mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			758 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			758 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Special functions -*- C++ -*-
 | |
| 
 | |
| // Copyright (C) 2006-2017 Free Software Foundation, Inc.
 | |
| //
 | |
| // This file is part of the GNU ISO C++ Library.  This library is free
 | |
| // software; you can redistribute it and/or modify it under the
 | |
| // terms of the GNU General Public License as published by the
 | |
| // Free Software Foundation; either version 3, or (at your option)
 | |
| // any later version.
 | |
| //
 | |
| // This library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| // GNU General Public License for more details.
 | |
| //
 | |
| // Under Section 7 of GPL version 3, you are granted additional
 | |
| // permissions described in the GCC Runtime Library Exception, version
 | |
| // 3.1, as published by the Free Software Foundation.
 | |
| 
 | |
| // You should have received a copy of the GNU General Public License and
 | |
| // a copy of the GCC Runtime Library Exception along with this program;
 | |
| // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | |
| // <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| /** @file tr1/ell_integral.tcc
 | |
|  *  This is an internal header file, included by other library headers.
 | |
|  *  Do not attempt to use it directly. @headername{tr1/cmath}
 | |
|  */
 | |
| 
 | |
| //
 | |
| // ISO C++ 14882 TR1: 5.2  Special functions
 | |
| //
 | |
| 
 | |
| // Written by Edward Smith-Rowland based on:
 | |
| //   (1)  B. C. Carlson Numer. Math. 33, 1 (1979)
 | |
| //   (2)  B. C. Carlson, Special Functions of Applied Mathematics (1977)
 | |
| //   (3)  The Gnu Scientific Library, http://www.gnu.org/software/gsl
 | |
| //   (4)  Numerical Recipes in C, 2nd ed, by W. H. Press, S. A. Teukolsky,
 | |
| //        W. T. Vetterling, B. P. Flannery, Cambridge University Press
 | |
| //        (1992), pp. 261-269
 | |
| 
 | |
| #ifndef _GLIBCXX_TR1_ELL_INTEGRAL_TCC
 | |
| #define _GLIBCXX_TR1_ELL_INTEGRAL_TCC 1
 | |
| 
 | |
| namespace std _GLIBCXX_VISIBILITY(default)
 | |
| {
 | |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION
 | |
| 
 | |
| #if _GLIBCXX_USE_STD_SPEC_FUNCS
 | |
| #elif defined(_GLIBCXX_TR1_CMATH)
 | |
| namespace tr1
 | |
| {
 | |
| #else
 | |
| # error do not include this header directly, use <cmath> or <tr1/cmath>
 | |
| #endif
 | |
|   // [5.2] Special functions
 | |
| 
 | |
|   // Implementation-space details.
 | |
|   namespace __detail
 | |
|   {
 | |
|     /**
 | |
|      *   @brief Return the Carlson elliptic function @f$ R_F(x,y,z) @f$
 | |
|      *          of the first kind.
 | |
|      * 
 | |
|      *   The Carlson elliptic function of the first kind is defined by:
 | |
|      *   @f[
 | |
|      *       R_F(x,y,z) = \frac{1}{2} \int_0^\infty
 | |
|      *                 \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}}
 | |
|      *   @f]
 | |
|      *
 | |
|      *   @param  __x  The first of three symmetric arguments.
 | |
|      *   @param  __y  The second of three symmetric arguments.
 | |
|      *   @param  __z  The third of three symmetric arguments.
 | |
|      *   @return  The Carlson elliptic function of the first kind.
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __ellint_rf(_Tp __x, _Tp __y, _Tp __z)
 | |
|     {
 | |
|       const _Tp __min = std::numeric_limits<_Tp>::min();
 | |
|       const _Tp __max = std::numeric_limits<_Tp>::max();
 | |
|       const _Tp __lolim = _Tp(5) * __min;
 | |
|       const _Tp __uplim = __max / _Tp(5);
 | |
| 
 | |
|       if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
 | |
|         std::__throw_domain_error(__N("Argument less than zero "
 | |
|                                       "in __ellint_rf."));
 | |
|       else if (__x + __y < __lolim || __x + __z < __lolim
 | |
|             || __y + __z < __lolim)
 | |
|         std::__throw_domain_error(__N("Argument too small in __ellint_rf"));
 | |
|       else
 | |
|         {
 | |
|           const _Tp __c0 = _Tp(1) / _Tp(4);
 | |
|           const _Tp __c1 = _Tp(1) / _Tp(24);
 | |
|           const _Tp __c2 = _Tp(1) / _Tp(10);
 | |
|           const _Tp __c3 = _Tp(3) / _Tp(44);
 | |
|           const _Tp __c4 = _Tp(1) / _Tp(14);
 | |
| 
 | |
|           _Tp __xn = __x;
 | |
|           _Tp __yn = __y;
 | |
|           _Tp __zn = __z;
 | |
| 
 | |
|           const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
 | |
|           const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6));
 | |
|           _Tp __mu;
 | |
|           _Tp __xndev, __yndev, __zndev;
 | |
| 
 | |
|           const unsigned int __max_iter = 100;
 | |
|           for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
 | |
|             {
 | |
|               __mu = (__xn + __yn + __zn) / _Tp(3);
 | |
|               __xndev = 2 - (__mu + __xn) / __mu;
 | |
|               __yndev = 2 - (__mu + __yn) / __mu;
 | |
|               __zndev = 2 - (__mu + __zn) / __mu;
 | |
|               _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
 | |
|               __epsilon = std::max(__epsilon, std::abs(__zndev));
 | |
|               if (__epsilon < __errtol)
 | |
|                 break;
 | |
|               const _Tp __xnroot = std::sqrt(__xn);
 | |
|               const _Tp __ynroot = std::sqrt(__yn);
 | |
|               const _Tp __znroot = std::sqrt(__zn);
 | |
|               const _Tp __lambda = __xnroot * (__ynroot + __znroot)
 | |
|                                  + __ynroot * __znroot;
 | |
|               __xn = __c0 * (__xn + __lambda);
 | |
|               __yn = __c0 * (__yn + __lambda);
 | |
|               __zn = __c0 * (__zn + __lambda);
 | |
|             }
 | |
| 
 | |
|           const _Tp __e2 = __xndev * __yndev - __zndev * __zndev;
 | |
|           const _Tp __e3 = __xndev * __yndev * __zndev;
 | |
|           const _Tp __s  = _Tp(1) + (__c1 * __e2 - __c2 - __c3 * __e3) * __e2
 | |
|                    + __c4 * __e3;
 | |
| 
 | |
|           return __s / std::sqrt(__mu);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief Return the complete elliptic integral of the first kind
 | |
|      *          @f$ K(k) @f$ by series expansion.
 | |
|      * 
 | |
|      *   The complete elliptic integral of the first kind is defined as
 | |
|      *   @f[
 | |
|      *     K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
 | |
|      *                              {\sqrt{1 - k^2sin^2\theta}}
 | |
|      *   @f]
 | |
|      * 
 | |
|      *   This routine is not bad as long as |k| is somewhat smaller than 1
 | |
|      *   but is not is good as the Carlson elliptic integral formulation.
 | |
|      * 
 | |
|      *   @param  __k  The argument of the complete elliptic function.
 | |
|      *   @return  The complete elliptic function of the first kind.
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __comp_ellint_1_series(_Tp __k)
 | |
|     {
 | |
| 
 | |
|       const _Tp __kk = __k * __k;
 | |
| 
 | |
|       _Tp __term = __kk / _Tp(4);
 | |
|       _Tp __sum = _Tp(1) + __term;
 | |
| 
 | |
|       const unsigned int __max_iter = 1000;
 | |
|       for (unsigned int __i = 2; __i < __max_iter; ++__i)
 | |
|         {
 | |
|           __term *= (2 * __i - 1) * __kk / (2 * __i);
 | |
|           if (__term < std::numeric_limits<_Tp>::epsilon())
 | |
|             break;
 | |
|           __sum += __term;
 | |
|         }
 | |
| 
 | |
|       return __numeric_constants<_Tp>::__pi_2() * __sum;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief  Return the complete elliptic integral of the first kind
 | |
|      *           @f$ K(k) @f$ using the Carlson formulation.
 | |
|      * 
 | |
|      *   The complete elliptic integral of the first kind is defined as
 | |
|      *   @f[
 | |
|      *     K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
 | |
|      *                                           {\sqrt{1 - k^2 sin^2\theta}}
 | |
|      *   @f]
 | |
|      *   where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the
 | |
|      *   first kind.
 | |
|      * 
 | |
|      *   @param  __k  The argument of the complete elliptic function.
 | |
|      *   @return  The complete elliptic function of the first kind.
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __comp_ellint_1(_Tp __k)
 | |
|     {
 | |
| 
 | |
|       if (__isnan(__k))
 | |
|         return std::numeric_limits<_Tp>::quiet_NaN();
 | |
|       else if (std::abs(__k) >= _Tp(1))
 | |
|         return std::numeric_limits<_Tp>::quiet_NaN();
 | |
|       else
 | |
|         return __ellint_rf(_Tp(0), _Tp(1) - __k * __k, _Tp(1));
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief  Return the incomplete elliptic integral of the first kind
 | |
|      *           @f$ F(k,\phi) @f$ using the Carlson formulation.
 | |
|      * 
 | |
|      *   The incomplete elliptic integral of the first kind is defined as
 | |
|      *   @f[
 | |
|      *     F(k,\phi) = \int_0^{\phi}\frac{d\theta}
 | |
|      *                                   {\sqrt{1 - k^2 sin^2\theta}}
 | |
|      *   @f]
 | |
|      * 
 | |
|      *   @param  __k  The argument of the elliptic function.
 | |
|      *   @param  __phi  The integral limit argument of the elliptic function.
 | |
|      *   @return  The elliptic function of the first kind.
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __ellint_1(_Tp __k, _Tp __phi)
 | |
|     {
 | |
| 
 | |
|       if (__isnan(__k) || __isnan(__phi))
 | |
|         return std::numeric_limits<_Tp>::quiet_NaN();
 | |
|       else if (std::abs(__k) > _Tp(1))
 | |
|         std::__throw_domain_error(__N("Bad argument in __ellint_1."));
 | |
|       else
 | |
|         {
 | |
|           //  Reduce phi to -pi/2 < phi < +pi/2.
 | |
|           const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
 | |
|                                    + _Tp(0.5L));
 | |
|           const _Tp __phi_red = __phi
 | |
|                               - __n * __numeric_constants<_Tp>::__pi();
 | |
| 
 | |
|           const _Tp __s = std::sin(__phi_red);
 | |
|           const _Tp __c = std::cos(__phi_red);
 | |
| 
 | |
|           const _Tp __F = __s
 | |
|                         * __ellint_rf(__c * __c,
 | |
|                                 _Tp(1) - __k * __k * __s * __s, _Tp(1));
 | |
| 
 | |
|           if (__n == 0)
 | |
|             return __F;
 | |
|           else
 | |
|             return __F + _Tp(2) * __n * __comp_ellint_1(__k);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief Return the complete elliptic integral of the second kind
 | |
|      *          @f$ E(k) @f$ by series expansion.
 | |
|      * 
 | |
|      *   The complete elliptic integral of the second kind is defined as
 | |
|      *   @f[
 | |
|      *     E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
 | |
|      *   @f]
 | |
|      * 
 | |
|      *   This routine is not bad as long as |k| is somewhat smaller than 1
 | |
|      *   but is not is good as the Carlson elliptic integral formulation.
 | |
|      * 
 | |
|      *   @param  __k  The argument of the complete elliptic function.
 | |
|      *   @return  The complete elliptic function of the second kind.
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __comp_ellint_2_series(_Tp __k)
 | |
|     {
 | |
| 
 | |
|       const _Tp __kk = __k * __k;
 | |
| 
 | |
|       _Tp __term = __kk;
 | |
|       _Tp __sum = __term;
 | |
| 
 | |
|       const unsigned int __max_iter = 1000;
 | |
|       for (unsigned int __i = 2; __i < __max_iter; ++__i)
 | |
|         {
 | |
|           const _Tp __i2m = 2 * __i - 1;
 | |
|           const _Tp __i2 = 2 * __i;
 | |
|           __term *= __i2m * __i2m * __kk / (__i2 * __i2);
 | |
|           if (__term < std::numeric_limits<_Tp>::epsilon())
 | |
|             break;
 | |
|           __sum += __term / __i2m;
 | |
|         }
 | |
| 
 | |
|       return __numeric_constants<_Tp>::__pi_2() * (_Tp(1) - __sum);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief  Return the Carlson elliptic function of the second kind
 | |
|      *           @f$ R_D(x,y,z) = R_J(x,y,z,z) @f$ where
 | |
|      *           @f$ R_J(x,y,z,p) @f$ is the Carlson elliptic function
 | |
|      *           of the third kind.
 | |
|      * 
 | |
|      *   The Carlson elliptic function of the second kind is defined by:
 | |
|      *   @f[
 | |
|      *       R_D(x,y,z) = \frac{3}{2} \int_0^\infty
 | |
|      *                 \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{3/2}}
 | |
|      *   @f]
 | |
|      *
 | |
|      *   Based on Carlson's algorithms:
 | |
|      *   -  B. C. Carlson Numer. Math. 33, 1 (1979)
 | |
|      *   -  B. C. Carlson, Special Functions of Applied Mathematics (1977)
 | |
|      *   -  Numerical Recipes in C, 2nd ed, pp. 261-269,
 | |
|      *      by Press, Teukolsky, Vetterling, Flannery (1992)
 | |
|      *
 | |
|      *   @param  __x  The first of two symmetric arguments.
 | |
|      *   @param  __y  The second of two symmetric arguments.
 | |
|      *   @param  __z  The third argument.
 | |
|      *   @return  The Carlson elliptic function of the second kind.
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __ellint_rd(_Tp __x, _Tp __y, _Tp __z)
 | |
|     {
 | |
|       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
 | |
|       const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
 | |
|       const _Tp __min = std::numeric_limits<_Tp>::min();
 | |
|       const _Tp __max = std::numeric_limits<_Tp>::max();
 | |
|       const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3));
 | |
|       const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3));
 | |
| 
 | |
|       if (__x < _Tp(0) || __y < _Tp(0))
 | |
|         std::__throw_domain_error(__N("Argument less than zero "
 | |
|                                       "in __ellint_rd."));
 | |
|       else if (__x + __y < __lolim || __z < __lolim)
 | |
|         std::__throw_domain_error(__N("Argument too small "
 | |
|                                       "in __ellint_rd."));
 | |
|       else
 | |
|         {
 | |
|           const _Tp __c0 = _Tp(1) / _Tp(4);
 | |
|           const _Tp __c1 = _Tp(3) / _Tp(14);
 | |
|           const _Tp __c2 = _Tp(1) / _Tp(6);
 | |
|           const _Tp __c3 = _Tp(9) / _Tp(22);
 | |
|           const _Tp __c4 = _Tp(3) / _Tp(26);
 | |
| 
 | |
|           _Tp __xn = __x;
 | |
|           _Tp __yn = __y;
 | |
|           _Tp __zn = __z;
 | |
|           _Tp __sigma = _Tp(0);
 | |
|           _Tp __power4 = _Tp(1);
 | |
| 
 | |
|           _Tp __mu;
 | |
|           _Tp __xndev, __yndev, __zndev;
 | |
| 
 | |
|           const unsigned int __max_iter = 100;
 | |
|           for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
 | |
|             {
 | |
|               __mu = (__xn + __yn + _Tp(3) * __zn) / _Tp(5);
 | |
|               __xndev = (__mu - __xn) / __mu;
 | |
|               __yndev = (__mu - __yn) / __mu;
 | |
|               __zndev = (__mu - __zn) / __mu;
 | |
|               _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
 | |
|               __epsilon = std::max(__epsilon, std::abs(__zndev));
 | |
|               if (__epsilon < __errtol)
 | |
|                 break;
 | |
|               _Tp __xnroot = std::sqrt(__xn);
 | |
|               _Tp __ynroot = std::sqrt(__yn);
 | |
|               _Tp __znroot = std::sqrt(__zn);
 | |
|               _Tp __lambda = __xnroot * (__ynroot + __znroot)
 | |
|                            + __ynroot * __znroot;
 | |
|               __sigma += __power4 / (__znroot * (__zn + __lambda));
 | |
|               __power4 *= __c0;
 | |
|               __xn = __c0 * (__xn + __lambda);
 | |
|               __yn = __c0 * (__yn + __lambda);
 | |
|               __zn = __c0 * (__zn + __lambda);
 | |
|             }
 | |
| 
 | |
| 	  // Note: __ea is an SPU badname.
 | |
|           _Tp __eaa = __xndev * __yndev;
 | |
|           _Tp __eb = __zndev * __zndev;
 | |
|           _Tp __ec = __eaa - __eb;
 | |
|           _Tp __ed = __eaa - _Tp(6) * __eb;
 | |
|           _Tp __ef = __ed + __ec + __ec;
 | |
|           _Tp __s1 = __ed * (-__c1 + __c3 * __ed
 | |
|                                    / _Tp(3) - _Tp(3) * __c4 * __zndev * __ef
 | |
|                                    / _Tp(2));
 | |
|           _Tp __s2 = __zndev
 | |
|                    * (__c2 * __ef
 | |
|                     + __zndev * (-__c3 * __ec - __zndev * __c4 - __eaa));
 | |
| 
 | |
|           return _Tp(3) * __sigma + __power4 * (_Tp(1) + __s1 + __s2)
 | |
|                                         / (__mu * std::sqrt(__mu));
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief  Return the complete elliptic integral of the second kind
 | |
|      *           @f$ E(k) @f$ using the Carlson formulation.
 | |
|      * 
 | |
|      *   The complete elliptic integral of the second kind is defined as
 | |
|      *   @f[
 | |
|      *     E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
 | |
|      *   @f]
 | |
|      * 
 | |
|      *   @param  __k  The argument of the complete elliptic function.
 | |
|      *   @return  The complete elliptic function of the second kind.
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __comp_ellint_2(_Tp __k)
 | |
|     {
 | |
| 
 | |
|       if (__isnan(__k))
 | |
|         return std::numeric_limits<_Tp>::quiet_NaN();
 | |
|       else if (std::abs(__k) == 1)
 | |
|         return _Tp(1);
 | |
|       else if (std::abs(__k) > _Tp(1))
 | |
|         std::__throw_domain_error(__N("Bad argument in __comp_ellint_2."));
 | |
|       else
 | |
|         {
 | |
|           const _Tp __kk = __k * __k;
 | |
| 
 | |
|           return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
 | |
|                - __kk * __ellint_rd(_Tp(0), _Tp(1) - __kk, _Tp(1)) / _Tp(3);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief  Return the incomplete elliptic integral of the second kind
 | |
|      *           @f$ E(k,\phi) @f$ using the Carlson formulation.
 | |
|      * 
 | |
|      *   The incomplete elliptic integral of the second kind is defined as
 | |
|      *   @f[
 | |
|      *     E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta}
 | |
|      *   @f]
 | |
|      * 
 | |
|      *   @param  __k  The argument of the elliptic function.
 | |
|      *   @param  __phi  The integral limit argument of the elliptic function.
 | |
|      *   @return  The elliptic function of the second kind.
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __ellint_2(_Tp __k, _Tp __phi)
 | |
|     {
 | |
| 
 | |
|       if (__isnan(__k) || __isnan(__phi))
 | |
|         return std::numeric_limits<_Tp>::quiet_NaN();
 | |
|       else if (std::abs(__k) > _Tp(1))
 | |
|         std::__throw_domain_error(__N("Bad argument in __ellint_2."));
 | |
|       else
 | |
|         {
 | |
|           //  Reduce phi to -pi/2 < phi < +pi/2.
 | |
|           const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
 | |
|                                    + _Tp(0.5L));
 | |
|           const _Tp __phi_red = __phi
 | |
|                               - __n * __numeric_constants<_Tp>::__pi();
 | |
| 
 | |
|           const _Tp __kk = __k * __k;
 | |
|           const _Tp __s = std::sin(__phi_red);
 | |
|           const _Tp __ss = __s * __s;
 | |
|           const _Tp __sss = __ss * __s;
 | |
|           const _Tp __c = std::cos(__phi_red);
 | |
|           const _Tp __cc = __c * __c;
 | |
| 
 | |
|           const _Tp __E = __s
 | |
|                         * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
 | |
|                         - __kk * __sss
 | |
|                         * __ellint_rd(__cc, _Tp(1) - __kk * __ss, _Tp(1))
 | |
|                         / _Tp(3);
 | |
| 
 | |
|           if (__n == 0)
 | |
|             return __E;
 | |
|           else
 | |
|             return __E + _Tp(2) * __n * __comp_ellint_2(__k);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief  Return the Carlson elliptic function
 | |
|      *           @f$ R_C(x,y) = R_F(x,y,y) @f$ where @f$ R_F(x,y,z) @f$
 | |
|      *           is the Carlson elliptic function of the first kind.
 | |
|      * 
 | |
|      *   The Carlson elliptic function is defined by:
 | |
|      *   @f[
 | |
|      *       R_C(x,y) = \frac{1}{2} \int_0^\infty
 | |
|      *                 \frac{dt}{(t + x)^{1/2}(t + y)}
 | |
|      *   @f]
 | |
|      *
 | |
|      *   Based on Carlson's algorithms:
 | |
|      *   -  B. C. Carlson Numer. Math. 33, 1 (1979)
 | |
|      *   -  B. C. Carlson, Special Functions of Applied Mathematics (1977)
 | |
|      *   -  Numerical Recipes in C, 2nd ed, pp. 261-269,
 | |
|      *      by Press, Teukolsky, Vetterling, Flannery (1992)
 | |
|      *
 | |
|      *   @param  __x  The first argument.
 | |
|      *   @param  __y  The second argument.
 | |
|      *   @return  The Carlson elliptic function.
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __ellint_rc(_Tp __x, _Tp __y)
 | |
|     {
 | |
|       const _Tp __min = std::numeric_limits<_Tp>::min();
 | |
|       const _Tp __max = std::numeric_limits<_Tp>::max();
 | |
|       const _Tp __lolim = _Tp(5) * __min;
 | |
|       const _Tp __uplim = __max / _Tp(5);
 | |
| 
 | |
|       if (__x < _Tp(0) || __y < _Tp(0) || __x + __y < __lolim)
 | |
|         std::__throw_domain_error(__N("Argument less than zero "
 | |
|                                       "in __ellint_rc."));
 | |
|       else
 | |
|         {
 | |
|           const _Tp __c0 = _Tp(1) / _Tp(4);
 | |
|           const _Tp __c1 = _Tp(1) / _Tp(7);
 | |
|           const _Tp __c2 = _Tp(9) / _Tp(22);
 | |
|           const _Tp __c3 = _Tp(3) / _Tp(10);
 | |
|           const _Tp __c4 = _Tp(3) / _Tp(8);
 | |
| 
 | |
|           _Tp __xn = __x;
 | |
|           _Tp __yn = __y;
 | |
| 
 | |
|           const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
 | |
|           const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6));
 | |
|           _Tp __mu;
 | |
|           _Tp __sn;
 | |
| 
 | |
|           const unsigned int __max_iter = 100;
 | |
|           for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
 | |
|             {
 | |
|               __mu = (__xn + _Tp(2) * __yn) / _Tp(3);
 | |
|               __sn = (__yn + __mu) / __mu - _Tp(2);
 | |
|               if (std::abs(__sn) < __errtol)
 | |
|                 break;
 | |
|               const _Tp __lambda = _Tp(2) * std::sqrt(__xn) * std::sqrt(__yn)
 | |
|                              + __yn;
 | |
|               __xn = __c0 * (__xn + __lambda);
 | |
|               __yn = __c0 * (__yn + __lambda);
 | |
|             }
 | |
| 
 | |
|           _Tp __s = __sn * __sn
 | |
|                   * (__c3 + __sn*(__c1 + __sn * (__c4 + __sn * __c2)));
 | |
| 
 | |
|           return (_Tp(1) + __s) / std::sqrt(__mu);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief  Return the Carlson elliptic function @f$ R_J(x,y,z,p) @f$
 | |
|      *           of the third kind.
 | |
|      * 
 | |
|      *   The Carlson elliptic function of the third kind is defined by:
 | |
|      *   @f[
 | |
|      *       R_J(x,y,z,p) = \frac{3}{2} \int_0^\infty
 | |
|      *       \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}(t + p)}
 | |
|      *   @f]
 | |
|      *
 | |
|      *   Based on Carlson's algorithms:
 | |
|      *   -  B. C. Carlson Numer. Math. 33, 1 (1979)
 | |
|      *   -  B. C. Carlson, Special Functions of Applied Mathematics (1977)
 | |
|      *   -  Numerical Recipes in C, 2nd ed, pp. 261-269,
 | |
|      *      by Press, Teukolsky, Vetterling, Flannery (1992)
 | |
|      *
 | |
|      *   @param  __x  The first of three symmetric arguments.
 | |
|      *   @param  __y  The second of three symmetric arguments.
 | |
|      *   @param  __z  The third of three symmetric arguments.
 | |
|      *   @param  __p  The fourth argument.
 | |
|      *   @return  The Carlson elliptic function of the fourth kind.
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __ellint_rj(_Tp __x, _Tp __y, _Tp __z, _Tp __p)
 | |
|     {
 | |
|       const _Tp __min = std::numeric_limits<_Tp>::min();
 | |
|       const _Tp __max = std::numeric_limits<_Tp>::max();
 | |
|       const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3));
 | |
|       const _Tp __uplim = _Tp(0.3L)
 | |
|                         * std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3));
 | |
| 
 | |
|       if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
 | |
|         std::__throw_domain_error(__N("Argument less than zero "
 | |
|                                       "in __ellint_rj."));
 | |
|       else if (__x + __y < __lolim || __x + __z < __lolim
 | |
|             || __y + __z < __lolim || __p < __lolim)
 | |
|         std::__throw_domain_error(__N("Argument too small "
 | |
|                                       "in __ellint_rj"));
 | |
|       else
 | |
|         {
 | |
|           const _Tp __c0 = _Tp(1) / _Tp(4);
 | |
|           const _Tp __c1 = _Tp(3) / _Tp(14);
 | |
|           const _Tp __c2 = _Tp(1) / _Tp(3);
 | |
|           const _Tp __c3 = _Tp(3) / _Tp(22);
 | |
|           const _Tp __c4 = _Tp(3) / _Tp(26);
 | |
| 
 | |
|           _Tp __xn = __x;
 | |
|           _Tp __yn = __y;
 | |
|           _Tp __zn = __z;
 | |
|           _Tp __pn = __p;
 | |
|           _Tp __sigma = _Tp(0);
 | |
|           _Tp __power4 = _Tp(1);
 | |
| 
 | |
|           const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
 | |
|           const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
 | |
| 
 | |
|           _Tp __lambda, __mu;
 | |
|           _Tp __xndev, __yndev, __zndev, __pndev;
 | |
| 
 | |
|           const unsigned int __max_iter = 100;
 | |
|           for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
 | |
|             {
 | |
|               __mu = (__xn + __yn + __zn + _Tp(2) * __pn) / _Tp(5);
 | |
|               __xndev = (__mu - __xn) / __mu;
 | |
|               __yndev = (__mu - __yn) / __mu;
 | |
|               __zndev = (__mu - __zn) / __mu;
 | |
|               __pndev = (__mu - __pn) / __mu;
 | |
|               _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
 | |
|               __epsilon = std::max(__epsilon, std::abs(__zndev));
 | |
|               __epsilon = std::max(__epsilon, std::abs(__pndev));
 | |
|               if (__epsilon < __errtol)
 | |
|                 break;
 | |
|               const _Tp __xnroot = std::sqrt(__xn);
 | |
|               const _Tp __ynroot = std::sqrt(__yn);
 | |
|               const _Tp __znroot = std::sqrt(__zn);
 | |
|               const _Tp __lambda = __xnroot * (__ynroot + __znroot)
 | |
|                                  + __ynroot * __znroot;
 | |
|               const _Tp __alpha1 = __pn * (__xnroot + __ynroot + __znroot)
 | |
|                                 + __xnroot * __ynroot * __znroot;
 | |
|               const _Tp __alpha2 = __alpha1 * __alpha1;
 | |
|               const _Tp __beta = __pn * (__pn + __lambda)
 | |
|                                       * (__pn + __lambda);
 | |
|               __sigma += __power4 * __ellint_rc(__alpha2, __beta);
 | |
|               __power4 *= __c0;
 | |
|               __xn = __c0 * (__xn + __lambda);
 | |
|               __yn = __c0 * (__yn + __lambda);
 | |
|               __zn = __c0 * (__zn + __lambda);
 | |
|               __pn = __c0 * (__pn + __lambda);
 | |
|             }
 | |
| 
 | |
| 	  // Note: __ea is an SPU badname.
 | |
|           _Tp __eaa = __xndev * (__yndev + __zndev) + __yndev * __zndev;
 | |
|           _Tp __eb = __xndev * __yndev * __zndev;
 | |
|           _Tp __ec = __pndev * __pndev;
 | |
|           _Tp __e2 = __eaa - _Tp(3) * __ec;
 | |
|           _Tp __e3 = __eb + _Tp(2) * __pndev * (__eaa - __ec);
 | |
|           _Tp __s1 = _Tp(1) + __e2 * (-__c1 + _Tp(3) * __c3 * __e2 / _Tp(4)
 | |
|                             - _Tp(3) * __c4 * __e3 / _Tp(2));
 | |
|           _Tp __s2 = __eb * (__c2 / _Tp(2)
 | |
|                    + __pndev * (-__c3 - __c3 + __pndev * __c4));
 | |
|           _Tp __s3 = __pndev * __eaa * (__c2 - __pndev * __c3)
 | |
|                    - __c2 * __pndev * __ec;
 | |
| 
 | |
|           return _Tp(3) * __sigma + __power4 * (__s1 + __s2 + __s3)
 | |
|                                              / (__mu * std::sqrt(__mu));
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief Return the complete elliptic integral of the third kind
 | |
|      *          @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ using the
 | |
|      *          Carlson formulation.
 | |
|      * 
 | |
|      *   The complete elliptic integral of the third kind is defined as
 | |
|      *   @f[
 | |
|      *     \Pi(k,\nu) = \int_0^{\pi/2}
 | |
|      *                   \frac{d\theta}
 | |
|      *                 {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}}
 | |
|      *   @f]
 | |
|      * 
 | |
|      *   @param  __k  The argument of the elliptic function.
 | |
|      *   @param  __nu  The second argument of the elliptic function.
 | |
|      *   @return  The complete elliptic function of the third kind.
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __comp_ellint_3(_Tp __k, _Tp __nu)
 | |
|     {
 | |
| 
 | |
|       if (__isnan(__k) || __isnan(__nu))
 | |
|         return std::numeric_limits<_Tp>::quiet_NaN();
 | |
|       else if (__nu == _Tp(1))
 | |
|         return std::numeric_limits<_Tp>::infinity();
 | |
|       else if (std::abs(__k) > _Tp(1))
 | |
|         std::__throw_domain_error(__N("Bad argument in __comp_ellint_3."));
 | |
|       else
 | |
|         {
 | |
|           const _Tp __kk = __k * __k;
 | |
| 
 | |
|           return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
 | |
|                - __nu
 | |
|                * __ellint_rj(_Tp(0), _Tp(1) - __kk, _Tp(1), _Tp(1) + __nu)
 | |
|                / _Tp(3);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief Return the incomplete elliptic integral of the third kind
 | |
|      *          @f$ \Pi(k,\nu,\phi) @f$ using the Carlson formulation.
 | |
|      * 
 | |
|      *   The incomplete elliptic integral of the third kind is defined as
 | |
|      *   @f[
 | |
|      *     \Pi(k,\nu,\phi) = \int_0^{\phi}
 | |
|      *                       \frac{d\theta}
 | |
|      *                            {(1 - \nu \sin^2\theta)
 | |
|      *                             \sqrt{1 - k^2 \sin^2\theta}}
 | |
|      *   @f]
 | |
|      * 
 | |
|      *   @param  __k  The argument of the elliptic function.
 | |
|      *   @param  __nu  The second argument of the elliptic function.
 | |
|      *   @param  __phi  The integral limit argument of the elliptic function.
 | |
|      *   @return  The elliptic function of the third kind.
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __ellint_3(_Tp __k, _Tp __nu, _Tp __phi)
 | |
|     {
 | |
| 
 | |
|       if (__isnan(__k) || __isnan(__nu) || __isnan(__phi))
 | |
|         return std::numeric_limits<_Tp>::quiet_NaN();
 | |
|       else if (std::abs(__k) > _Tp(1))
 | |
|         std::__throw_domain_error(__N("Bad argument in __ellint_3."));
 | |
|       else
 | |
|         {
 | |
|           //  Reduce phi to -pi/2 < phi < +pi/2.
 | |
|           const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
 | |
|                                    + _Tp(0.5L));
 | |
|           const _Tp __phi_red = __phi
 | |
|                               - __n * __numeric_constants<_Tp>::__pi();
 | |
| 
 | |
|           const _Tp __kk = __k * __k;
 | |
|           const _Tp __s = std::sin(__phi_red);
 | |
|           const _Tp __ss = __s * __s;
 | |
|           const _Tp __sss = __ss * __s;
 | |
|           const _Tp __c = std::cos(__phi_red);
 | |
|           const _Tp __cc = __c * __c;
 | |
| 
 | |
|           const _Tp __Pi = __s
 | |
|                          * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
 | |
|                          - __nu * __sss
 | |
|                          * __ellint_rj(__cc, _Tp(1) - __kk * __ss, _Tp(1),
 | |
|                                        _Tp(1) + __nu * __ss) / _Tp(3);
 | |
| 
 | |
|           if (__n == 0)
 | |
|             return __Pi;
 | |
|           else
 | |
|             return __Pi + _Tp(2) * __n * __comp_ellint_3(__k, __nu);
 | |
|         }
 | |
|     }
 | |
|   } // namespace __detail
 | |
| #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
 | |
| } // namespace tr1
 | |
| #endif
 | |
| 
 | |
| _GLIBCXX_END_NAMESPACE_VERSION
 | |
| }
 | |
| 
 | |
| #endif // _GLIBCXX_TR1_ELL_INTEGRAL_TCC
 | |
| 
 |