
 | 
						|
								data = sdat[s.Value-sect.Addr:]
 | 
						|
							}
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return d, f.ByteOrder, data
 | 
						|
	}
 | 
						|
 | 
						|
	if f, err := pe.Open(gccTmp()); err == nil {
 | 
						|
		defer f.Close()
 | 
						|
		d, err := f.DWARF()
 | 
						|
		if err != nil {
 | 
						|
			fatalf("cannot load DWARF output from %s: %v", gccTmp(), err)
 | 
						|
		}
 | 
						|
		var data []byte
 | 
						|
		for _, s := range f.Symbols {
 | 
						|
			if isDebugData(s.Name) {
 | 
						|
				if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
 | 
						|
					sect := f.Sections[i]
 | 
						|
					if s.Value < sect.Size {
 | 
						|
						if sdat, err := sect.Data(); err == nil {
 | 
						|
							data = sdat[s.Value:]
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return d, binary.LittleEndian, data
 | 
						|
	}
 | 
						|
 | 
						|
	fatalf("cannot parse gcc output %s as ELF, Mach-O, PE object", gccTmp())
 | 
						|
	panic("not reached")
 | 
						|
}
 | 
						|
 | 
						|
// gccDefines runs gcc -E -dM -xc - over the C program stdin
 | 
						|
// and returns the corresponding standard output, which is the
 | 
						|
// #defines that gcc encountered while processing the input
 | 
						|
// and its included files.
 | 
						|
func (p *Package) gccDefines(stdin []byte) string {
 | 
						|
	base := append(p.gccBaseCmd(), "-E", "-dM", "-xc")
 | 
						|
	base = append(base, p.gccMachine()...)
 | 
						|
	stdout, _ := runGcc(stdin, append(append(base, p.GccOptions...), "-"))
 | 
						|
	return stdout
 | 
						|
}
 | 
						|
 | 
						|
// gccErrors runs gcc over the C program stdin and returns
 | 
						|
// the errors that gcc prints. That is, this function expects
 | 
						|
// gcc to fail.
 | 
						|
func (p *Package) gccErrors(stdin []byte) string {
 | 
						|
	// TODO(rsc): require failure
 | 
						|
	args := p.gccCmd()
 | 
						|
 | 
						|
	// Optimization options can confuse the error messages; remove them.
 | 
						|
	nargs := make([]string, 0, len(args))
 | 
						|
	for _, arg := range args {
 | 
						|
		if !strings.HasPrefix(arg, "-O") {
 | 
						|
			nargs = append(nargs, arg)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if *debugGcc {
 | 
						|
		fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(nargs, " "))
 | 
						|
		os.Stderr.Write(stdin)
 | 
						|
		fmt.Fprint(os.Stderr, "EOF\n")
 | 
						|
	}
 | 
						|
	stdout, stderr, _ := run(stdin, nargs)
 | 
						|
	if *debugGcc {
 | 
						|
		os.Stderr.Write(stdout)
 | 
						|
		os.Stderr.Write(stderr)
 | 
						|
	}
 | 
						|
	return string(stderr)
 | 
						|
}
 | 
						|
 | 
						|
// runGcc runs the gcc command line args with stdin on standard input.
 | 
						|
// If the command exits with a non-zero exit status, runGcc prints
 | 
						|
// details about what was run and exits.
 | 
						|
// Otherwise runGcc returns the data written to standard output and standard error.
 | 
						|
// Note that for some of the uses we expect useful data back
 | 
						|
// on standard error, but for those uses gcc must still exit 0.
 | 
						|
func runGcc(stdin []byte, args []string) (string, string) {
 | 
						|
	if *debugGcc {
 | 
						|
		fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(args, " "))
 | 
						|
		os.Stderr.Write(stdin)
 | 
						|
		fmt.Fprint(os.Stderr, "EOF\n")
 | 
						|
	}
 | 
						|
	stdout, stderr, ok := run(stdin, args)
 | 
						|
	if *debugGcc {
 | 
						|
		os.Stderr.Write(stdout)
 | 
						|
		os.Stderr.Write(stderr)
 | 
						|
	}
 | 
						|
	if !ok {
 | 
						|
		os.Stderr.Write(stderr)
 | 
						|
		os.Exit(2)
 | 
						|
	}
 | 
						|
	return string(stdout), string(stderr)
 | 
						|
}
 | 
						|
 | 
						|
// A typeConv is a translator from dwarf types to Go types
 | 
						|
// with equivalent memory layout.
 | 
						|
type typeConv struct {
 | 
						|
	// Cache of already-translated or in-progress types.
 | 
						|
	m map[dwarf.Type]*Type
 | 
						|
 | 
						|
	// Map from types to incomplete pointers to those types.
 | 
						|
	ptrs map[dwarf.Type][]*Type
 | 
						|
	// Keys of ptrs in insertion order (deterministic worklist)
 | 
						|
	ptrKeys []dwarf.Type
 | 
						|
 | 
						|
	// Predeclared types.
 | 
						|
	bool                                   ast.Expr
 | 
						|
	byte                                   ast.Expr // denotes padding
 | 
						|
	int8, int16, int32, int64              ast.Expr
 | 
						|
	uint8, uint16, uint32, uint64, uintptr ast.Expr
 | 
						|
	float32, float64                       ast.Expr
 | 
						|
	complex64, complex128                  ast.Expr
 | 
						|
	void                                   ast.Expr
 | 
						|
	string                                 ast.Expr
 | 
						|
	goVoid                                 ast.Expr // _Ctype_void, denotes C's void
 | 
						|
	goVoidPtr                              ast.Expr // unsafe.Pointer or *byte
 | 
						|
 | 
						|
	ptrSize int64
 | 
						|
	intSize int64
 | 
						|
}
 | 
						|
 | 
						|
var tagGen int
 | 
						|
var typedef = make(map[string]*Type)
 | 
						|
var goIdent = make(map[string]*ast.Ident)
 | 
						|
 | 
						|
func (c *typeConv) Init(ptrSize, intSize int64) {
 | 
						|
	c.ptrSize = ptrSize
 | 
						|
	c.intSize = intSize
 | 
						|
	c.m = make(map[dwarf.Type]*Type)
 | 
						|
	c.ptrs = make(map[dwarf.Type][]*Type)
 | 
						|
	c.bool = c.Ident("bool")
 | 
						|
	c.byte = c.Ident("byte")
 | 
						|
	c.int8 = c.Ident("int8")
 | 
						|
	c.int16 = c.Ident("int16")
 | 
						|
	c.int32 = c.Ident("int32")
 | 
						|
	c.int64 = c.Ident("int64")
 | 
						|
	c.uint8 = c.Ident("uint8")
 | 
						|
	c.uint16 = c.Ident("uint16")
 | 
						|
	c.uint32 = c.Ident("uint32")
 | 
						|
	c.uint64 = c.Ident("uint64")
 | 
						|
	c.uintptr = c.Ident("uintptr")
 | 
						|
	c.float32 = c.Ident("float32")
 | 
						|
	c.float64 = c.Ident("float64")
 | 
						|
	c.complex64 = c.Ident("complex64")
 | 
						|
	c.complex128 = c.Ident("complex128")
 | 
						|
	c.void = c.Ident("void")
 | 
						|
	c.string = c.Ident("string")
 | 
						|
	c.goVoid = c.Ident("_Ctype_void")
 | 
						|
 | 
						|
	// Normally cgo translates void* to unsafe.Pointer,
 | 
						|
	// but for historical reasons -godefs uses *byte instead.
 | 
						|
	if *godefs {
 | 
						|
		c.goVoidPtr = &ast.StarExpr{X: c.byte}
 | 
						|
	} else {
 | 
						|
		c.goVoidPtr = c.Ident("unsafe.Pointer")
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// base strips away qualifiers and typedefs to get the underlying type
 | 
						|
func base(dt dwarf.Type) dwarf.Type {
 | 
						|
	for {
 | 
						|
		if d, ok := dt.(*dwarf.QualType); ok {
 | 
						|
			dt = d.Type
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		if d, ok := dt.(*dwarf.TypedefType); ok {
 | 
						|
			dt = d.Type
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		break
 | 
						|
	}
 | 
						|
	return dt
 | 
						|
}
 | 
						|
 | 
						|
// Map from dwarf text names to aliases we use in package "C".
 | 
						|
var dwarfToName = map[string]string{
 | 
						|
	"long int":               "long",
 | 
						|
	"long unsigned int":      "ulong",
 | 
						|
	"unsigned int":           "uint",
 | 
						|
	"short unsigned int":     "ushort",
 | 
						|
	"unsigned short":         "ushort", // Used by Clang; issue 13129.
 | 
						|
	"short int":              "short",
 | 
						|
	"long long int":          "longlong",
 | 
						|
	"long long unsigned int": "ulonglong",
 | 
						|
	"signed char":            "schar",
 | 
						|
	"unsigned char":          "uchar",
 | 
						|
}
 | 
						|
 | 
						|
const signedDelta = 64
 | 
						|
 | 
						|
// String returns the current type representation. Format arguments
 | 
						|
// are assembled within this method so that any changes in mutable
 | 
						|
// values are taken into account.
 | 
						|
func (tr *TypeRepr) String() string {
 | 
						|
	if len(tr.Repr) == 0 {
 | 
						|
		return ""
 | 
						|
	}
 | 
						|
	if len(tr.FormatArgs) == 0 {
 | 
						|
		return tr.Repr
 | 
						|
	}
 | 
						|
	return fmt.Sprintf(tr.Repr, tr.FormatArgs...)
 | 
						|
}
 | 
						|
 | 
						|
// Empty reports whether the result of String would be "".
 | 
						|
func (tr *TypeRepr) Empty() bool {
 | 
						|
	return len(tr.Repr) == 0
 | 
						|
}
 | 
						|
 | 
						|
// Set modifies the type representation.
 | 
						|
// If fargs are provided, repr is used as a format for fmt.Sprintf.
 | 
						|
// Otherwise, repr is used unprocessed as the type representation.
 | 
						|
func (tr *TypeRepr) Set(repr string, fargs ...interface{}) {
 | 
						|
	tr.Repr = repr
 | 
						|
	tr.FormatArgs = fargs
 | 
						|
}
 | 
						|
 | 
						|
// FinishType completes any outstanding type mapping work.
 | 
						|
// In particular, it resolves incomplete pointer types.
 | 
						|
func (c *typeConv) FinishType(pos token.Pos) {
 | 
						|
	// Completing one pointer type might produce more to complete.
 | 
						|
	// Keep looping until they're all done.
 | 
						|
	for len(c.ptrKeys) > 0 {
 | 
						|
		dtype := c.ptrKeys[0]
 | 
						|
		c.ptrKeys = c.ptrKeys[1:]
 | 
						|
 | 
						|
		// Note Type might invalidate c.ptrs[dtype].
 | 
						|
		t := c.Type(dtype, pos)
 | 
						|
		for _, ptr := range c.ptrs[dtype] {
 | 
						|
			ptr.Go.(*ast.StarExpr).X = t.Go
 | 
						|
			ptr.C.Set("%s*", t.C)
 | 
						|
		}
 | 
						|
		c.ptrs[dtype] = nil // retain the map key
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Type returns a *Type with the same memory layout as
 | 
						|
// dtype when used as the type of a variable or a struct field.
 | 
						|
func (c *typeConv) Type(dtype dwarf.Type, pos token.Pos) *Type {
 | 
						|
	if t, ok := c.m[dtype]; ok {
 | 
						|
		if t.Go == nil {
 | 
						|
			fatalf("%s: type conversion loop at %s", lineno(pos), dtype)
 | 
						|
		}
 | 
						|
		return t
 | 
						|
	}
 | 
						|
 | 
						|
	t := new(Type)
 | 
						|
	t.Size = dtype.Size() // note: wrong for array of pointers, corrected below
 | 
						|
	t.Align = -1
 | 
						|
	t.C = &TypeRepr{Repr: dtype.Common().Name}
 | 
						|
	c.m[dtype] = t
 | 
						|
 | 
						|
	switch dt := dtype.(type) {
 | 
						|
	default:
 | 
						|
		fatalf("%s: unexpected type: %s", lineno(pos), dtype)
 | 
						|
 | 
						|
	case *dwarf.AddrType:
 | 
						|
		if t.Size != c.ptrSize {
 | 
						|
			fatalf("%s: unexpected: %d-byte address type - %s", lineno(pos), t.Size, dtype)
 | 
						|
		}
 | 
						|
		t.Go = c.uintptr
 | 
						|
		t.Align = t.Size
 | 
						|
 | 
						|
	case *dwarf.ArrayType:
 | 
						|
		if dt.StrideBitSize > 0 {
 | 
						|
			// Cannot represent bit-sized elements in Go.
 | 
						|
			t.Go = c.Opaque(t.Size)
 | 
						|
			break
 | 
						|
		}
 | 
						|
		count := dt.Count
 | 
						|
		if count == -1 {
 | 
						|
			// Indicates flexible array member, which Go doesn't support.
 | 
						|
			// Translate to zero-length array instead.
 | 
						|
			count = 0
 | 
						|
		}
 | 
						|
		sub := c.Type(dt.Type, pos)
 | 
						|
		t.Align = sub.Align
 | 
						|
		t.Go = &ast.ArrayType{
 | 
						|
			Len: c.intExpr(count),
 | 
						|
			Elt: sub.Go,
 | 
						|
		}
 | 
						|
		// Recalculate t.Size now that we know sub.Size.
 | 
						|
		t.Size = count * sub.Size
 | 
						|
		t.C.Set("__typeof__(%s[%d])", sub.C, dt.Count)
 | 
						|
 | 
						|
	case *dwarf.BoolType:
 | 
						|
		t.Go = c.bool
 | 
						|
		t.Align = 1
 | 
						|
 | 
						|
	case *dwarf.CharType:
 | 
						|
		if t.Size != 1 {
 | 
						|
			fatalf("%s: unexpected: %d-byte char type - %s", lineno(pos), t.Size, dtype)
 | 
						|
		}
 | 
						|
		t.Go = c.int8
 | 
						|
		t.Align = 1
 | 
						|
 | 
						|
	case *dwarf.EnumType:
 | 
						|
		if t.Align = t.Size; t.Align >= c.ptrSize {
 | 
						|
			t.Align = c.ptrSize
 | 
						|
		}
 | 
						|
		t.C.Set("enum " + dt.EnumName)
 | 
						|
		signed := 0
 | 
						|
		t.EnumValues = make(map[string]int64)
 | 
						|
		for _, ev := range dt.Val {
 | 
						|
			t.EnumValues[ev.Name] = ev.Val
 | 
						|
			if ev.Val < 0 {
 | 
						|
				signed = signedDelta
 | 
						|
			}
 | 
						|
		}
 | 
						|
		switch t.Size + int64(signed) {
 | 
						|
		default:
 | 
						|
			fatalf("%s: unexpected: %d-byte enum type - %s", lineno(pos), t.Size, dtype)
 | 
						|
		case 1:
 | 
						|
			t.Go = c.uint8
 | 
						|
		case 2:
 | 
						|
			t.Go = c.uint16
 | 
						|
		case 4:
 | 
						|
			t.Go = c.uint32
 | 
						|
		case 8:
 | 
						|
			t.Go = c.uint64
 | 
						|
		case 1 + signedDelta:
 | 
						|
			t.Go = c.int8
 | 
						|
		case 2 + signedDelta:
 | 
						|
			t.Go = c.int16
 | 
						|
		case 4 + signedDelta:
 | 
						|
			t.Go = c.int32
 | 
						|
		case 8 + signedDelta:
 | 
						|
			t.Go = c.int64
 | 
						|
		}
 | 
						|
 | 
						|
	case *dwarf.FloatType:
 | 
						|
		switch t.Size {
 | 
						|
		default:
 | 
						|
			fatalf("%s: unexpected: %d-byte float type - %s", lineno(pos), t.Size, dtype)
 | 
						|
		case 4:
 | 
						|
			t.Go = c.float32
 | 
						|
		case 8:
 | 
						|
			t.Go = c.float64
 | 
						|
		}
 | 
						|
		if t.Align = t.Size; t.Align >= c.ptrSize {
 | 
						|
			t.Align = c.ptrSize
 | 
						|
		}
 | 
						|
 | 
						|
	case *dwarf.ComplexType:
 | 
						|
		switch t.Size {
 | 
						|
		default:
 | 
						|
			fatalf("%s: unexpected: %d-byte complex type - %s", lineno(pos), t.Size, dtype)
 | 
						|
		case 8:
 | 
						|
			t.Go = c.complex64
 | 
						|
		case 16:
 | 
						|
			t.Go = c.complex128
 | 
						|
		}
 | 
						|
		if t.Align = t.Size; t.Align >= c.ptrSize {
 | 
						|
			t.Align = c.ptrSize
 | 
						|
		}
 | 
						|
 | 
						|
	case *dwarf.FuncType:
 | 
						|
		// No attempt at translation: would enable calls
 | 
						|
		// directly between worlds, but we need to moderate those.
 | 
						|
		t.Go = c.uintptr
 | 
						|
		t.Align = c.ptrSize
 | 
						|
 | 
						|
	case *dwarf.IntType:
 | 
						|
		if dt.BitSize > 0 {
 | 
						|
			fatalf("%s: unexpected: %d-bit int type - %s", lineno(pos), dt.BitSize, dtype)
 | 
						|
		}
 | 
						|
		switch t.Size {
 | 
						|
		default:
 | 
						|
			fatalf("%s: unexpected: %d-byte int type - %s", lineno(pos), t.Size, dtype)
 | 
						|
		case 1:
 | 
						|
			t.Go = c.int8
 | 
						|
		case 2:
 | 
						|
			t.Go = c.int16
 | 
						|
		case 4:
 | 
						|
			t.Go = c.int32
 | 
						|
		case 8:
 | 
						|
			t.Go = c.int64
 | 
						|
		case 16:
 | 
						|
			t.Go = &ast.ArrayType{
 | 
						|
				Len: c.intExpr(t.Size),
 | 
						|
				Elt: c.uint8,
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if t.Align = t.Size; t.Align >= c.ptrSize {
 | 
						|
			t.Align = c.ptrSize
 | 
						|
		}
 | 
						|
 | 
						|
	case *dwarf.PtrType:
 | 
						|
		// Clang doesn't emit DW_AT_byte_size for pointer types.
 | 
						|
		if t.Size != c.ptrSize && t.Size != -1 {
 | 
						|
			fatalf("%s: unexpected: %d-byte pointer type - %s", lineno(pos), t.Size, dtype)
 | 
						|
		}
 | 
						|
		t.Size = c.ptrSize
 | 
						|
		t.Align = c.ptrSize
 | 
						|
 | 
						|
		if _, ok := base(dt.Type).(*dwarf.VoidType); ok {
 | 
						|
			t.Go = c.goVoidPtr
 | 
						|
			t.C.Set("void*")
 | 
						|
			break
 | 
						|
		}
 | 
						|
 | 
						|
		// Placeholder initialization; completed in FinishType.
 | 
						|
		t.Go = &ast.StarExpr{}
 | 
						|
		t.C.Set("<incomplete>*")
 | 
						|
		if _, ok := c.ptrs[dt.Type]; !ok {
 | 
						|
			c.ptrKeys = append(c.ptrKeys, dt.Type)
 | 
						|
		}
 | 
						|
		c.ptrs[dt.Type] = append(c.ptrs[dt.Type], t)
 | 
						|
 | 
						|
	case *dwarf.QualType:
 | 
						|
		// Ignore qualifier.
 | 
						|
		t = c.Type(dt.Type, pos)
 | 
						|
		c.m[dtype] = t
 | 
						|
		return t
 | 
						|
 | 
						|
	case *dwarf.StructType:
 | 
						|
		// Convert to Go struct, being careful about alignment.
 | 
						|
		// Have to give it a name to simulate C "struct foo" references.
 | 
						|
		tag := dt.StructName
 | 
						|
		if dt.ByteSize < 0 && tag == "" { // opaque unnamed struct - should not be possible
 | 
						|
			break
 | 
						|
		}
 | 
						|
		if tag == "" {
 | 
						|
			tag = "__" + strconv.Itoa(tagGen)
 | 
						|
			tagGen++
 | 
						|
		} else if t.C.Empty() {
 | 
						|
			t.C.Set(dt.Kind + " " + tag)
 | 
						|
		}
 | 
						|
		name := c.Ident("_Ctype_" + dt.Kind + "_" + tag)
 | 
						|
		t.Go = name // publish before recursive calls
 | 
						|
		goIdent[name.Name] = name
 | 
						|
		if dt.ByteSize < 0 {
 | 
						|
			// Size calculation in c.Struct/c.Opaque will die with size=-1 (unknown),
 | 
						|
			// so execute the basic things that the struct case would do
 | 
						|
			// other than try to determine a Go representation.
 | 
						|
			tt := *t
 | 
						|
			tt.C = &TypeRepr{"%s %s", []interface{}{dt.Kind, tag}}
 | 
						|
			tt.Go = c.Ident("struct{}")
 | 
						|
			typedef[name.Name] = &tt
 | 
						|
			break
 | 
						|
		}
 | 
						|
		switch dt.Kind {
 | 
						|
		case "class", "union":
 | 
						|
			t.Go = c.Opaque(t.Size)
 | 
						|
			if t.C.Empty() {
 | 
						|
				t.C.Set("__typeof__(unsigned char[%d])", t.Size)
 | 
						|
			}
 | 
						|
			t.Align = 1 // TODO: should probably base this on field alignment.
 | 
						|
			typedef[name.Name] = t
 | 
						|
		case "struct":
 | 
						|
			g, csyntax, align := c.Struct(dt, pos)
 | 
						|
			if t.C.Empty() {
 | 
						|
				t.C.Set(csyntax)
 | 
						|
			}
 | 
						|
			t.Align = align
 | 
						|
			tt := *t
 | 
						|
			if tag != "" {
 | 
						|
				tt.C = &TypeRepr{"struct %s", []interface{}{tag}}
 | 
						|
			}
 | 
						|
			tt.Go = g
 | 
						|
			typedef[name.Name] = &tt
 | 
						|
		}
 | 
						|
 | 
						|
	case *dwarf.TypedefType:
 | 
						|
		// Record typedef for printing.
 | 
						|
		if dt.Name == "_GoString_" {
 | 
						|
			// Special C name for Go string type.
 | 
						|
			// Knows string layout used by compilers: pointer plus length,
 | 
						|
			// which rounds up to 2 pointers after alignment.
 | 
						|
			t.Go = c.string
 | 
						|
			t.Size = c.ptrSize * 2
 | 
						|
			t.Align = c.ptrSize
 | 
						|
			break
 | 
						|
		}
 | 
						|
		if dt.Name == "_GoBytes_" {
 | 
						|
			// Special C name for Go []byte type.
 | 
						|
			// Knows slice layout used by compilers: pointer, length, cap.
 | 
						|
			t.Go = c.Ident("[]byte")
 | 
						|
			t.Size = c.ptrSize + 4 + 4
 | 
						|
			t.Align = c.ptrSize
 | 
						|
			break
 | 
						|
		}
 | 
						|
		name := c.Ident("_Ctype_" + dt.Name)
 | 
						|
		goIdent[name.Name] = name
 | 
						|
		sub := c.Type(dt.Type, pos)
 | 
						|
		t.Go = name
 | 
						|
		t.Size = sub.Size
 | 
						|
		t.Align = sub.Align
 | 
						|
		oldType := typedef[name.Name]
 | 
						|
		if oldType == nil {
 | 
						|
			tt := *t
 | 
						|
			tt.Go = sub.Go
 | 
						|
			typedef[name.Name] = &tt
 | 
						|
		}
 | 
						|
 | 
						|
		// If sub.Go.Name is "_Ctype_struct_foo" or "_Ctype_union_foo" or "_Ctype_class_foo",
 | 
						|
		// use that as the Go form for this typedef too, so that the typedef will be interchangeable
 | 
						|
		// with the base type.
 | 
						|
		// In -godefs mode, do this for all typedefs.
 | 
						|
		if isStructUnionClass(sub.Go) || *godefs {
 | 
						|
			t.Go = sub.Go
 | 
						|
 | 
						|
			if isStructUnionClass(sub.Go) {
 | 
						|
				// Use the typedef name for C code.
 | 
						|
				typedef[sub.Go.(*ast.Ident).Name].C = t.C
 | 
						|
			}
 | 
						|
 | 
						|
			// If we've seen this typedef before, and it
 | 
						|
			// was an anonymous struct/union/class before
 | 
						|
			// too, use the old definition.
 | 
						|
			// TODO: it would be safer to only do this if
 | 
						|
			// we verify that the types are the same.
 | 
						|
			if oldType != nil && isStructUnionClass(oldType.Go) {
 | 
						|
				t.Go = oldType.Go
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
	case *dwarf.UcharType:
 | 
						|
		if t.Size != 1 {
 | 
						|
			fatalf("%s: unexpected: %d-byte uchar type - %s", lineno(pos), t.Size, dtype)
 | 
						|
		}
 | 
						|
		t.Go = c.uint8
 | 
						|
		t.Align = 1
 | 
						|
 | 
						|
	case *dwarf.UintType:
 | 
						|
		if dt.BitSize > 0 {
 | 
						|
			fatalf("%s: unexpected: %d-bit uint type - %s", lineno(pos), dt.BitSize, dtype)
 | 
						|
		}
 | 
						|
		switch t.Size {
 | 
						|
		default:
 | 
						|
			fatalf("%s: unexpected: %d-byte uint type - %s", lineno(pos), t.Size, dtype)
 | 
						|
		case 1:
 | 
						|
			t.Go = c.uint8
 | 
						|
		case 2:
 | 
						|
			t.Go = c.uint16
 | 
						|
		case 4:
 | 
						|
			t.Go = c.uint32
 | 
						|
		case 8:
 | 
						|
			t.Go = c.uint64
 | 
						|
		case 16:
 | 
						|
			t.Go = &ast.ArrayType{
 | 
						|
				Len: c.intExpr(t.Size),
 | 
						|
				Elt: c.uint8,
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if t.Align = t.Size; t.Align >= c.ptrSize {
 | 
						|
			t.Align = c.ptrSize
 | 
						|
		}
 | 
						|
 | 
						|
	case *dwarf.VoidType:
 | 
						|
		t.Go = c.goVoid
 | 
						|
		t.C.Set("void")
 | 
						|
		t.Align = 1
 | 
						|
	}
 | 
						|
 | 
						|
	switch dtype.(type) {
 | 
						|
	case *dwarf.AddrType, *dwarf.BoolType, *dwarf.CharType, *dwarf.ComplexType, *dwarf.IntType, *dwarf.FloatType, *dwarf.UcharType, *dwarf.UintType:
 | 
						|
		s := dtype.Common().Name
 | 
						|
		if s != "" {
 | 
						|
			if ss, ok := dwarfToName[s]; ok {
 | 
						|
				s = ss
 | 
						|
			}
 | 
						|
			s = strings.Join(strings.Split(s, " "), "") // strip spaces
 | 
						|
			name := c.Ident("_Ctype_" + s)
 | 
						|
			tt := *t
 | 
						|
			typedef[name.Name] = &tt
 | 
						|
			if !*godefs {
 | 
						|
				t.Go = name
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if t.Size < 0 {
 | 
						|
		// Unsized types are [0]byte, unless they're typedefs of other types
 | 
						|
		// or structs with tags.
 | 
						|
		// if so, use the name we've already defined.
 | 
						|
		t.Size = 0
 | 
						|
		switch dt := dtype.(type) {
 | 
						|
		case *dwarf.TypedefType:
 | 
						|
			// ok
 | 
						|
		case *dwarf.StructType:
 | 
						|
			if dt.StructName != "" {
 | 
						|
				break
 | 
						|
			}
 | 
						|
			t.Go = c.Opaque(0)
 | 
						|
		default:
 | 
						|
			t.Go = c.Opaque(0)
 | 
						|
		}
 | 
						|
		if t.C.Empty() {
 | 
						|
			t.C.Set("void")
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if t.C.Empty() {
 | 
						|
		fatalf("%s: internal error: did not create C name for %s", lineno(pos), dtype)
 | 
						|
	}
 | 
						|
 | 
						|
	return t
 | 
						|
}
 | 
						|
 | 
						|
// isStructUnionClass reports whether the type described by the Go syntax x
 | 
						|
// is a struct, union, or class with a tag.
 | 
						|
func isStructUnionClass(x ast.Expr) bool {
 | 
						|
	id, ok := x.(*ast.Ident)
 | 
						|
	if !ok {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	name := id.Name
 | 
						|
	return strings.HasPrefix(name, "_Ctype_struct_") ||
 | 
						|
		strings.HasPrefix(name, "_Ctype_union_") ||
 | 
						|
		strings.HasPrefix(name, "_Ctype_class_")
 | 
						|
}
 | 
						|
 | 
						|
// FuncArg returns a Go type with the same memory layout as
 | 
						|
// dtype when used as the type of a C function argument.
 | 
						|
func (c *typeConv) FuncArg(dtype dwarf.Type, pos token.Pos) *Type {
 | 
						|
	t := c.Type(dtype, pos)
 | 
						|
	switch dt := dtype.(type) {
 | 
						|
	case *dwarf.ArrayType:
 | 
						|
		// Arrays are passed implicitly as pointers in C.
 | 
						|
		// In Go, we must be explicit.
 | 
						|
		tr := &TypeRepr{}
 | 
						|
		tr.Set("%s*", t.C)
 | 
						|
		return &Type{
 | 
						|
			Size:  c.ptrSize,
 | 
						|
			Align: c.ptrSize,
 | 
						|
			Go:    &ast.StarExpr{X: t.Go},
 | 
						|
			C:     tr,
 | 
						|
		}
 | 
						|
	case *dwarf.TypedefType:
 | 
						|
		// C has much more relaxed rules than Go for
 | 
						|
		// implicit type conversions. When the parameter
 | 
						|
		// is type T defined as *X, simulate a little of the
 | 
						|
		// laxness of C by making the argument *X instead of T.
 | 
						|
		if ptr, ok := base(dt.Type).(*dwarf.PtrType); ok {
 | 
						|
			// Unless the typedef happens to point to void* since
 | 
						|
			// Go has special rules around using unsafe.Pointer.
 | 
						|
			if _, void := base(ptr.Type).(*dwarf.VoidType); void {
 | 
						|
				break
 | 
						|
			}
 | 
						|
 | 
						|
			t = c.Type(ptr, pos)
 | 
						|
			if t == nil {
 | 
						|
				return nil
 | 
						|
			}
 | 
						|
 | 
						|
			// Remember the C spelling, in case the struct
 | 
						|
			// has __attribute__((unavailable)) on it. See issue 2888.
 | 
						|
			t.Typedef = dt.Name
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return t
 | 
						|
}
 | 
						|
 | 
						|
// FuncType returns the Go type analogous to dtype.
 | 
						|
// There is no guarantee about matching memory layout.
 | 
						|
func (c *typeConv) FuncType(dtype *dwarf.FuncType, pos token.Pos) *FuncType {
 | 
						|
	p := make([]*Type, len(dtype.ParamType))
 | 
						|
	gp := make([]*ast.Field, len(dtype.ParamType))
 | 
						|
	for i, f := range dtype.ParamType {
 | 
						|
		// gcc's DWARF generator outputs a single DotDotDotType parameter for
 | 
						|
		// function pointers that specify no parameters (e.g. void
 | 
						|
		// (*__cgo_0)()).  Treat this special case as void. This case is
 | 
						|
		// invalid according to ISO C anyway (i.e. void (*__cgo_1)(...) is not
 | 
						|
		// legal).
 | 
						|
		if _, ok := f.(*dwarf.DotDotDotType); ok && i == 0 {
 | 
						|
			p, gp = nil, nil
 | 
						|
			break
 | 
						|
		}
 | 
						|
		p[i] = c.FuncArg(f, pos)
 | 
						|
		gp[i] = &ast.Field{Type: p[i].Go}
 | 
						|
	}
 | 
						|
	var r *Type
 | 
						|
	var gr []*ast.Field
 | 
						|
	if _, ok := dtype.ReturnType.(*dwarf.VoidType); ok {
 | 
						|
		gr = []*ast.Field{{Type: c.goVoid}}
 | 
						|
	} else if dtype.ReturnType != nil {
 | 
						|
		r = c.Type(dtype.ReturnType, pos)
 | 
						|
		gr = []*ast.Field{{Type: r.Go}}
 | 
						|
	}
 | 
						|
	return &FuncType{
 | 
						|
		Params: p,
 | 
						|
		Result: r,
 | 
						|
		Go: &ast.FuncType{
 | 
						|
			Params:  &ast.FieldList{List: gp},
 | 
						|
			Results: &ast.FieldList{List: gr},
 | 
						|
		},
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Identifier
 | 
						|
func (c *typeConv) Ident(s string) *ast.Ident {
 | 
						|
	return ast.NewIdent(s)
 | 
						|
}
 | 
						|
 | 
						|
// Opaque type of n bytes.
 | 
						|
func (c *typeConv) Opaque(n int64) ast.Expr {
 | 
						|
	return &ast.ArrayType{
 | 
						|
		Len: c.intExpr(n),
 | 
						|
		Elt: c.byte,
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Expr for integer n.
 | 
						|
func (c *typeConv) intExpr(n int64) ast.Expr {
 | 
						|
	return &ast.BasicLit{
 | 
						|
		Kind:  token.INT,
 | 
						|
		Value: strconv.FormatInt(n, 10),
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Add padding of given size to fld.
 | 
						|
func (c *typeConv) pad(fld []*ast.Field, sizes []int64, size int64) ([]*ast.Field, []int64) {
 | 
						|
	n := len(fld)
 | 
						|
	fld = fld[0 : n+1]
 | 
						|
	fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident("_")}, Type: c.Opaque(size)}
 | 
						|
	sizes = sizes[0 : n+1]
 | 
						|
	sizes[n] = size
 | 
						|
	return fld, sizes
 | 
						|
}
 | 
						|
 | 
						|
// Struct conversion: return Go and (gc) C syntax for type.
 | 
						|
func (c *typeConv) Struct(dt *dwarf.StructType, pos token.Pos) (expr *ast.StructType, csyntax string, align int64) {
 | 
						|
	// Minimum alignment for a struct is 1 byte.
 | 
						|
	align = 1
 | 
						|
 | 
						|
	var buf bytes.Buffer
 | 
						|
	buf.WriteString("struct {")
 | 
						|
	fld := make([]*ast.Field, 0, 2*len(dt.Field)+1) // enough for padding around every field
 | 
						|
	sizes := make([]int64, 0, 2*len(dt.Field)+1)
 | 
						|
	off := int64(0)
 | 
						|
 | 
						|
	// Rename struct fields that happen to be named Go keywords into
 | 
						|
	// _{keyword}.  Create a map from C ident -> Go ident. The Go ident will
 | 
						|
	// be mangled. Any existing identifier that already has the same name on
 | 
						|
	// the C-side will cause the Go-mangled version to be prefixed with _.
 | 
						|
	// (e.g. in a struct with fields '_type' and 'type', the latter would be
 | 
						|
	// rendered as '__type' in Go).
 | 
						|
	ident := make(map[string]string)
 | 
						|
	used := make(map[string]bool)
 | 
						|
	for _, f := range dt.Field {
 | 
						|
		ident[f.Name] = f.Name
 | 
						|
		used[f.Name] = true
 | 
						|
	}
 | 
						|
 | 
						|
	if !*godefs {
 | 
						|
		for cid, goid := range ident {
 | 
						|
			if token.Lookup(goid).IsKeyword() {
 | 
						|
				// Avoid keyword
 | 
						|
				goid = "_" + goid
 | 
						|
 | 
						|
				// Also avoid existing fields
 | 
						|
				for _, exist := used[goid]; exist; _, exist = used[goid] {
 | 
						|
					goid = "_" + goid
 | 
						|
				}
 | 
						|
 | 
						|
				used[goid] = true
 | 
						|
				ident[cid] = goid
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	anon := 0
 | 
						|
	for _, f := range dt.Field {
 | 
						|
		if f.ByteOffset > off {
 | 
						|
			fld, sizes = c.pad(fld, sizes, f.ByteOffset-off)
 | 
						|
			off = f.ByteOffset
 | 
						|
		}
 | 
						|
 | 
						|
		name := f.Name
 | 
						|
		ft := f.Type
 | 
						|
 | 
						|
		// In godefs mode, if this field is a C11
 | 
						|
		// anonymous union then treat the first field in the
 | 
						|
		// union as the field in the struct. This handles
 | 
						|
		// cases like the glibc <sys/resource.h> file; see
 | 
						|
		// issue 6677.
 | 
						|
		if *godefs {
 | 
						|
			if st, ok := f.Type.(*dwarf.StructType); ok && name == "" && st.Kind == "union" && len(st.Field) > 0 && !used[st.Field[0].Name] {
 | 
						|
				name = st.Field[0].Name
 | 
						|
				ident[name] = name
 | 
						|
				ft = st.Field[0].Type
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		// TODO: Handle fields that are anonymous structs by
 | 
						|
		// promoting the fields of the inner struct.
 | 
						|
 | 
						|
		t := c.Type(ft, pos)
 | 
						|
		tgo := t.Go
 | 
						|
		size := t.Size
 | 
						|
		talign := t.Align
 | 
						|
		if f.BitSize > 0 {
 | 
						|
			if f.BitSize%8 != 0 {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			size = f.BitSize / 8
 | 
						|
			name := tgo.(*ast.Ident).String()
 | 
						|
			if strings.HasPrefix(name, "int") {
 | 
						|
				name = "int"
 | 
						|
			} else {
 | 
						|
				name = "uint"
 | 
						|
			}
 | 
						|
			tgo = ast.NewIdent(name + fmt.Sprint(f.BitSize))
 | 
						|
			talign = size
 | 
						|
		}
 | 
						|
 | 
						|
		if talign > 0 && f.ByteOffset%talign != 0 {
 | 
						|
			// Drop misaligned fields, the same way we drop integer bit fields.
 | 
						|
			// The goal is to make available what can be made available.
 | 
						|
			// Otherwise one bad and unneeded field in an otherwise okay struct
 | 
						|
			// makes the whole program not compile. Much of the time these
 | 
						|
			// structs are in system headers that cannot be corrected.
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		n := len(fld)
 | 
						|
		fld = fld[0 : n+1]
 | 
						|
		if name == "" {
 | 
						|
			name = fmt.Sprintf("anon%d", anon)
 | 
						|
			anon++
 | 
						|
			ident[name] = name
 | 
						|
		}
 | 
						|
		fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident(ident[name])}, Type: tgo}
 | 
						|
		sizes = sizes[0 : n+1]
 | 
						|
		sizes[n] = size
 | 
						|
		off += size
 | 
						|
		buf.WriteString(t.C.String())
 | 
						|
		buf.WriteString(" ")
 | 
						|
		buf.WriteString(name)
 | 
						|
		buf.WriteString("; ")
 | 
						|
		if talign > align {
 | 
						|
			align = talign
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if off < dt.ByteSize {
 | 
						|
		fld, sizes = c.pad(fld, sizes, dt.ByteSize-off)
 | 
						|
		off = dt.ByteSize
 | 
						|
	}
 | 
						|
 | 
						|
	// If the last field in a non-zero-sized struct is zero-sized
 | 
						|
	// the compiler is going to pad it by one (see issue 9401).
 | 
						|
	// We can't permit that, because then the size of the Go
 | 
						|
	// struct will not be the same as the size of the C struct.
 | 
						|
	// Our only option in such a case is to remove the field,
 | 
						|
	// which means that it cannot be referenced from Go.
 | 
						|
	for off > 0 && sizes[len(sizes)-1] == 0 {
 | 
						|
		n := len(sizes)
 | 
						|
		fld = fld[0 : n-1]
 | 
						|
		sizes = sizes[0 : n-1]
 | 
						|
	}
 | 
						|
 | 
						|
	if off != dt.ByteSize {
 | 
						|
		fatalf("%s: struct size calculation error off=%d bytesize=%d", lineno(pos), off, dt.ByteSize)
 | 
						|
	}
 | 
						|
	buf.WriteString("}")
 | 
						|
	csyntax = buf.String()
 | 
						|
 | 
						|
	if *godefs {
 | 
						|
		godefsFields(fld)
 | 
						|
	}
 | 
						|
	expr = &ast.StructType{Fields: &ast.FieldList{List: fld}}
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
func upper(s string) string {
 | 
						|
	if s == "" {
 | 
						|
		return ""
 | 
						|
	}
 | 
						|
	r, size := utf8.DecodeRuneInString(s)
 | 
						|
	if r == '_' {
 | 
						|
		return "X" + s
 | 
						|
	}
 | 
						|
	return string(unicode.ToUpper(r)) + s[size:]
 | 
						|
}
 | 
						|
 | 
						|
// godefsFields rewrites field names for use in Go or C definitions.
 | 
						|
// It strips leading common prefixes (like tv_ in tv_sec, tv_usec)
 | 
						|
// converts names to upper case, and rewrites _ into Pad_godefs_n,
 | 
						|
// so that all fields are exported.
 | 
						|
func godefsFields(fld []*ast.Field) {
 | 
						|
	prefix := fieldPrefix(fld)
 | 
						|
	npad := 0
 | 
						|
	for _, f := range fld {
 | 
						|
		for _, n := range f.Names {
 | 
						|
			if n.Name != prefix {
 | 
						|
				n.Name = strings.TrimPrefix(n.Name, prefix)
 | 
						|
			}
 | 
						|
			if n.Name == "_" {
 | 
						|
				// Use exported name instead.
 | 
						|
				n.Name = "Pad_cgo_" + strconv.Itoa(npad)
 | 
						|
				npad++
 | 
						|
			}
 | 
						|
			n.Name = upper(n.Name)
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// fieldPrefix returns the prefix that should be removed from all the
 | 
						|
// field names when generating the C or Go code. For generated
 | 
						|
// C, we leave the names as is (tv_sec, tv_usec), since that's what
 | 
						|
// people are used to seeing in C.  For generated Go code, such as
 | 
						|
// package syscall's data structures, we drop a common prefix
 | 
						|
// (so sec, usec, which will get turned into Sec, Usec for exporting).
 | 
						|
func fieldPrefix(fld []*ast.Field) string {
 | 
						|
	prefix := ""
 | 
						|
	for _, f := range fld {
 | 
						|
		for _, n := range f.Names {
 | 
						|
			// Ignore field names that don't have the prefix we're
 | 
						|
			// looking for. It is common in C headers to have fields
 | 
						|
			// named, say, _pad in an otherwise prefixed header.
 | 
						|
			// If the struct has 3 fields tv_sec, tv_usec, _pad1, then we
 | 
						|
			// still want to remove the tv_ prefix.
 | 
						|
			// The check for "orig_" here handles orig_eax in the
 | 
						|
			// x86 ptrace register sets, which otherwise have all fields
 | 
						|
			// with reg_ prefixes.
 | 
						|
			if strings.HasPrefix(n.Name, "orig_") || strings.HasPrefix(n.Name, "_") {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			i := strings.Index(n.Name, "_")
 | 
						|
			if i < 0 {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			if prefix == "" {
 | 
						|
				prefix = n.Name[:i+1]
 | 
						|
			} else if prefix != n.Name[:i+1] {
 | 
						|
				return ""
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return prefix
 | 
						|
}
 |