mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			480 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			480 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Special functions -*- C++ -*-
 | |
| 
 | |
| // Copyright (C) 2006-2017 Free Software Foundation, Inc.
 | |
| //
 | |
| // This file is part of the GNU ISO C++ Library.  This library is free
 | |
| // software; you can redistribute it and/or modify it under the
 | |
| // terms of the GNU General Public License as published by the
 | |
| // Free Software Foundation; either version 3, or (at your option)
 | |
| // any later version.
 | |
| //
 | |
| // This library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| // GNU General Public License for more details.
 | |
| //
 | |
| // Under Section 7 of GPL version 3, you are granted additional
 | |
| // permissions described in the GCC Runtime Library Exception, version
 | |
| // 3.1, as published by the Free Software Foundation.
 | |
| 
 | |
| // You should have received a copy of the GNU General Public License and
 | |
| // a copy of the GCC Runtime Library Exception along with this program;
 | |
| // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | |
| // <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| /** @file tr1/gamma.tcc
 | |
|  *  This is an internal header file, included by other library headers.
 | |
|  *  Do not attempt to use it directly. @headername{tr1/cmath}
 | |
|  */
 | |
| 
 | |
| //
 | |
| // ISO C++ 14882 TR1: 5.2  Special functions
 | |
| //
 | |
| 
 | |
| // Written by Edward Smith-Rowland based on:
 | |
| //   (1) Handbook of Mathematical Functions,
 | |
| //       ed. Milton Abramowitz and Irene A. Stegun,
 | |
| //       Dover Publications,
 | |
| //       Section 6, pp. 253-266
 | |
| //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
 | |
| //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
 | |
| //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
 | |
| //       2nd ed, pp. 213-216
 | |
| //   (4) Gamma, Exploring Euler's Constant, Julian Havil,
 | |
| //       Princeton, 2003.
 | |
| 
 | |
| #ifndef _GLIBCXX_TR1_GAMMA_TCC
 | |
| #define _GLIBCXX_TR1_GAMMA_TCC 1
 | |
| 
 | |
| #include <tr1/special_function_util.h>
 | |
| 
 | |
| namespace std _GLIBCXX_VISIBILITY(default)
 | |
| {
 | |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION
 | |
| 
 | |
| #if _GLIBCXX_USE_STD_SPEC_FUNCS
 | |
| # define _GLIBCXX_MATH_NS ::std
 | |
| #elif defined(_GLIBCXX_TR1_CMATH)
 | |
| namespace tr1
 | |
| {
 | |
| # define _GLIBCXX_MATH_NS ::std::tr1
 | |
| #else
 | |
| # error do not include this header directly, use <cmath> or <tr1/cmath>
 | |
| #endif
 | |
|   // Implementation-space details.
 | |
|   namespace __detail
 | |
|   {
 | |
|     /**
 | |
|      *   @brief This returns Bernoulli numbers from a table or by summation
 | |
|      *          for larger values.
 | |
|      *
 | |
|      *   Recursion is unstable.
 | |
|      *
 | |
|      *   @param __n the order n of the Bernoulli number.
 | |
|      *   @return  The Bernoulli number of order n.
 | |
|      */
 | |
|     template <typename _Tp>
 | |
|     _Tp
 | |
|     __bernoulli_series(unsigned int __n)
 | |
|     {
 | |
| 
 | |
|       static const _Tp __num[28] = {
 | |
|         _Tp(1UL),                        -_Tp(1UL) / _Tp(2UL),
 | |
|         _Tp(1UL) / _Tp(6UL),             _Tp(0UL),
 | |
|         -_Tp(1UL) / _Tp(30UL),           _Tp(0UL),
 | |
|         _Tp(1UL) / _Tp(42UL),            _Tp(0UL),
 | |
|         -_Tp(1UL) / _Tp(30UL),           _Tp(0UL),
 | |
|         _Tp(5UL) / _Tp(66UL),            _Tp(0UL),
 | |
|         -_Tp(691UL) / _Tp(2730UL),       _Tp(0UL),
 | |
|         _Tp(7UL) / _Tp(6UL),             _Tp(0UL),
 | |
|         -_Tp(3617UL) / _Tp(510UL),       _Tp(0UL),
 | |
|         _Tp(43867UL) / _Tp(798UL),       _Tp(0UL),
 | |
|         -_Tp(174611) / _Tp(330UL),       _Tp(0UL),
 | |
|         _Tp(854513UL) / _Tp(138UL),      _Tp(0UL),
 | |
|         -_Tp(236364091UL) / _Tp(2730UL), _Tp(0UL),
 | |
|         _Tp(8553103UL) / _Tp(6UL),       _Tp(0UL)
 | |
|       };
 | |
| 
 | |
|       if (__n == 0)
 | |
|         return _Tp(1);
 | |
| 
 | |
|       if (__n == 1)
 | |
|         return -_Tp(1) / _Tp(2);
 | |
| 
 | |
|       //  Take care of the rest of the odd ones.
 | |
|       if (__n % 2 == 1)
 | |
|         return _Tp(0);
 | |
| 
 | |
|       //  Take care of some small evens that are painful for the series.
 | |
|       if (__n < 28)
 | |
|         return __num[__n];
 | |
| 
 | |
| 
 | |
|       _Tp __fact = _Tp(1);
 | |
|       if ((__n / 2) % 2 == 0)
 | |
|         __fact *= _Tp(-1);
 | |
|       for (unsigned int __k = 1; __k <= __n; ++__k)
 | |
|         __fact *= __k / (_Tp(2) * __numeric_constants<_Tp>::__pi());
 | |
|       __fact *= _Tp(2);
 | |
| 
 | |
|       _Tp __sum = _Tp(0);
 | |
|       for (unsigned int __i = 1; __i < 1000; ++__i)
 | |
|         {
 | |
|           _Tp __term = std::pow(_Tp(__i), -_Tp(__n));
 | |
|           if (__term < std::numeric_limits<_Tp>::epsilon())
 | |
|             break;
 | |
|           __sum += __term;
 | |
|         }
 | |
| 
 | |
|       return __fact * __sum;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief This returns Bernoulli number \f$B_n\f$.
 | |
|      *
 | |
|      *   @param __n the order n of the Bernoulli number.
 | |
|      *   @return  The Bernoulli number of order n.
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     inline _Tp
 | |
|     __bernoulli(int __n)
 | |
|     { return __bernoulli_series<_Tp>(__n); }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief Return \f$log(\Gamma(x))\f$ by asymptotic expansion
 | |
|      *          with Bernoulli number coefficients.  This is like
 | |
|      *          Sterling's approximation.
 | |
|      *
 | |
|      *   @param __x The argument of the log of the gamma function.
 | |
|      *   @return  The logarithm of the gamma function.
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __log_gamma_bernoulli(_Tp __x)
 | |
|     {
 | |
|       _Tp __lg = (__x - _Tp(0.5L)) * std::log(__x) - __x
 | |
|                + _Tp(0.5L) * std::log(_Tp(2)
 | |
|                * __numeric_constants<_Tp>::__pi());
 | |
| 
 | |
|       const _Tp __xx = __x * __x;
 | |
|       _Tp __help = _Tp(1) / __x;
 | |
|       for ( unsigned int __i = 1; __i < 20; ++__i )
 | |
|         {
 | |
|           const _Tp __2i = _Tp(2 * __i);
 | |
|           __help /= __2i * (__2i - _Tp(1)) * __xx;
 | |
|           __lg += __bernoulli<_Tp>(2 * __i) * __help;
 | |
|         }
 | |
| 
 | |
|       return __lg;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief Return \f$log(\Gamma(x))\f$ by the Lanczos method.
 | |
|      *          This method dominates all others on the positive axis I think.
 | |
|      *
 | |
|      *   @param __x The argument of the log of the gamma function.
 | |
|      *   @return  The logarithm of the gamma function.
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __log_gamma_lanczos(_Tp __x)
 | |
|     {
 | |
|       const _Tp __xm1 = __x - _Tp(1);
 | |
| 
 | |
|       static const _Tp __lanczos_cheb_7[9] = {
 | |
|        _Tp( 0.99999999999980993227684700473478L),
 | |
|        _Tp( 676.520368121885098567009190444019L),
 | |
|        _Tp(-1259.13921672240287047156078755283L),
 | |
|        _Tp( 771.3234287776530788486528258894L),
 | |
|        _Tp(-176.61502916214059906584551354L),
 | |
|        _Tp( 12.507343278686904814458936853L),
 | |
|        _Tp(-0.13857109526572011689554707L),
 | |
|        _Tp( 9.984369578019570859563e-6L),
 | |
|        _Tp( 1.50563273514931155834e-7L)
 | |
|       };
 | |
| 
 | |
|       static const _Tp __LOGROOT2PI
 | |
|           = _Tp(0.9189385332046727417803297364056176L);
 | |
| 
 | |
|       _Tp __sum = __lanczos_cheb_7[0];
 | |
|       for(unsigned int __k = 1; __k < 9; ++__k)
 | |
|         __sum += __lanczos_cheb_7[__k] / (__xm1 + __k);
 | |
| 
 | |
|       const _Tp __term1 = (__xm1 + _Tp(0.5L))
 | |
|                         * std::log((__xm1 + _Tp(7.5L))
 | |
|                        / __numeric_constants<_Tp>::__euler());
 | |
|       const _Tp __term2 = __LOGROOT2PI + std::log(__sum);
 | |
|       const _Tp __result = __term1 + (__term2 - _Tp(7));
 | |
| 
 | |
|       return __result;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief Return \f$ log(|\Gamma(x)|) \f$.
 | |
|      *          This will return values even for \f$ x < 0 \f$.
 | |
|      *          To recover the sign of \f$ \Gamma(x) \f$ for
 | |
|      *          any argument use @a __log_gamma_sign.
 | |
|      *
 | |
|      *   @param __x The argument of the log of the gamma function.
 | |
|      *   @return  The logarithm of the gamma function.
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __log_gamma(_Tp __x)
 | |
|     {
 | |
|       if (__x > _Tp(0.5L))
 | |
|         return __log_gamma_lanczos(__x);
 | |
|       else
 | |
|         {
 | |
|           const _Tp __sin_fact
 | |
|                  = std::abs(std::sin(__numeric_constants<_Tp>::__pi() * __x));
 | |
|           if (__sin_fact == _Tp(0))
 | |
|             std::__throw_domain_error(__N("Argument is nonpositive integer "
 | |
|                                           "in __log_gamma"));
 | |
|           return __numeric_constants<_Tp>::__lnpi()
 | |
|                      - std::log(__sin_fact)
 | |
|                      - __log_gamma_lanczos(_Tp(1) - __x);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief Return the sign of \f$ \Gamma(x) \f$.
 | |
|      *          At nonpositive integers zero is returned.
 | |
|      *
 | |
|      *   @param __x The argument of the gamma function.
 | |
|      *   @return  The sign of the gamma function.
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __log_gamma_sign(_Tp __x)
 | |
|     {
 | |
|       if (__x > _Tp(0))
 | |
|         return _Tp(1);
 | |
|       else
 | |
|         {
 | |
|           const _Tp __sin_fact
 | |
|                   = std::sin(__numeric_constants<_Tp>::__pi() * __x);
 | |
|           if (__sin_fact > _Tp(0))
 | |
|             return (1);
 | |
|           else if (__sin_fact < _Tp(0))
 | |
|             return -_Tp(1);
 | |
|           else
 | |
|             return _Tp(0);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief Return the logarithm of the binomial coefficient.
 | |
|      *   The binomial coefficient is given by:
 | |
|      *   @f[
 | |
|      *   \left(  \right) = \frac{n!}{(n-k)! k!}
 | |
|      *   @f]
 | |
|      *
 | |
|      *   @param __n The first argument of the binomial coefficient.
 | |
|      *   @param __k The second argument of the binomial coefficient.
 | |
|      *   @return  The binomial coefficient.
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __log_bincoef(unsigned int __n, unsigned int __k)
 | |
|     {
 | |
|       //  Max e exponent before overflow.
 | |
|       static const _Tp __max_bincoeff
 | |
|                       = std::numeric_limits<_Tp>::max_exponent10
 | |
|                       * std::log(_Tp(10)) - _Tp(1);
 | |
| #if _GLIBCXX_USE_C99_MATH_TR1
 | |
|       _Tp __coeff =  _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __n))
 | |
|                   - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __k))
 | |
|                   - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __n - __k));
 | |
| #else
 | |
|       _Tp __coeff =  __log_gamma(_Tp(1 + __n))
 | |
|                   - __log_gamma(_Tp(1 + __k))
 | |
|                   - __log_gamma(_Tp(1 + __n - __k));
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief Return the binomial coefficient.
 | |
|      *   The binomial coefficient is given by:
 | |
|      *   @f[
 | |
|      *   \left(  \right) = \frac{n!}{(n-k)! k!}
 | |
|      *   @f]
 | |
|      *
 | |
|      *   @param __n The first argument of the binomial coefficient.
 | |
|      *   @param __k The second argument of the binomial coefficient.
 | |
|      *   @return  The binomial coefficient.
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __bincoef(unsigned int __n, unsigned int __k)
 | |
|     {
 | |
|       //  Max e exponent before overflow.
 | |
|       static const _Tp __max_bincoeff
 | |
|                       = std::numeric_limits<_Tp>::max_exponent10
 | |
|                       * std::log(_Tp(10)) - _Tp(1);
 | |
| 
 | |
|       const _Tp __log_coeff = __log_bincoef<_Tp>(__n, __k);
 | |
|       if (__log_coeff > __max_bincoeff)
 | |
|         return std::numeric_limits<_Tp>::quiet_NaN();
 | |
|       else
 | |
|         return std::exp(__log_coeff);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief Return \f$ \Gamma(x) \f$.
 | |
|      *
 | |
|      *   @param __x The argument of the gamma function.
 | |
|      *   @return  The gamma function.
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     inline _Tp
 | |
|     __gamma(_Tp __x)
 | |
|     { return std::exp(__log_gamma(__x)); }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief  Return the digamma function by series expansion.
 | |
|      *   The digamma or @f$ \psi(x) @f$ function is defined by
 | |
|      *   @f[
 | |
|      *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
 | |
|      *   @f]
 | |
|      *
 | |
|      *   The series is given by:
 | |
|      *   @f[
 | |
|      *     \psi(x) = -\gamma_E - \frac{1}{x}
 | |
|      *              \sum_{k=1}^{\infty} \frac{x}{k(x + k)}
 | |
|      *   @f]
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __psi_series(_Tp __x)
 | |
|     {
 | |
|       _Tp __sum = -__numeric_constants<_Tp>::__gamma_e() - _Tp(1) / __x;
 | |
|       const unsigned int __max_iter = 100000;
 | |
|       for (unsigned int __k = 1; __k < __max_iter; ++__k)
 | |
|         {
 | |
|           const _Tp __term = __x / (__k * (__k + __x));
 | |
|           __sum += __term;
 | |
|           if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
 | |
|             break;
 | |
|         }
 | |
|       return __sum;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief  Return the digamma function for large argument.
 | |
|      *   The digamma or @f$ \psi(x) @f$ function is defined by
 | |
|      *   @f[
 | |
|      *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
 | |
|      *   @f]
 | |
|      *
 | |
|      *   The asymptotic series is given by:
 | |
|      *   @f[
 | |
|      *     \psi(x) = \ln(x) - \frac{1}{2x}
 | |
|      *             - \sum_{n=1}^{\infty} \frac{B_{2n}}{2 n x^{2n}}
 | |
|      *   @f]
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __psi_asymp(_Tp __x)
 | |
|     {
 | |
|       _Tp __sum = std::log(__x) - _Tp(0.5L) / __x;
 | |
|       const _Tp __xx = __x * __x;
 | |
|       _Tp __xp = __xx;
 | |
|       const unsigned int __max_iter = 100;
 | |
|       for (unsigned int __k = 1; __k < __max_iter; ++__k)
 | |
|         {
 | |
|           const _Tp __term = __bernoulli<_Tp>(2 * __k) / (2 * __k * __xp);
 | |
|           __sum -= __term;
 | |
|           if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
 | |
|             break;
 | |
|           __xp *= __xx;
 | |
|         }
 | |
|       return __sum;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief  Return the digamma function.
 | |
|      *   The digamma or @f$ \psi(x) @f$ function is defined by
 | |
|      *   @f[
 | |
|      *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
 | |
|      *   @f]
 | |
|      *   For negative argument the reflection formula is used:
 | |
|      *   @f[
 | |
|      *     \psi(x) = \psi(1-x) - \pi \cot(\pi x)
 | |
|      *   @f]
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __psi(_Tp __x)
 | |
|     {
 | |
|       const int __n = static_cast<int>(__x + 0.5L);
 | |
|       const _Tp __eps = _Tp(4) * std::numeric_limits<_Tp>::epsilon();
 | |
|       if (__n <= 0 && std::abs(__x - _Tp(__n)) < __eps)
 | |
|         return std::numeric_limits<_Tp>::quiet_NaN();
 | |
|       else if (__x < _Tp(0))
 | |
|         {
 | |
|           const _Tp __pi = __numeric_constants<_Tp>::__pi();
 | |
|           return __psi(_Tp(1) - __x)
 | |
|                - __pi * std::cos(__pi * __x) / std::sin(__pi * __x);
 | |
|         }
 | |
|       else if (__x > _Tp(100))
 | |
|         return __psi_asymp(__x);
 | |
|       else
 | |
|         return __psi_series(__x);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      *   @brief  Return the polygamma function @f$ \psi^{(n)}(x) @f$.
 | |
|      * 
 | |
|      *   The polygamma function is related to the Hurwitz zeta function:
 | |
|      *   @f[
 | |
|      *     \psi^{(n)}(x) = (-1)^{n+1} m! \zeta(m+1,x)
 | |
|      *   @f]
 | |
|      */
 | |
|     template<typename _Tp>
 | |
|     _Tp
 | |
|     __psi(unsigned int __n, _Tp __x)
 | |
|     {
 | |
|       if (__x <= _Tp(0))
 | |
|         std::__throw_domain_error(__N("Argument out of range "
 | |
|                                       "in __psi"));
 | |
|       else if (__n == 0)
 | |
|         return __psi(__x);
 | |
|       else
 | |
|         {
 | |
|           const _Tp __hzeta = __hurwitz_zeta(_Tp(__n + 1), __x);
 | |
| #if _GLIBCXX_USE_C99_MATH_TR1
 | |
|           const _Tp __ln_nfact = _GLIBCXX_MATH_NS::lgamma(_Tp(__n + 1));
 | |
| #else
 | |
|           const _Tp __ln_nfact = __log_gamma(_Tp(__n + 1));
 | |
| #endif
 | |
|           _Tp __result = std::exp(__ln_nfact) * __hzeta;
 | |
|           if (__n % 2 == 1)
 | |
|             __result = -__result;
 | |
|           return __result;
 | |
|         }
 | |
|     }
 | |
|   } // namespace __detail
 | |
| #undef _GLIBCXX_MATH_NS
 | |
| #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
 | |
| } // namespace tr1
 | |
| #endif
 | |
| 
 | |
| _GLIBCXX_END_NAMESPACE_VERSION
 | |
| } // namespace std
 | |
| 
 | |
| #endif // _GLIBCXX_TR1_GAMMA_TCC
 | |
| 
 |