mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			1369 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1369 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Inline functions for tree-flow.h
 | |
|    Copyright (C) 2001, 2003, 2005, 2006, 2007, 2008, 2010
 | |
|    Free Software Foundation, Inc.
 | |
|    Contributed by Diego Novillo <dnovillo@redhat.com>
 | |
| 
 | |
| This file is part of GCC.
 | |
| 
 | |
| GCC is free software; you can redistribute it and/or modify
 | |
| it under the terms of the GNU General Public License as published by
 | |
| the Free Software Foundation; either version 3, or (at your option)
 | |
| any later version.
 | |
| 
 | |
| GCC is distributed in the hope that it will be useful,
 | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| GNU General Public License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License
 | |
| along with GCC; see the file COPYING3.  If not see
 | |
| <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #ifndef _TREE_FLOW_INLINE_H
 | |
| #define _TREE_FLOW_INLINE_H 1
 | |
| 
 | |
| /* Inline functions for manipulating various data structures defined in
 | |
|    tree-flow.h.  See tree-flow.h for documentation.  */
 | |
| 
 | |
| /* Return true when gimple SSA form was built.
 | |
|    gimple_in_ssa_p is queried by gimplifier in various early stages before SSA
 | |
|    infrastructure is initialized.  Check for presence of the datastructures
 | |
|    at first place.  */
 | |
| static inline bool
 | |
| gimple_in_ssa_p (const struct function *fun)
 | |
| {
 | |
|   return fun && fun->gimple_df && fun->gimple_df->in_ssa_p;
 | |
| }
 | |
| 
 | |
| /* Array of all variables referenced in the function.  */
 | |
| static inline htab_t
 | |
| gimple_referenced_vars (const struct function *fun)
 | |
| {
 | |
|   if (!fun || !fun->gimple_df)
 | |
|     return NULL;
 | |
|   return fun->gimple_df->referenced_vars;
 | |
| }
 | |
| 
 | |
| /* Artificial variable used for the virtual operand FUD chain.  */
 | |
| static inline tree
 | |
| gimple_vop (const struct function *fun)
 | |
| {
 | |
|   gcc_checking_assert (fun && fun->gimple_df);
 | |
|   return fun->gimple_df->vop;
 | |
| }
 | |
| 
 | |
| /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
 | |
| 
 | |
| static inline void *
 | |
| first_htab_element (htab_iterator *hti, htab_t table)
 | |
| {
 | |
|   hti->htab = table;
 | |
|   hti->slot = table->entries;
 | |
|   hti->limit = hti->slot + htab_size (table);
 | |
|   do
 | |
|     {
 | |
|       PTR x = *(hti->slot);
 | |
|       if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
 | |
| 	break;
 | |
|     } while (++(hti->slot) < hti->limit);
 | |
| 
 | |
|   if (hti->slot < hti->limit)
 | |
|     return *(hti->slot);
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
 | |
|    or NULL if we have  reached the end.  */
 | |
| 
 | |
| static inline bool
 | |
| end_htab_p (const htab_iterator *hti)
 | |
| {
 | |
|   if (hti->slot >= hti->limit)
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /* Advance the hashtable iterator pointed to by HTI to the next element of the
 | |
|    hashtable.  */
 | |
| 
 | |
| static inline void *
 | |
| next_htab_element (htab_iterator *hti)
 | |
| {
 | |
|   while (++(hti->slot) < hti->limit)
 | |
|     {
 | |
|       PTR x = *(hti->slot);
 | |
|       if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
 | |
| 	return x;
 | |
|     };
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| /* Get the variable with uid UID from the list of referenced vars.  */
 | |
| 
 | |
| static inline tree
 | |
| referenced_var (unsigned int uid)
 | |
| {
 | |
|   tree var = referenced_var_lookup (cfun, uid);
 | |
|   gcc_assert (var || uid == 0);
 | |
|   return var;
 | |
| }
 | |
| 
 | |
| /* Initialize ITER to point to the first referenced variable in the
 | |
|    referenced_vars hashtable, and return that variable.  */
 | |
| 
 | |
| static inline tree
 | |
| first_referenced_var (struct function *fn, referenced_var_iterator *iter)
 | |
| {
 | |
|   return (tree) first_htab_element (&iter->hti,
 | |
| 				    gimple_referenced_vars (fn));
 | |
| }
 | |
| 
 | |
| /* Return true if we have hit the end of the referenced variables ITER is
 | |
|    iterating through.  */
 | |
| 
 | |
| static inline bool
 | |
| end_referenced_vars_p (const referenced_var_iterator *iter)
 | |
| {
 | |
|   return end_htab_p (&iter->hti);
 | |
| }
 | |
| 
 | |
| /* Make ITER point to the next referenced_var in the referenced_var hashtable,
 | |
|    and return that variable.  */
 | |
| 
 | |
| static inline tree
 | |
| next_referenced_var (referenced_var_iterator *iter)
 | |
| {
 | |
|   return (tree) next_htab_element (&iter->hti);
 | |
| }
 | |
| 
 | |
| /* Return the variable annotation for T, which must be a _DECL node.
 | |
|    Return NULL if the variable annotation doesn't already exist.  */
 | |
| static inline var_ann_t
 | |
| var_ann (const_tree t)
 | |
| {
 | |
|   const var_ann_t *p = DECL_VAR_ANN_PTR (t);
 | |
|   return p ? *p : NULL;
 | |
| }
 | |
| 
 | |
| /* Get the number of the next statement uid to be allocated.  */
 | |
| static inline unsigned int
 | |
| gimple_stmt_max_uid (struct function *fn)
 | |
| {
 | |
|   return fn->last_stmt_uid;
 | |
| }
 | |
| 
 | |
| /* Set the number of the next statement uid to be allocated.  */
 | |
| static inline void
 | |
| set_gimple_stmt_max_uid (struct function *fn, unsigned int maxid)
 | |
| {
 | |
|   fn->last_stmt_uid = maxid;
 | |
| }
 | |
| 
 | |
| /* Set the number of the next statement uid to be allocated.  */
 | |
| static inline unsigned int
 | |
| inc_gimple_stmt_max_uid (struct function *fn)
 | |
| {
 | |
|   return fn->last_stmt_uid++;
 | |
| }
 | |
| 
 | |
| /* Return the line number for EXPR, or return -1 if we have no line
 | |
|    number information for it.  */
 | |
| static inline int
 | |
| get_lineno (const_gimple stmt)
 | |
| {
 | |
|   location_t loc;
 | |
| 
 | |
|   if (!stmt)
 | |
|     return -1;
 | |
| 
 | |
|   loc = gimple_location (stmt);
 | |
|   if (loc == UNKNOWN_LOCATION)
 | |
|     return -1;
 | |
| 
 | |
|   return LOCATION_LINE (loc);
 | |
| }
 | |
| 
 | |
| /* Delink an immediate_uses node from its chain.  */
 | |
| static inline void
 | |
| delink_imm_use (ssa_use_operand_t *linknode)
 | |
| {
 | |
|   /* Return if this node is not in a list.  */
 | |
|   if (linknode->prev == NULL)
 | |
|     return;
 | |
| 
 | |
|   linknode->prev->next = linknode->next;
 | |
|   linknode->next->prev = linknode->prev;
 | |
|   linknode->prev = NULL;
 | |
|   linknode->next = NULL;
 | |
| }
 | |
| 
 | |
| /* Link ssa_imm_use node LINKNODE into the chain for LIST.  */
 | |
| static inline void
 | |
| link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
 | |
| {
 | |
|   /* Link the new node at the head of the list.  If we are in the process of
 | |
|      traversing the list, we won't visit any new nodes added to it.  */
 | |
|   linknode->prev = list;
 | |
|   linknode->next = list->next;
 | |
|   list->next->prev = linknode;
 | |
|   list->next = linknode;
 | |
| }
 | |
| 
 | |
| /* Link ssa_imm_use node LINKNODE into the chain for DEF.  */
 | |
| static inline void
 | |
| link_imm_use (ssa_use_operand_t *linknode, tree def)
 | |
| {
 | |
|   ssa_use_operand_t *root;
 | |
| 
 | |
|   if (!def || TREE_CODE (def) != SSA_NAME)
 | |
|     linknode->prev = NULL;
 | |
|   else
 | |
|     {
 | |
|       root = &(SSA_NAME_IMM_USE_NODE (def));
 | |
|       if (linknode->use)
 | |
|         gcc_checking_assert (*(linknode->use) == def);
 | |
|       link_imm_use_to_list (linknode, root);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Set the value of a use pointed to by USE to VAL.  */
 | |
| static inline void
 | |
| set_ssa_use_from_ptr (use_operand_p use, tree val)
 | |
| {
 | |
|   delink_imm_use (use);
 | |
|   *(use->use) = val;
 | |
|   link_imm_use (use, val);
 | |
| }
 | |
| 
 | |
| /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
 | |
|    in STMT.  */
 | |
| static inline void
 | |
| link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, gimple stmt)
 | |
| {
 | |
|   if (stmt)
 | |
|     link_imm_use (linknode, def);
 | |
|   else
 | |
|     link_imm_use (linknode, NULL);
 | |
|   linknode->loc.stmt = stmt;
 | |
| }
 | |
| 
 | |
| /* Relink a new node in place of an old node in the list.  */
 | |
| static inline void
 | |
| relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
 | |
| {
 | |
|   /* The node one had better be in the same list.  */
 | |
|   gcc_checking_assert (*(old->use) == *(node->use));
 | |
|   node->prev = old->prev;
 | |
|   node->next = old->next;
 | |
|   if (old->prev)
 | |
|     {
 | |
|       old->prev->next = node;
 | |
|       old->next->prev = node;
 | |
|       /* Remove the old node from the list.  */
 | |
|       old->prev = NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
 | |
|    in STMT.  */
 | |
| static inline void
 | |
| relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old,
 | |
| 		     gimple stmt)
 | |
| {
 | |
|   if (stmt)
 | |
|     relink_imm_use (linknode, old);
 | |
|   else
 | |
|     link_imm_use (linknode, NULL);
 | |
|   linknode->loc.stmt = stmt;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Return true is IMM has reached the end of the immediate use list.  */
 | |
| static inline bool
 | |
| end_readonly_imm_use_p (const imm_use_iterator *imm)
 | |
| {
 | |
|   return (imm->imm_use == imm->end_p);
 | |
| }
 | |
| 
 | |
| /* Initialize iterator IMM to process the list for VAR.  */
 | |
| static inline use_operand_p
 | |
| first_readonly_imm_use (imm_use_iterator *imm, tree var)
 | |
| {
 | |
|   imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
 | |
|   imm->imm_use = imm->end_p->next;
 | |
| #ifdef ENABLE_CHECKING
 | |
|   imm->iter_node.next = imm->imm_use->next;
 | |
| #endif
 | |
|   if (end_readonly_imm_use_p (imm))
 | |
|     return NULL_USE_OPERAND_P;
 | |
|   return imm->imm_use;
 | |
| }
 | |
| 
 | |
| /* Bump IMM to the next use in the list.  */
 | |
| static inline use_operand_p
 | |
| next_readonly_imm_use (imm_use_iterator *imm)
 | |
| {
 | |
|   use_operand_p old = imm->imm_use;
 | |
| 
 | |
| #ifdef ENABLE_CHECKING
 | |
|   /* If this assertion fails, it indicates the 'next' pointer has changed
 | |
|      since the last bump.  This indicates that the list is being modified
 | |
|      via stmt changes, or SET_USE, or somesuch thing, and you need to be
 | |
|      using the SAFE version of the iterator.  */
 | |
|   gcc_assert (imm->iter_node.next == old->next);
 | |
|   imm->iter_node.next = old->next->next;
 | |
| #endif
 | |
| 
 | |
|   imm->imm_use = old->next;
 | |
|   if (end_readonly_imm_use_p (imm))
 | |
|     return NULL_USE_OPERAND_P;
 | |
|   return imm->imm_use;
 | |
| }
 | |
| 
 | |
| /* tree-cfg.c */
 | |
| extern bool has_zero_uses_1 (const ssa_use_operand_t *head);
 | |
| extern bool single_imm_use_1 (const ssa_use_operand_t *head,
 | |
| 			      use_operand_p *use_p, gimple *stmt);
 | |
| 
 | |
| /* Return true if VAR has no nondebug uses.  */
 | |
| static inline bool
 | |
| has_zero_uses (const_tree var)
 | |
| {
 | |
|   const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
 | |
| 
 | |
|   /* A single use_operand means there is no items in the list.  */
 | |
|   if (ptr == ptr->next)
 | |
|     return true;
 | |
| 
 | |
|   /* If there are debug stmts, we have to look at each use and see
 | |
|      whether there are any nondebug uses.  */
 | |
|   if (!MAY_HAVE_DEBUG_STMTS)
 | |
|     return false;
 | |
| 
 | |
|   return has_zero_uses_1 (ptr);
 | |
| }
 | |
| 
 | |
| /* Return true if VAR has a single nondebug use.  */
 | |
| static inline bool
 | |
| has_single_use (const_tree var)
 | |
| {
 | |
|   const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
 | |
| 
 | |
|   /* If there aren't any uses whatsoever, we're done.  */
 | |
|   if (ptr == ptr->next)
 | |
|     return false;
 | |
| 
 | |
|   /* If there's a single use, check that it's not a debug stmt.  */
 | |
|   if (ptr == ptr->next->next)
 | |
|     return !is_gimple_debug (USE_STMT (ptr->next));
 | |
| 
 | |
|   /* If there are debug stmts, we have to look at each of them.  */
 | |
|   if (!MAY_HAVE_DEBUG_STMTS)
 | |
|     return false;
 | |
| 
 | |
|   return single_imm_use_1 (ptr, NULL, NULL);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* If VAR has only a single immediate nondebug use, return true, and
 | |
|    set USE_P and STMT to the use pointer and stmt of occurrence.  */
 | |
| static inline bool
 | |
| single_imm_use (const_tree var, use_operand_p *use_p, gimple *stmt)
 | |
| {
 | |
|   const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
 | |
| 
 | |
|   /* If there aren't any uses whatsoever, we're done.  */
 | |
|   if (ptr == ptr->next)
 | |
|     {
 | |
|     return_false:
 | |
|       *use_p = NULL_USE_OPERAND_P;
 | |
|       *stmt = NULL;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|   /* If there's a single use, check that it's not a debug stmt.  */
 | |
|   if (ptr == ptr->next->next)
 | |
|     {
 | |
|       if (!is_gimple_debug (USE_STMT (ptr->next)))
 | |
| 	{
 | |
| 	  *use_p = ptr->next;
 | |
| 	  *stmt = ptr->next->loc.stmt;
 | |
| 	  return true;
 | |
| 	}
 | |
|       else
 | |
| 	goto return_false;
 | |
|     }
 | |
| 
 | |
|   /* If there are debug stmts, we have to look at each of them.  */
 | |
|   if (!MAY_HAVE_DEBUG_STMTS)
 | |
|     goto return_false;
 | |
| 
 | |
|   return single_imm_use_1 (ptr, use_p, stmt);
 | |
| }
 | |
| 
 | |
| /* Return the number of nondebug immediate uses of VAR.  */
 | |
| static inline unsigned int
 | |
| num_imm_uses (const_tree var)
 | |
| {
 | |
|   const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var));
 | |
|   const ssa_use_operand_t *ptr;
 | |
|   unsigned int num = 0;
 | |
| 
 | |
|   if (!MAY_HAVE_DEBUG_STMTS)
 | |
|     for (ptr = start->next; ptr != start; ptr = ptr->next)
 | |
|       num++;
 | |
|   else
 | |
|     for (ptr = start->next; ptr != start; ptr = ptr->next)
 | |
|       if (!is_gimple_debug (USE_STMT (ptr)))
 | |
| 	num++;
 | |
| 
 | |
|   return num;
 | |
| }
 | |
| 
 | |
| /* Return the tree pointed-to by USE.  */
 | |
| static inline tree
 | |
| get_use_from_ptr (use_operand_p use)
 | |
| {
 | |
|   return *(use->use);
 | |
| }
 | |
| 
 | |
| /* Return the tree pointed-to by DEF.  */
 | |
| static inline tree
 | |
| get_def_from_ptr (def_operand_p def)
 | |
| {
 | |
|   return *def;
 | |
| }
 | |
| 
 | |
| /* Return a use_operand_p pointer for argument I of PHI node GS.  */
 | |
| 
 | |
| static inline use_operand_p
 | |
| gimple_phi_arg_imm_use_ptr (gimple gs, int i)
 | |
| {
 | |
|   return &gimple_phi_arg (gs, i)->imm_use;
 | |
| }
 | |
| 
 | |
| /* Return the tree operand for argument I of PHI node GS.  */
 | |
| 
 | |
| static inline tree
 | |
| gimple_phi_arg_def (gimple gs, size_t index)
 | |
| {
 | |
|   struct phi_arg_d *pd = gimple_phi_arg (gs, index);
 | |
|   return get_use_from_ptr (&pd->imm_use);
 | |
| }
 | |
| 
 | |
| /* Return a pointer to the tree operand for argument I of PHI node GS.  */
 | |
| 
 | |
| static inline tree *
 | |
| gimple_phi_arg_def_ptr (gimple gs, size_t index)
 | |
| {
 | |
|   return &gimple_phi_arg (gs, index)->def;
 | |
| }
 | |
| 
 | |
| /* Return the edge associated with argument I of phi node GS.  */
 | |
| 
 | |
| static inline edge
 | |
| gimple_phi_arg_edge (gimple gs, size_t i)
 | |
| {
 | |
|   return EDGE_PRED (gimple_bb (gs), i);
 | |
| }
 | |
| 
 | |
| /* Return the source location of gimple argument I of phi node GS.  */
 | |
| 
 | |
| static inline source_location
 | |
| gimple_phi_arg_location (gimple gs, size_t i)
 | |
| {
 | |
|   return gimple_phi_arg (gs, i)->locus;
 | |
| }
 | |
| 
 | |
| /* Return the source location of the argument on edge E of phi node GS.  */
 | |
| 
 | |
| static inline source_location
 | |
| gimple_phi_arg_location_from_edge (gimple gs, edge e)
 | |
| {
 | |
|   return gimple_phi_arg (gs, e->dest_idx)->locus;
 | |
| }
 | |
| 
 | |
| /* Set the source location of gimple argument I of phi node GS to LOC.  */
 | |
| 
 | |
| static inline void
 | |
| gimple_phi_arg_set_location (gimple gs, size_t i, source_location loc)
 | |
| {
 | |
|   gimple_phi_arg (gs, i)->locus = loc;
 | |
| }
 | |
| 
 | |
| /* Return TRUE if argument I of phi node GS has a location record.  */
 | |
| 
 | |
| static inline bool
 | |
| gimple_phi_arg_has_location (gimple gs, size_t i)
 | |
| {
 | |
|   return gimple_phi_arg_location (gs, i) != UNKNOWN_LOCATION;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Return the PHI nodes for basic block BB, or NULL if there are no
 | |
|    PHI nodes.  */
 | |
| static inline gimple_seq
 | |
| phi_nodes (const_basic_block bb)
 | |
| {
 | |
|   gcc_checking_assert (!(bb->flags & BB_RTL));
 | |
|   return bb->il.gimple.phi_nodes;
 | |
| }
 | |
| 
 | |
| static inline gimple_seq *
 | |
| phi_nodes_ptr (basic_block bb)
 | |
| {
 | |
|   gcc_checking_assert (!(bb->flags & BB_RTL));
 | |
|   return &bb->il.gimple.phi_nodes;
 | |
| }
 | |
| 
 | |
| /* Set PHI nodes of a basic block BB to SEQ.  */
 | |
| 
 | |
| static inline void
 | |
| set_phi_nodes (basic_block bb, gimple_seq seq)
 | |
| {
 | |
|   gimple_stmt_iterator i;
 | |
| 
 | |
|   gcc_checking_assert (!(bb->flags & BB_RTL));
 | |
|   bb->il.gimple.phi_nodes = seq;
 | |
|   if (seq)
 | |
|     for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
 | |
|       gimple_set_bb (gsi_stmt (i), bb);
 | |
| }
 | |
| 
 | |
| /* Return the phi argument which contains the specified use.  */
 | |
| 
 | |
| static inline int
 | |
| phi_arg_index_from_use (use_operand_p use)
 | |
| {
 | |
|   struct phi_arg_d *element, *root;
 | |
|   size_t index;
 | |
|   gimple phi;
 | |
| 
 | |
|   /* Since the use is the first thing in a PHI argument element, we can
 | |
|      calculate its index based on casting it to an argument, and performing
 | |
|      pointer arithmetic.  */
 | |
| 
 | |
|   phi = USE_STMT (use);
 | |
| 
 | |
|   element = (struct phi_arg_d *)use;
 | |
|   root = gimple_phi_arg (phi, 0);
 | |
|   index = element - root;
 | |
| 
 | |
|   /* Make sure the calculation doesn't have any leftover bytes.  If it does,
 | |
|      then imm_use is likely not the first element in phi_arg_d.  */
 | |
|   gcc_checking_assert ((((char *)element - (char *)root)
 | |
| 			% sizeof (struct phi_arg_d)) == 0
 | |
| 		       && index < gimple_phi_capacity (phi));
 | |
| 
 | |
|  return index;
 | |
| }
 | |
| 
 | |
| /* Mark VAR as used, so that it'll be preserved during rtl expansion.  */
 | |
| 
 | |
| static inline void
 | |
| set_is_used (tree var)
 | |
| {
 | |
|   var_ann_t ann = var_ann (var);
 | |
|   ann->used = true;
 | |
| }
 | |
| 
 | |
| /* Clear VAR's used flag.  */
 | |
| 
 | |
| static inline void
 | |
| clear_is_used (tree var)
 | |
| {
 | |
|   var_ann_t ann = var_ann (var);
 | |
|   ann->used = false;
 | |
| }
 | |
| 
 | |
| /* Return true if VAR is marked as used.  */
 | |
| 
 | |
| static inline bool
 | |
| is_used_p (tree var)
 | |
| {
 | |
|   var_ann_t ann = var_ann (var);
 | |
|   return ann->used;
 | |
| }
 | |
| 
 | |
| /* Return true if T (assumed to be a DECL) is a global variable.
 | |
|    A variable is considered global if its storage is not automatic.  */
 | |
| 
 | |
| static inline bool
 | |
| is_global_var (const_tree t)
 | |
| {
 | |
|   return (TREE_STATIC (t) || DECL_EXTERNAL (t));
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Return true if VAR may be aliased.  A variable is considered as
 | |
|    maybe aliased if it has its address taken by the local TU
 | |
|    or possibly by another TU and might be modified through a pointer.  */
 | |
| 
 | |
| static inline bool
 | |
| may_be_aliased (const_tree var)
 | |
| {
 | |
|   return (TREE_CODE (var) != CONST_DECL
 | |
| 	  && !((TREE_STATIC (var) || TREE_PUBLIC (var) || DECL_EXTERNAL (var))
 | |
| 	       && TREE_READONLY (var)
 | |
| 	       && !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (var)))
 | |
| 	  && (TREE_PUBLIC (var)
 | |
| 	      || DECL_EXTERNAL (var)
 | |
| 	      || TREE_ADDRESSABLE (var)));
 | |
| }
 | |
| 
 | |
| 
 | |
| /* PHI nodes should contain only ssa_names and invariants.  A test
 | |
|    for ssa_name is definitely simpler; don't let invalid contents
 | |
|    slip in in the meantime.  */
 | |
| 
 | |
| static inline bool
 | |
| phi_ssa_name_p (const_tree t)
 | |
| {
 | |
|   if (TREE_CODE (t) == SSA_NAME)
 | |
|     return true;
 | |
|   gcc_checking_assert (is_gimple_min_invariant (t));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Returns the loop of the statement STMT.  */
 | |
| 
 | |
| static inline struct loop *
 | |
| loop_containing_stmt (gimple stmt)
 | |
| {
 | |
|   basic_block bb = gimple_bb (stmt);
 | |
|   if (!bb)
 | |
|     return NULL;
 | |
| 
 | |
|   return bb->loop_father;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*  -----------------------------------------------------------------------  */
 | |
| 
 | |
| /* The following set of routines are used to iterator over various type of
 | |
|    SSA operands.  */
 | |
| 
 | |
| /* Return true if PTR is finished iterating.  */
 | |
| static inline bool
 | |
| op_iter_done (const ssa_op_iter *ptr)
 | |
| {
 | |
|   return ptr->done;
 | |
| }
 | |
| 
 | |
| /* Get the next iterator use value for PTR.  */
 | |
| static inline use_operand_p
 | |
| op_iter_next_use (ssa_op_iter *ptr)
 | |
| {
 | |
|   use_operand_p use_p;
 | |
|   gcc_checking_assert (ptr->iter_type == ssa_op_iter_use);
 | |
|   if (ptr->uses)
 | |
|     {
 | |
|       use_p = USE_OP_PTR (ptr->uses);
 | |
|       ptr->uses = ptr->uses->next;
 | |
|       return use_p;
 | |
|     }
 | |
|   if (ptr->phi_i < ptr->num_phi)
 | |
|     {
 | |
|       return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
 | |
|     }
 | |
|   ptr->done = true;
 | |
|   return NULL_USE_OPERAND_P;
 | |
| }
 | |
| 
 | |
| /* Get the next iterator def value for PTR.  */
 | |
| static inline def_operand_p
 | |
| op_iter_next_def (ssa_op_iter *ptr)
 | |
| {
 | |
|   def_operand_p def_p;
 | |
|   gcc_checking_assert (ptr->iter_type == ssa_op_iter_def);
 | |
|   if (ptr->defs)
 | |
|     {
 | |
|       def_p = DEF_OP_PTR (ptr->defs);
 | |
|       ptr->defs = ptr->defs->next;
 | |
|       return def_p;
 | |
|     }
 | |
|   ptr->done = true;
 | |
|   return NULL_DEF_OPERAND_P;
 | |
| }
 | |
| 
 | |
| /* Get the next iterator tree value for PTR.  */
 | |
| static inline tree
 | |
| op_iter_next_tree (ssa_op_iter *ptr)
 | |
| {
 | |
|   tree val;
 | |
|   gcc_checking_assert (ptr->iter_type == ssa_op_iter_tree);
 | |
|   if (ptr->uses)
 | |
|     {
 | |
|       val = USE_OP (ptr->uses);
 | |
|       ptr->uses = ptr->uses->next;
 | |
|       return val;
 | |
|     }
 | |
|   if (ptr->defs)
 | |
|     {
 | |
|       val = DEF_OP (ptr->defs);
 | |
|       ptr->defs = ptr->defs->next;
 | |
|       return val;
 | |
|     }
 | |
| 
 | |
|   ptr->done = true;
 | |
|   return NULL_TREE;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| /* This functions clears the iterator PTR, and marks it done.  This is normally
 | |
|    used to prevent warnings in the compile about might be uninitialized
 | |
|    components.  */
 | |
| 
 | |
| static inline void
 | |
| clear_and_done_ssa_iter (ssa_op_iter *ptr)
 | |
| {
 | |
|   ptr->defs = NULL;
 | |
|   ptr->uses = NULL;
 | |
|   ptr->iter_type = ssa_op_iter_none;
 | |
|   ptr->phi_i = 0;
 | |
|   ptr->num_phi = 0;
 | |
|   ptr->phi_stmt = NULL;
 | |
|   ptr->done = true;
 | |
| }
 | |
| 
 | |
| /* Initialize the iterator PTR to the virtual defs in STMT.  */
 | |
| static inline void
 | |
| op_iter_init (ssa_op_iter *ptr, gimple stmt, int flags)
 | |
| {
 | |
|   /* PHI nodes require a different iterator initialization path.  We
 | |
|      do not support iterating over virtual defs or uses without
 | |
|      iterating over defs or uses at the same time.  */
 | |
|   gcc_checking_assert (gimple_code (stmt) != GIMPLE_PHI
 | |
| 		       && (!(flags & SSA_OP_VDEF) || (flags & SSA_OP_DEF))
 | |
| 		       && (!(flags & SSA_OP_VUSE) || (flags & SSA_OP_USE)));
 | |
|   ptr->defs = (flags & (SSA_OP_DEF|SSA_OP_VDEF)) ? gimple_def_ops (stmt) : NULL;
 | |
|   if (!(flags & SSA_OP_VDEF)
 | |
|       && ptr->defs
 | |
|       && gimple_vdef (stmt) != NULL_TREE)
 | |
|     ptr->defs = ptr->defs->next;
 | |
|   ptr->uses = (flags & (SSA_OP_USE|SSA_OP_VUSE)) ? gimple_use_ops (stmt) : NULL;
 | |
|   if (!(flags & SSA_OP_VUSE)
 | |
|       && ptr->uses
 | |
|       && gimple_vuse (stmt) != NULL_TREE)
 | |
|     ptr->uses = ptr->uses->next;
 | |
|   ptr->done = false;
 | |
| 
 | |
|   ptr->phi_i = 0;
 | |
|   ptr->num_phi = 0;
 | |
|   ptr->phi_stmt = NULL;
 | |
| }
 | |
| 
 | |
| /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
 | |
|    the first use.  */
 | |
| static inline use_operand_p
 | |
| op_iter_init_use (ssa_op_iter *ptr, gimple stmt, int flags)
 | |
| {
 | |
|   gcc_checking_assert ((flags & SSA_OP_ALL_DEFS) == 0
 | |
| 		       && (flags & SSA_OP_USE));
 | |
|   op_iter_init (ptr, stmt, flags);
 | |
|   ptr->iter_type = ssa_op_iter_use;
 | |
|   return op_iter_next_use (ptr);
 | |
| }
 | |
| 
 | |
| /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
 | |
|    the first def.  */
 | |
| static inline def_operand_p
 | |
| op_iter_init_def (ssa_op_iter *ptr, gimple stmt, int flags)
 | |
| {
 | |
|   gcc_checking_assert ((flags & SSA_OP_ALL_USES) == 0
 | |
| 		       && (flags & SSA_OP_DEF));
 | |
|   op_iter_init (ptr, stmt, flags);
 | |
|   ptr->iter_type = ssa_op_iter_def;
 | |
|   return op_iter_next_def (ptr);
 | |
| }
 | |
| 
 | |
| /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
 | |
|    the first operand as a tree.  */
 | |
| static inline tree
 | |
| op_iter_init_tree (ssa_op_iter *ptr, gimple stmt, int flags)
 | |
| {
 | |
|   op_iter_init (ptr, stmt, flags);
 | |
|   ptr->iter_type = ssa_op_iter_tree;
 | |
|   return op_iter_next_tree (ptr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* If there is a single operand in STMT matching FLAGS, return it.  Otherwise
 | |
|    return NULL.  */
 | |
| static inline tree
 | |
| single_ssa_tree_operand (gimple stmt, int flags)
 | |
| {
 | |
|   tree var;
 | |
|   ssa_op_iter iter;
 | |
| 
 | |
|   var = op_iter_init_tree (&iter, stmt, flags);
 | |
|   if (op_iter_done (&iter))
 | |
|     return NULL_TREE;
 | |
|   op_iter_next_tree (&iter);
 | |
|   if (op_iter_done (&iter))
 | |
|     return var;
 | |
|   return NULL_TREE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* If there is a single operand in STMT matching FLAGS, return it.  Otherwise
 | |
|    return NULL.  */
 | |
| static inline use_operand_p
 | |
| single_ssa_use_operand (gimple stmt, int flags)
 | |
| {
 | |
|   use_operand_p var;
 | |
|   ssa_op_iter iter;
 | |
| 
 | |
|   var = op_iter_init_use (&iter, stmt, flags);
 | |
|   if (op_iter_done (&iter))
 | |
|     return NULL_USE_OPERAND_P;
 | |
|   op_iter_next_use (&iter);
 | |
|   if (op_iter_done (&iter))
 | |
|     return var;
 | |
|   return NULL_USE_OPERAND_P;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* If there is a single operand in STMT matching FLAGS, return it.  Otherwise
 | |
|    return NULL.  */
 | |
| static inline def_operand_p
 | |
| single_ssa_def_operand (gimple stmt, int flags)
 | |
| {
 | |
|   def_operand_p var;
 | |
|   ssa_op_iter iter;
 | |
| 
 | |
|   var = op_iter_init_def (&iter, stmt, flags);
 | |
|   if (op_iter_done (&iter))
 | |
|     return NULL_DEF_OPERAND_P;
 | |
|   op_iter_next_def (&iter);
 | |
|   if (op_iter_done (&iter))
 | |
|     return var;
 | |
|   return NULL_DEF_OPERAND_P;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Return true if there are zero operands in STMT matching the type
 | |
|    given in FLAGS.  */
 | |
| static inline bool
 | |
| zero_ssa_operands (gimple stmt, int flags)
 | |
| {
 | |
|   ssa_op_iter iter;
 | |
| 
 | |
|   op_iter_init_tree (&iter, stmt, flags);
 | |
|   return op_iter_done (&iter);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Return the number of operands matching FLAGS in STMT.  */
 | |
| static inline int
 | |
| num_ssa_operands (gimple stmt, int flags)
 | |
| {
 | |
|   ssa_op_iter iter;
 | |
|   tree t;
 | |
|   int num = 0;
 | |
| 
 | |
|   gcc_checking_assert (gimple_code (stmt) != GIMPLE_PHI);
 | |
|   FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
 | |
|     num++;
 | |
|   return num;
 | |
| }
 | |
| 
 | |
| static inline use_operand_p
 | |
| op_iter_init_phiuse (ssa_op_iter *ptr, gimple phi, int flags);
 | |
| 
 | |
| /* Delink all immediate_use information for STMT.  */
 | |
| static inline void
 | |
| delink_stmt_imm_use (gimple stmt)
 | |
| {
 | |
|    ssa_op_iter iter;
 | |
|    use_operand_p use_p;
 | |
| 
 | |
|    if (ssa_operands_active ())
 | |
|      FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_ALL_USES)
 | |
|        delink_imm_use (use_p);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* If there is a single DEF in the PHI node which matches FLAG, return it.
 | |
|    Otherwise return NULL_DEF_OPERAND_P.  */
 | |
| static inline tree
 | |
| single_phi_def (gimple stmt, int flags)
 | |
| {
 | |
|   tree def = PHI_RESULT (stmt);
 | |
|   if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
 | |
|     return def;
 | |
|   if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
 | |
|     return def;
 | |
|   return NULL_TREE;
 | |
| }
 | |
| 
 | |
| /* Initialize the iterator PTR for uses matching FLAGS in PHI.  FLAGS should
 | |
|    be either SSA_OP_USES or SSA_OP_VIRTUAL_USES.  */
 | |
| static inline use_operand_p
 | |
| op_iter_init_phiuse (ssa_op_iter *ptr, gimple phi, int flags)
 | |
| {
 | |
|   tree phi_def = gimple_phi_result (phi);
 | |
|   int comp;
 | |
| 
 | |
|   clear_and_done_ssa_iter (ptr);
 | |
|   ptr->done = false;
 | |
| 
 | |
|   gcc_checking_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
 | |
| 
 | |
|   comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
 | |
| 
 | |
|   /* If the PHI node doesn't the operand type we care about, we're done.  */
 | |
|   if ((flags & comp) == 0)
 | |
|     {
 | |
|       ptr->done = true;
 | |
|       return NULL_USE_OPERAND_P;
 | |
|     }
 | |
| 
 | |
|   ptr->phi_stmt = phi;
 | |
|   ptr->num_phi = gimple_phi_num_args (phi);
 | |
|   ptr->iter_type = ssa_op_iter_use;
 | |
|   return op_iter_next_use (ptr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Start an iterator for a PHI definition.  */
 | |
| 
 | |
| static inline def_operand_p
 | |
| op_iter_init_phidef (ssa_op_iter *ptr, gimple phi, int flags)
 | |
| {
 | |
|   tree phi_def = PHI_RESULT (phi);
 | |
|   int comp;
 | |
| 
 | |
|   clear_and_done_ssa_iter (ptr);
 | |
|   ptr->done = false;
 | |
| 
 | |
|   gcc_checking_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
 | |
| 
 | |
|   comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
 | |
| 
 | |
|   /* If the PHI node doesn't have the operand type we care about,
 | |
|      we're done.  */
 | |
|   if ((flags & comp) == 0)
 | |
|     {
 | |
|       ptr->done = true;
 | |
|       return NULL_DEF_OPERAND_P;
 | |
|     }
 | |
| 
 | |
|   ptr->iter_type = ssa_op_iter_def;
 | |
|   /* The first call to op_iter_next_def will terminate the iterator since
 | |
|      all the fields are NULL.  Simply return the result here as the first and
 | |
|      therefore only result.  */
 | |
|   return PHI_RESULT_PTR (phi);
 | |
| }
 | |
| 
 | |
| /* Return true is IMM has reached the end of the immediate use stmt list.  */
 | |
| 
 | |
| static inline bool
 | |
| end_imm_use_stmt_p (const imm_use_iterator *imm)
 | |
| {
 | |
|   return (imm->imm_use == imm->end_p);
 | |
| }
 | |
| 
 | |
| /* Finished the traverse of an immediate use stmt list IMM by removing the
 | |
|    placeholder node from the list.  */
 | |
| 
 | |
| static inline void
 | |
| end_imm_use_stmt_traverse (imm_use_iterator *imm)
 | |
| {
 | |
|   delink_imm_use (&(imm->iter_node));
 | |
| }
 | |
| 
 | |
| /* Immediate use traversal of uses within a stmt require that all the
 | |
|    uses on a stmt be sequentially listed.  This routine is used to build up
 | |
|    this sequential list by adding USE_P to the end of the current list
 | |
|    currently delimited by HEAD and LAST_P.  The new LAST_P value is
 | |
|    returned.  */
 | |
| 
 | |
| static inline use_operand_p
 | |
| move_use_after_head (use_operand_p use_p, use_operand_p head,
 | |
| 		      use_operand_p last_p)
 | |
| {
 | |
|   gcc_checking_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head));
 | |
|   /* Skip head when we find it.  */
 | |
|   if (use_p != head)
 | |
|     {
 | |
|       /* If use_p is already linked in after last_p, continue.  */
 | |
|       if (last_p->next == use_p)
 | |
| 	last_p = use_p;
 | |
|       else
 | |
| 	{
 | |
| 	  /* Delink from current location, and link in at last_p.  */
 | |
| 	  delink_imm_use (use_p);
 | |
| 	  link_imm_use_to_list (use_p, last_p);
 | |
| 	  last_p = use_p;
 | |
| 	}
 | |
|     }
 | |
|   return last_p;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* This routine will relink all uses with the same stmt as HEAD into the list
 | |
|    immediately following HEAD for iterator IMM.  */
 | |
| 
 | |
| static inline void
 | |
| link_use_stmts_after (use_operand_p head, imm_use_iterator *imm)
 | |
| {
 | |
|   use_operand_p use_p;
 | |
|   use_operand_p last_p = head;
 | |
|   gimple head_stmt = USE_STMT (head);
 | |
|   tree use = USE_FROM_PTR (head);
 | |
|   ssa_op_iter op_iter;
 | |
|   int flag;
 | |
| 
 | |
|   /* Only look at virtual or real uses, depending on the type of HEAD.  */
 | |
|   flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
 | |
| 
 | |
|   if (gimple_code (head_stmt) == GIMPLE_PHI)
 | |
|     {
 | |
|       FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag)
 | |
| 	if (USE_FROM_PTR (use_p) == use)
 | |
| 	  last_p = move_use_after_head (use_p, head, last_p);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       if (flag == SSA_OP_USE)
 | |
| 	{
 | |
| 	  FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag)
 | |
| 	    if (USE_FROM_PTR (use_p) == use)
 | |
| 	      last_p = move_use_after_head (use_p, head, last_p);
 | |
| 	}
 | |
|       else if ((use_p = gimple_vuse_op (head_stmt)) != NULL_USE_OPERAND_P)
 | |
| 	{
 | |
| 	  if (USE_FROM_PTR (use_p) == use)
 | |
| 	    last_p = move_use_after_head (use_p, head, last_p);
 | |
| 	}
 | |
|     }
 | |
|   /* Link iter node in after last_p.  */
 | |
|   if (imm->iter_node.prev != NULL)
 | |
|     delink_imm_use (&imm->iter_node);
 | |
|   link_imm_use_to_list (&(imm->iter_node), last_p);
 | |
| }
 | |
| 
 | |
| /* Initialize IMM to traverse over uses of VAR.  Return the first statement.  */
 | |
| static inline gimple
 | |
| first_imm_use_stmt (imm_use_iterator *imm, tree var)
 | |
| {
 | |
|   imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
 | |
|   imm->imm_use = imm->end_p->next;
 | |
|   imm->next_imm_name = NULL_USE_OPERAND_P;
 | |
| 
 | |
|   /* iter_node is used as a marker within the immediate use list to indicate
 | |
|      where the end of the current stmt's uses are.  Initialize it to NULL
 | |
|      stmt and use, which indicates a marker node.  */
 | |
|   imm->iter_node.prev = NULL_USE_OPERAND_P;
 | |
|   imm->iter_node.next = NULL_USE_OPERAND_P;
 | |
|   imm->iter_node.loc.stmt = NULL;
 | |
|   imm->iter_node.use = NULL;
 | |
| 
 | |
|   if (end_imm_use_stmt_p (imm))
 | |
|     return NULL;
 | |
| 
 | |
|   link_use_stmts_after (imm->imm_use, imm);
 | |
| 
 | |
|   return USE_STMT (imm->imm_use);
 | |
| }
 | |
| 
 | |
| /* Bump IMM to the next stmt which has a use of var.  */
 | |
| 
 | |
| static inline gimple
 | |
| next_imm_use_stmt (imm_use_iterator *imm)
 | |
| {
 | |
|   imm->imm_use = imm->iter_node.next;
 | |
|   if (end_imm_use_stmt_p (imm))
 | |
|     {
 | |
|       if (imm->iter_node.prev != NULL)
 | |
| 	delink_imm_use (&imm->iter_node);
 | |
|       return NULL;
 | |
|     }
 | |
| 
 | |
|   link_use_stmts_after (imm->imm_use, imm);
 | |
|   return USE_STMT (imm->imm_use);
 | |
| }
 | |
| 
 | |
| /* This routine will return the first use on the stmt IMM currently refers
 | |
|    to.  */
 | |
| 
 | |
| static inline use_operand_p
 | |
| first_imm_use_on_stmt (imm_use_iterator *imm)
 | |
| {
 | |
|   imm->next_imm_name = imm->imm_use->next;
 | |
|   return imm->imm_use;
 | |
| }
 | |
| 
 | |
| /*  Return TRUE if the last use on the stmt IMM refers to has been visited.  */
 | |
| 
 | |
| static inline bool
 | |
| end_imm_use_on_stmt_p (const imm_use_iterator *imm)
 | |
| {
 | |
|   return (imm->imm_use == &(imm->iter_node));
 | |
| }
 | |
| 
 | |
| /* Bump to the next use on the stmt IMM refers to, return NULL if done.  */
 | |
| 
 | |
| static inline use_operand_p
 | |
| next_imm_use_on_stmt (imm_use_iterator *imm)
 | |
| {
 | |
|   imm->imm_use = imm->next_imm_name;
 | |
|   if (end_imm_use_on_stmt_p (imm))
 | |
|     return NULL_USE_OPERAND_P;
 | |
|   else
 | |
|     {
 | |
|       imm->next_imm_name = imm->imm_use->next;
 | |
|       return imm->imm_use;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return true if VAR cannot be modified by the program.  */
 | |
| 
 | |
| static inline bool
 | |
| unmodifiable_var_p (const_tree var)
 | |
| {
 | |
|   if (TREE_CODE (var) == SSA_NAME)
 | |
|     var = SSA_NAME_VAR (var);
 | |
| 
 | |
|   return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
 | |
| }
 | |
| 
 | |
| /* Return true if REF, a handled component reference, has an ARRAY_REF
 | |
|    somewhere in it.  */
 | |
| 
 | |
| static inline bool
 | |
| ref_contains_array_ref (const_tree ref)
 | |
| {
 | |
|   gcc_checking_assert (handled_component_p (ref));
 | |
| 
 | |
|   do {
 | |
|     if (TREE_CODE (ref) == ARRAY_REF)
 | |
|       return true;
 | |
|     ref = TREE_OPERAND (ref, 0);
 | |
|   } while (handled_component_p (ref));
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /* Return true if REF has an VIEW_CONVERT_EXPR somewhere in it.  */
 | |
| 
 | |
| static inline bool
 | |
| contains_view_convert_expr_p (const_tree ref)
 | |
| {
 | |
|   while (handled_component_p (ref))
 | |
|     {
 | |
|       if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
 | |
| 	return true;
 | |
|       ref = TREE_OPERAND (ref, 0);
 | |
|     }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /* Return true, if the two ranges [POS1, SIZE1] and [POS2, SIZE2]
 | |
|    overlap.  SIZE1 and/or SIZE2 can be (unsigned)-1 in which case the
 | |
|    range is open-ended.  Otherwise return false.  */
 | |
| 
 | |
| static inline bool
 | |
| ranges_overlap_p (unsigned HOST_WIDE_INT pos1,
 | |
| 		  unsigned HOST_WIDE_INT size1,
 | |
| 		  unsigned HOST_WIDE_INT pos2,
 | |
| 		  unsigned HOST_WIDE_INT size2)
 | |
| {
 | |
|   if (pos1 >= pos2
 | |
|       && (size2 == (unsigned HOST_WIDE_INT)-1
 | |
| 	  || pos1 < (pos2 + size2)))
 | |
|     return true;
 | |
|   if (pos2 >= pos1
 | |
|       && (size1 == (unsigned HOST_WIDE_INT)-1
 | |
| 	  || pos2 < (pos1 + size1)))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /* Accessor to tree-ssa-operands.c caches.  */
 | |
| static inline struct ssa_operands *
 | |
| gimple_ssa_operands (const struct function *fun)
 | |
| {
 | |
|   return &fun->gimple_df->ssa_operands;
 | |
| }
 | |
| 
 | |
| /* Given an edge_var_map V, return the PHI arg definition.  */
 | |
| 
 | |
| static inline tree
 | |
| redirect_edge_var_map_def (edge_var_map *v)
 | |
| {
 | |
|   return v->def;
 | |
| }
 | |
| 
 | |
| /* Given an edge_var_map V, return the PHI result.  */
 | |
| 
 | |
| static inline tree
 | |
| redirect_edge_var_map_result (edge_var_map *v)
 | |
| {
 | |
|   return v->result;
 | |
| }
 | |
| 
 | |
| /* Given an edge_var_map V, return the PHI arg location.  */
 | |
| 
 | |
| static inline source_location
 | |
| redirect_edge_var_map_location (edge_var_map *v)
 | |
| {
 | |
|   return v->locus;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Return an SSA_NAME node for variable VAR defined in statement STMT
 | |
|    in function cfun.  */
 | |
| 
 | |
| static inline tree
 | |
| make_ssa_name (tree var, gimple stmt)
 | |
| {
 | |
|   return make_ssa_name_fn (cfun, var, stmt);
 | |
| }
 | |
| 
 | |
| /* Returns the base object and a constant BITS_PER_UNIT offset in *POFFSET that
 | |
|    denotes the starting address of the memory access EXP.
 | |
|    Returns NULL_TREE if the offset is not constant or any component
 | |
|    is not BITS_PER_UNIT-aligned.
 | |
|    VALUEIZE if non-NULL is used to valueize SSA names.  It should return
 | |
|    its argument or a constant if the argument is known to be constant.  */
 | |
| /* ??? This is a static inline here to avoid the overhead of the indirect calls
 | |
|    to VALUEIZE.  But is this overhead really that significant?  And should we
 | |
|    perhaps just rely on WHOPR to specialize the function?  */
 | |
| 
 | |
| static inline tree
 | |
| get_addr_base_and_unit_offset_1 (tree exp, HOST_WIDE_INT *poffset,
 | |
| 				 tree (*valueize) (tree))
 | |
| {
 | |
|   HOST_WIDE_INT byte_offset = 0;
 | |
| 
 | |
|   /* Compute cumulative byte-offset for nested component-refs and array-refs,
 | |
|      and find the ultimate containing object.  */
 | |
|   while (1)
 | |
|     {
 | |
|       switch (TREE_CODE (exp))
 | |
| 	{
 | |
| 	case BIT_FIELD_REF:
 | |
| 	  return NULL_TREE;
 | |
| 
 | |
| 	case COMPONENT_REF:
 | |
| 	  {
 | |
| 	    tree field = TREE_OPERAND (exp, 1);
 | |
| 	    tree this_offset = component_ref_field_offset (exp);
 | |
| 	    HOST_WIDE_INT hthis_offset;
 | |
| 
 | |
| 	    if (!this_offset
 | |
| 		|| TREE_CODE (this_offset) != INTEGER_CST
 | |
| 		|| (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
 | |
| 		    % BITS_PER_UNIT))
 | |
| 	      return NULL_TREE;
 | |
| 
 | |
| 	    hthis_offset = TREE_INT_CST_LOW (this_offset);
 | |
| 	    hthis_offset += (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
 | |
| 			     / BITS_PER_UNIT);
 | |
| 	    byte_offset += hthis_offset;
 | |
| 	  }
 | |
| 	  break;
 | |
| 
 | |
| 	case ARRAY_REF:
 | |
| 	case ARRAY_RANGE_REF:
 | |
| 	  {
 | |
| 	    tree index = TREE_OPERAND (exp, 1);
 | |
| 	    tree low_bound, unit_size;
 | |
| 
 | |
| 	    if (valueize
 | |
| 		&& TREE_CODE (index) == SSA_NAME)
 | |
| 	      index = (*valueize) (index);
 | |
| 
 | |
| 	    /* If the resulting bit-offset is constant, track it.  */
 | |
| 	    if (TREE_CODE (index) == INTEGER_CST
 | |
| 		&& (low_bound = array_ref_low_bound (exp),
 | |
| 		    TREE_CODE (low_bound) == INTEGER_CST)
 | |
| 		&& (unit_size = array_ref_element_size (exp),
 | |
| 		    TREE_CODE (unit_size) == INTEGER_CST))
 | |
| 	      {
 | |
| 		HOST_WIDE_INT hindex = TREE_INT_CST_LOW (index);
 | |
| 
 | |
| 		hindex -= TREE_INT_CST_LOW (low_bound);
 | |
| 		hindex *= TREE_INT_CST_LOW (unit_size);
 | |
| 		byte_offset += hindex;
 | |
| 	      }
 | |
| 	    else
 | |
| 	      return NULL_TREE;
 | |
| 	  }
 | |
| 	  break;
 | |
| 
 | |
| 	case REALPART_EXPR:
 | |
| 	  break;
 | |
| 
 | |
| 	case IMAGPART_EXPR:
 | |
| 	  byte_offset += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (exp)));
 | |
| 	  break;
 | |
| 
 | |
| 	case VIEW_CONVERT_EXPR:
 | |
| 	  break;
 | |
| 
 | |
| 	case MEM_REF:
 | |
| 	  {
 | |
| 	    tree base = TREE_OPERAND (exp, 0);
 | |
| 	    if (valueize
 | |
| 		&& TREE_CODE (base) == SSA_NAME)
 | |
| 	      base = (*valueize) (base);
 | |
| 
 | |
| 	    /* Hand back the decl for MEM[&decl, off].  */
 | |
| 	    if (TREE_CODE (base) == ADDR_EXPR)
 | |
| 	      {
 | |
| 		if (!integer_zerop (TREE_OPERAND (exp, 1)))
 | |
| 		  {
 | |
| 		    double_int off = mem_ref_offset (exp);
 | |
| 		    gcc_assert (off.high == -1 || off.high == 0);
 | |
| 		    byte_offset += double_int_to_shwi (off);
 | |
| 		  }
 | |
| 		exp = TREE_OPERAND (base, 0);
 | |
| 	      }
 | |
| 	    goto done;
 | |
| 	  }
 | |
| 
 | |
| 	case TARGET_MEM_REF:
 | |
| 	  {
 | |
| 	    tree base = TREE_OPERAND (exp, 0);
 | |
| 	    if (valueize
 | |
| 		&& TREE_CODE (base) == SSA_NAME)
 | |
| 	      base = (*valueize) (base);
 | |
| 
 | |
| 	    /* Hand back the decl for MEM[&decl, off].  */
 | |
| 	    if (TREE_CODE (base) == ADDR_EXPR)
 | |
| 	      {
 | |
| 		if (TMR_INDEX (exp) || TMR_INDEX2 (exp))
 | |
| 		  return NULL_TREE;
 | |
| 		if (!integer_zerop (TMR_OFFSET (exp)))
 | |
| 		  {
 | |
| 		    double_int off = mem_ref_offset (exp);
 | |
| 		    gcc_assert (off.high == -1 || off.high == 0);
 | |
| 		    byte_offset += double_int_to_shwi (off);
 | |
| 		  }
 | |
| 		exp = TREE_OPERAND (base, 0);
 | |
| 	      }
 | |
| 	    goto done;
 | |
| 	  }
 | |
| 
 | |
| 	default:
 | |
| 	  goto done;
 | |
| 	}
 | |
| 
 | |
|       exp = TREE_OPERAND (exp, 0);
 | |
|     }
 | |
| done:
 | |
| 
 | |
|   *poffset = byte_offset;
 | |
|   return exp;
 | |
| }
 | |
| 
 | |
| #endif /* _TREE_FLOW_INLINE_H  */
 |