mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			2576 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			Java
		
	
	
	
			
		
		
	
	
			2576 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			Java
		
	
	
	
| /* java.lang.StrictMath -- common mathematical functions, strict Java
 | |
|    Copyright (C) 1998, 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
 | |
| 
 | |
| This file is part of GNU Classpath.
 | |
| 
 | |
| GNU Classpath is free software; you can redistribute it and/or modify
 | |
| it under the terms of the GNU General Public License as published by
 | |
| the Free Software Foundation; either version 2, or (at your option)
 | |
| any later version.
 | |
| 
 | |
| GNU Classpath is distributed in the hope that it will be useful, but
 | |
| WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
| General Public License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License
 | |
| along with GNU Classpath; see the file COPYING.  If not, write to the
 | |
| Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 | |
| 02110-1301 USA.
 | |
| 
 | |
| Linking this library statically or dynamically with other modules is
 | |
| making a combined work based on this library.  Thus, the terms and
 | |
| conditions of the GNU General Public License cover the whole
 | |
| combination.
 | |
| 
 | |
| As a special exception, the copyright holders of this library give you
 | |
| permission to link this library with independent modules to produce an
 | |
| executable, regardless of the license terms of these independent
 | |
| modules, and to copy and distribute the resulting executable under
 | |
| terms of your choice, provided that you also meet, for each linked
 | |
| independent module, the terms and conditions of the license of that
 | |
| module.  An independent module is a module which is not derived from
 | |
| or based on this library.  If you modify this library, you may extend
 | |
| this exception to your version of the library, but you are not
 | |
| obligated to do so.  If you do not wish to do so, delete this
 | |
| exception statement from your version. */
 | |
| 
 | |
| /*
 | |
|  * Some of the algorithms in this class are in the public domain, as part
 | |
|  * of fdlibm (freely-distributable math library), available at
 | |
|  * http://www.netlib.org/fdlibm/, and carry the following copyright:
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunSoft, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| package java.lang;
 | |
| 
 | |
| import gnu.classpath.Configuration;
 | |
| 
 | |
| import java.util.Random;
 | |
| 
 | |
| /**
 | |
|  * Helper class containing useful mathematical functions and constants.
 | |
|  * This class mirrors {@link Math}, but is 100% portable, because it uses
 | |
|  * no native methods whatsoever.  Also, these algorithms are all accurate
 | |
|  * to less than 1 ulp, and execute in <code>strictfp</code> mode, while
 | |
|  * Math is allowed to vary in its results for some functions. Unfortunately,
 | |
|  * this usually means StrictMath has less efficiency and speed, as Math can
 | |
|  * use native methods.
 | |
|  *
 | |
|  * <p>The source of the various algorithms used is the fdlibm library, at:<br>
 | |
|  * <a href="http://www.netlib.org/fdlibm/">http://www.netlib.org/fdlibm/</a>
 | |
|  *
 | |
|  * Note that angles are specified in radians.  Conversion functions are
 | |
|  * provided for your convenience.
 | |
|  *
 | |
|  * @author Eric Blake (ebb9@email.byu.edu)
 | |
|  * @since 1.3
 | |
|  */
 | |
| public final strictfp class StrictMath
 | |
| {
 | |
|   /**
 | |
|    * StrictMath is non-instantiable.
 | |
|    */
 | |
|   private StrictMath()
 | |
|   {
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * A random number generator, initialized on first use.
 | |
|    *
 | |
|    * @see #random()
 | |
|    */
 | |
|   private static Random rand;
 | |
| 
 | |
|   /**
 | |
|    * The most accurate approximation to the mathematical constant <em>e</em>:
 | |
|    * <code>2.718281828459045</code>. Used in natural log and exp.
 | |
|    *
 | |
|    * @see #log(double)
 | |
|    * @see #exp(double)
 | |
|    */
 | |
|   public static final double E
 | |
|     = 2.718281828459045; // Long bits 0x4005bf0z8b145769L.
 | |
| 
 | |
|   /**
 | |
|    * The most accurate approximation to the mathematical constant <em>pi</em>:
 | |
|    * <code>3.141592653589793</code>. This is the ratio of a circle's diameter
 | |
|    * to its circumference.
 | |
|    */
 | |
|   public static final double PI
 | |
|     = 3.141592653589793; // Long bits 0x400921fb54442d18L.
 | |
| 
 | |
|   /**
 | |
|    * Take the absolute value of the argument. (Absolute value means make
 | |
|    * it positive.)
 | |
|    *
 | |
|    * <p>Note that the the largest negative value (Integer.MIN_VALUE) cannot
 | |
|    * be made positive.  In this case, because of the rules of negation in
 | |
|    * a computer, MIN_VALUE is what will be returned.
 | |
|    * This is a <em>negative</em> value.  You have been warned.
 | |
|    *
 | |
|    * @param i the number to take the absolute value of
 | |
|    * @return the absolute value
 | |
|    * @see Integer#MIN_VALUE
 | |
|    */
 | |
|   public static int abs(int i)
 | |
|   {
 | |
|     return (i < 0) ? -i : i;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Take the absolute value of the argument. (Absolute value means make
 | |
|    * it positive.)
 | |
|    *
 | |
|    * <p>Note that the the largest negative value (Long.MIN_VALUE) cannot
 | |
|    * be made positive.  In this case, because of the rules of negation in
 | |
|    * a computer, MIN_VALUE is what will be returned.
 | |
|    * This is a <em>negative</em> value.  You have been warned.
 | |
|    *
 | |
|    * @param l the number to take the absolute value of
 | |
|    * @return the absolute value
 | |
|    * @see Long#MIN_VALUE
 | |
|    */
 | |
|   public static long abs(long l)
 | |
|   {
 | |
|     return (l < 0) ? -l : l;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Take the absolute value of the argument. (Absolute value means make
 | |
|    * it positive.)
 | |
|    *
 | |
|    * @param f the number to take the absolute value of
 | |
|    * @return the absolute value
 | |
|    */
 | |
|   public static float abs(float f)
 | |
|   {
 | |
|     return (f <= 0) ? 0 - f : f;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Take the absolute value of the argument. (Absolute value means make
 | |
|    * it positive.)
 | |
|    *
 | |
|    * @param d the number to take the absolute value of
 | |
|    * @return the absolute value
 | |
|    */
 | |
|   public static double abs(double d)
 | |
|   {
 | |
|     return (d <= 0) ? 0 - d : d;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return whichever argument is smaller.
 | |
|    *
 | |
|    * @param a the first number
 | |
|    * @param b a second number
 | |
|    * @return the smaller of the two numbers
 | |
|    */
 | |
|   public static int min(int a, int b)
 | |
|   {
 | |
|     return (a < b) ? a : b;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return whichever argument is smaller.
 | |
|    *
 | |
|    * @param a the first number
 | |
|    * @param b a second number
 | |
|    * @return the smaller of the two numbers
 | |
|    */
 | |
|   public static long min(long a, long b)
 | |
|   {
 | |
|     return (a < b) ? a : b;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return whichever argument is smaller. If either argument is NaN, the
 | |
|    * result is NaN, and when comparing 0 and -0, -0 is always smaller.
 | |
|    *
 | |
|    * @param a the first number
 | |
|    * @param b a second number
 | |
|    * @return the smaller of the two numbers
 | |
|    */
 | |
|   public static float min(float a, float b)
 | |
|   {
 | |
|     // this check for NaN, from JLS 15.21.1, saves a method call
 | |
|     if (a != a)
 | |
|       return a;
 | |
|     // no need to check if b is NaN; < will work correctly
 | |
|     // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
 | |
|     if (a == 0 && b == 0)
 | |
|       return -(-a - b);
 | |
|     return (a < b) ? a : b;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return whichever argument is smaller. If either argument is NaN, the
 | |
|    * result is NaN, and when comparing 0 and -0, -0 is always smaller.
 | |
|    *
 | |
|    * @param a the first number
 | |
|    * @param b a second number
 | |
|    * @return the smaller of the two numbers
 | |
|    */
 | |
|   public static double min(double a, double b)
 | |
|   {
 | |
|     // this check for NaN, from JLS 15.21.1, saves a method call
 | |
|     if (a != a)
 | |
|       return a;
 | |
|     // no need to check if b is NaN; < will work correctly
 | |
|     // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
 | |
|     if (a == 0 && b == 0)
 | |
|       return -(-a - b);
 | |
|     return (a < b) ? a : b;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return whichever argument is larger.
 | |
|    *
 | |
|    * @param a the first number
 | |
|    * @param b a second number
 | |
|    * @return the larger of the two numbers
 | |
|    */
 | |
|   public static int max(int a, int b)
 | |
|   {
 | |
|     return (a > b) ? a : b;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return whichever argument is larger.
 | |
|    *
 | |
|    * @param a the first number
 | |
|    * @param b a second number
 | |
|    * @return the larger of the two numbers
 | |
|    */
 | |
|   public static long max(long a, long b)
 | |
|   {
 | |
|     return (a > b) ? a : b;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return whichever argument is larger. If either argument is NaN, the
 | |
|    * result is NaN, and when comparing 0 and -0, 0 is always larger.
 | |
|    *
 | |
|    * @param a the first number
 | |
|    * @param b a second number
 | |
|    * @return the larger of the two numbers
 | |
|    */
 | |
|   public static float max(float a, float b)
 | |
|   {
 | |
|     // this check for NaN, from JLS 15.21.1, saves a method call
 | |
|     if (a != a)
 | |
|       return a;
 | |
|     // no need to check if b is NaN; > will work correctly
 | |
|     // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
 | |
|     if (a == 0 && b == 0)
 | |
|       return a - -b;
 | |
|     return (a > b) ? a : b;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return whichever argument is larger. If either argument is NaN, the
 | |
|    * result is NaN, and when comparing 0 and -0, 0 is always larger.
 | |
|    *
 | |
|    * @param a the first number
 | |
|    * @param b a second number
 | |
|    * @return the larger of the two numbers
 | |
|    */
 | |
|   public static double max(double a, double b)
 | |
|   {
 | |
|     // this check for NaN, from JLS 15.21.1, saves a method call
 | |
|     if (a != a)
 | |
|       return a;
 | |
|     // no need to check if b is NaN; > will work correctly
 | |
|     // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
 | |
|     if (a == 0 && b == 0)
 | |
|       return a - -b;
 | |
|     return (a > b) ? a : b;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * The trigonometric function <em>sin</em>. The sine of NaN or infinity is
 | |
|    * NaN, and the sine of 0 retains its sign.
 | |
|    *
 | |
|    * @param a the angle (in radians)
 | |
|    * @return sin(a)
 | |
|    */
 | |
|   public static double sin(double a)
 | |
|   {
 | |
|     if (a == Double.NEGATIVE_INFINITY || ! (a < Double.POSITIVE_INFINITY))
 | |
|       return Double.NaN;
 | |
| 
 | |
|     if (abs(a) <= PI / 4)
 | |
|       return sin(a, 0);
 | |
| 
 | |
|     // Argument reduction needed.
 | |
|     double[] y = new double[2];
 | |
|     int n = remPiOver2(a, y);
 | |
|     switch (n & 3)
 | |
|       {
 | |
|       case 0:
 | |
|         return sin(y[0], y[1]);
 | |
|       case 1:
 | |
|         return cos(y[0], y[1]);
 | |
|       case 2:
 | |
|         return -sin(y[0], y[1]);
 | |
|       default:
 | |
|         return -cos(y[0], y[1]);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * The trigonometric function <em>cos</em>. The cosine of NaN or infinity is
 | |
|    * NaN.
 | |
|    *
 | |
|    * @param a the angle (in radians).
 | |
|    * @return cos(a).
 | |
|    */
 | |
|   public static double cos(double a)
 | |
|   {
 | |
|     if (a == Double.NEGATIVE_INFINITY || ! (a < Double.POSITIVE_INFINITY))
 | |
|       return Double.NaN;
 | |
| 
 | |
|     if (abs(a) <= PI / 4)
 | |
|       return cos(a, 0);
 | |
| 
 | |
|     // Argument reduction needed.
 | |
|     double[] y = new double[2];
 | |
|     int n = remPiOver2(a, y);
 | |
|     switch (n & 3)
 | |
|       {
 | |
|       case 0:
 | |
|         return cos(y[0], y[1]);
 | |
|       case 1:
 | |
|         return -sin(y[0], y[1]);
 | |
|       case 2:
 | |
|         return -cos(y[0], y[1]);
 | |
|       default:
 | |
|         return sin(y[0], y[1]);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * The trigonometric function <em>tan</em>. The tangent of NaN or infinity
 | |
|    * is NaN, and the tangent of 0 retains its sign.
 | |
|    *
 | |
|    * @param a the angle (in radians)
 | |
|    * @return tan(a)
 | |
|    */
 | |
|   public static double tan(double a)
 | |
|   {
 | |
|     if (a == Double.NEGATIVE_INFINITY || ! (a < Double.POSITIVE_INFINITY))
 | |
|       return Double.NaN;
 | |
| 
 | |
|     if (abs(a) <= PI / 4)
 | |
|       return tan(a, 0, false);
 | |
| 
 | |
|     // Argument reduction needed.
 | |
|     double[] y = new double[2];
 | |
|     int n = remPiOver2(a, y);
 | |
|     return tan(y[0], y[1], (n & 1) == 1);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * The trigonometric function <em>arcsin</em>. The range of angles returned
 | |
|    * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN or
 | |
|    * its absolute value is beyond 1, the result is NaN; and the arcsine of
 | |
|    * 0 retains its sign.
 | |
|    *
 | |
|    * @param x the sin to turn back into an angle
 | |
|    * @return arcsin(x)
 | |
|    */
 | |
|   public static double asin(double x)
 | |
|   {
 | |
|     boolean negative = x < 0;
 | |
|     if (negative)
 | |
|       x = -x;
 | |
|     if (! (x <= 1))
 | |
|       return Double.NaN;
 | |
|     if (x == 1)
 | |
|       return negative ? -PI / 2 : PI / 2;
 | |
|     if (x < 0.5)
 | |
|       {
 | |
|         if (x < 1 / TWO_27)
 | |
|           return negative ? -x : x;
 | |
|         double t = x * x;
 | |
|         double p = t * (PS0 + t * (PS1 + t * (PS2 + t * (PS3 + t
 | |
|                                                          * (PS4 + t * PS5)))));
 | |
|         double q = 1 + t * (QS1 + t * (QS2 + t * (QS3 + t * QS4)));
 | |
|         return negative ? -x - x * (p / q) : x + x * (p / q);
 | |
|       }
 | |
|     double w = 1 - x; // 1>|x|>=0.5.
 | |
|     double t = w * 0.5;
 | |
|     double p = t * (PS0 + t * (PS1 + t * (PS2 + t * (PS3 + t
 | |
|                                                      * (PS4 + t * PS5)))));
 | |
|     double q = 1 + t * (QS1 + t * (QS2 + t * (QS3 + t * QS4)));
 | |
|     double s = sqrt(t);
 | |
|     if (x >= 0.975)
 | |
|       {
 | |
|         w = p / q;
 | |
|         t = PI / 2 - (2 * (s + s * w) - PI_L / 2);
 | |
|       }
 | |
|     else
 | |
|       {
 | |
|         w = (float) s;
 | |
|         double c = (t - w * w) / (s + w);
 | |
|         p = 2 * s * (p / q) - (PI_L / 2 - 2 * c);
 | |
|         q = PI / 4 - 2 * w;
 | |
|         t = PI / 4 - (p - q);
 | |
|       }
 | |
|     return negative ? -t : t;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * The trigonometric function <em>arccos</em>. The range of angles returned
 | |
|    * is 0 to pi radians (0 to 180 degrees). If the argument is NaN or
 | |
|    * its absolute value is beyond 1, the result is NaN.
 | |
|    *
 | |
|    * @param x the cos to turn back into an angle
 | |
|    * @return arccos(x)
 | |
|    */
 | |
|   public static double acos(double x)
 | |
|   {
 | |
|     boolean negative = x < 0;
 | |
|     if (negative)
 | |
|       x = -x;
 | |
|     if (! (x <= 1))
 | |
|       return Double.NaN;
 | |
|     if (x == 1)
 | |
|       return negative ? PI : 0;
 | |
|     if (x < 0.5)
 | |
|       {
 | |
|         if (x < 1 / TWO_57)
 | |
|           return PI / 2;
 | |
|         double z = x * x;
 | |
|         double p = z * (PS0 + z * (PS1 + z * (PS2 + z * (PS3 + z
 | |
|                                                          * (PS4 + z * PS5)))));
 | |
|         double q = 1 + z * (QS1 + z * (QS2 + z * (QS3 + z * QS4)));
 | |
|         double r = x - (PI_L / 2 - x * (p / q));
 | |
|         return negative ? PI / 2 + r : PI / 2 - r;
 | |
|       }
 | |
|     if (negative) // x<=-0.5.
 | |
|       {
 | |
|         double z = (1 + x) * 0.5;
 | |
|         double p = z * (PS0 + z * (PS1 + z * (PS2 + z * (PS3 + z
 | |
|                                                          * (PS4 + z * PS5)))));
 | |
|         double q = 1 + z * (QS1 + z * (QS2 + z * (QS3 + z * QS4)));
 | |
|         double s = sqrt(z);
 | |
|         double w = p / q * s - PI_L / 2;
 | |
|         return PI - 2 * (s + w);
 | |
|       }
 | |
|     double z = (1 - x) * 0.5; // x>0.5.
 | |
|     double s = sqrt(z);
 | |
|     double df = (float) s;
 | |
|     double c = (z - df * df) / (s + df);
 | |
|     double p = z * (PS0 + z * (PS1 + z * (PS2 + z * (PS3 + z
 | |
|                                                      * (PS4 + z * PS5)))));
 | |
|     double q = 1 + z * (QS1 + z * (QS2 + z * (QS3 + z * QS4)));
 | |
|     double w = p / q * s + c;
 | |
|     return 2 * (df + w);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * The trigonometric function <em>arcsin</em>. The range of angles returned
 | |
|    * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN, the
 | |
|    * result is NaN; and the arctangent of 0 retains its sign.
 | |
|    *
 | |
|    * @param x the tan to turn back into an angle
 | |
|    * @return arcsin(x)
 | |
|    * @see #atan2(double, double)
 | |
|    */
 | |
|   public static double atan(double x)
 | |
|   {
 | |
|     double lo;
 | |
|     double hi;
 | |
|     boolean negative = x < 0;
 | |
|     if (negative)
 | |
|       x = -x;
 | |
|     if (x >= TWO_66)
 | |
|       return negative ? -PI / 2 : PI / 2;
 | |
|     if (! (x >= 0.4375)) // |x|<7/16, or NaN.
 | |
|       {
 | |
|         if (! (x >= 1 / TWO_29)) // Small, or NaN.
 | |
|           return negative ? -x : x;
 | |
|         lo = hi = 0;
 | |
|       }
 | |
|     else if (x < 1.1875)
 | |
|       {
 | |
|         if (x < 0.6875) // 7/16<=|x|<11/16.
 | |
|           {
 | |
|             x = (2 * x - 1) / (2 + x);
 | |
|             hi = ATAN_0_5H;
 | |
|             lo = ATAN_0_5L;
 | |
|           }
 | |
|         else // 11/16<=|x|<19/16.
 | |
|           {
 | |
|             x = (x - 1) / (x + 1);
 | |
|             hi = PI / 4;
 | |
|             lo = PI_L / 4;
 | |
|           }
 | |
|       }
 | |
|     else if (x < 2.4375) // 19/16<=|x|<39/16.
 | |
|       {
 | |
|         x = (x - 1.5) / (1 + 1.5 * x);
 | |
|         hi = ATAN_1_5H;
 | |
|         lo = ATAN_1_5L;
 | |
|       }
 | |
|     else // 39/16<=|x|<2**66.
 | |
|       {
 | |
|         x = -1 / x;
 | |
|         hi = PI / 2;
 | |
|         lo = PI_L / 2;
 | |
|       }
 | |
| 
 | |
|     // Break sum from i=0 to 10 ATi*z**(i+1) into odd and even poly.
 | |
|     double z = x * x;
 | |
|     double w = z * z;
 | |
|     double s1 = z * (AT0 + w * (AT2 + w * (AT4 + w * (AT6 + w
 | |
|                                                       * (AT8 + w * AT10)))));
 | |
|     double s2 = w * (AT1 + w * (AT3 + w * (AT5 + w * (AT7 + w * AT9))));
 | |
|     if (hi == 0)
 | |
|       return negative ? x * (s1 + s2) - x : x - x * (s1 + s2);
 | |
|     z = hi - ((x * (s1 + s2) - lo) - x);
 | |
|     return negative ? -z : z;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * A special version of the trigonometric function <em>arctan</em>, for
 | |
|    * converting rectangular coordinates <em>(x, y)</em> to polar
 | |
|    * <em>(r, theta)</em>. This computes the arctangent of x/y in the range
 | |
|    * of -pi to pi radians (-180 to 180 degrees). Special cases:<ul>
 | |
|    * <li>If either argument is NaN, the result is NaN.</li>
 | |
|    * <li>If the first argument is positive zero and the second argument is
 | |
|    * positive, or the first argument is positive and finite and the second
 | |
|    * argument is positive infinity, then the result is positive zero.</li>
 | |
|    * <li>If the first argument is negative zero and the second argument is
 | |
|    * positive, or the first argument is negative and finite and the second
 | |
|    * argument is positive infinity, then the result is negative zero.</li>
 | |
|    * <li>If the first argument is positive zero and the second argument is
 | |
|    * negative, or the first argument is positive and finite and the second
 | |
|    * argument is negative infinity, then the result is the double value
 | |
|    * closest to pi.</li>
 | |
|    * <li>If the first argument is negative zero and the second argument is
 | |
|    * negative, or the first argument is negative and finite and the second
 | |
|    * argument is negative infinity, then the result is the double value
 | |
|    * closest to -pi.</li>
 | |
|    * <li>If the first argument is positive and the second argument is
 | |
|    * positive zero or negative zero, or the first argument is positive
 | |
|    * infinity and the second argument is finite, then the result is the
 | |
|    * double value closest to pi/2.</li>
 | |
|    * <li>If the first argument is negative and the second argument is
 | |
|    * positive zero or negative zero, or the first argument is negative
 | |
|    * infinity and the second argument is finite, then the result is the
 | |
|    * double value closest to -pi/2.</li>
 | |
|    * <li>If both arguments are positive infinity, then the result is the
 | |
|    * double value closest to pi/4.</li>
 | |
|    * <li>If the first argument is positive infinity and the second argument
 | |
|    * is negative infinity, then the result is the double value closest to
 | |
|    * 3*pi/4.</li>
 | |
|    * <li>If the first argument is negative infinity and the second argument
 | |
|    * is positive infinity, then the result is the double value closest to
 | |
|    * -pi/4.</li>
 | |
|    * <li>If both arguments are negative infinity, then the result is the
 | |
|    * double value closest to -3*pi/4.</li>
 | |
|    *
 | |
|    * </ul><p>This returns theta, the angle of the point. To get r, albeit
 | |
|    * slightly inaccurately, use sqrt(x*x+y*y).
 | |
|    *
 | |
|    * @param y the y position
 | |
|    * @param x the x position
 | |
|    * @return <em>theta</em> in the conversion of (x, y) to (r, theta)
 | |
|    * @see #atan(double)
 | |
|    */
 | |
|   public static double atan2(double y, double x)
 | |
|   {
 | |
|     if (x != x || y != y)
 | |
|       return Double.NaN;
 | |
|     if (x == 1)
 | |
|       return atan(y);
 | |
|     if (x == Double.POSITIVE_INFINITY)
 | |
|       {
 | |
|         if (y == Double.POSITIVE_INFINITY)
 | |
|           return PI / 4;
 | |
|         if (y == Double.NEGATIVE_INFINITY)
 | |
|           return -PI / 4;
 | |
|         return 0 * y;
 | |
|       }
 | |
|     if (x == Double.NEGATIVE_INFINITY)
 | |
|       {
 | |
|         if (y == Double.POSITIVE_INFINITY)
 | |
|           return 3 * PI / 4;
 | |
|         if (y == Double.NEGATIVE_INFINITY)
 | |
|           return -3 * PI / 4;
 | |
|         return (1 / (0 * y) == Double.POSITIVE_INFINITY) ? PI : -PI;
 | |
|       }
 | |
|     if (y == 0)
 | |
|       {
 | |
|         if (1 / (0 * x) == Double.POSITIVE_INFINITY)
 | |
|           return y;
 | |
|         return (1 / y == Double.POSITIVE_INFINITY) ? PI : -PI;
 | |
|       }
 | |
|     if (y == Double.POSITIVE_INFINITY || y == Double.NEGATIVE_INFINITY
 | |
|         || x == 0)
 | |
|       return y < 0 ? -PI / 2 : PI / 2;
 | |
| 
 | |
|     double z = abs(y / x); // Safe to do y/x.
 | |
|     if (z > TWO_60)
 | |
|       z = PI / 2 + 0.5 * PI_L;
 | |
|     else if (x < 0 && z < 1 / TWO_60)
 | |
|       z = 0;
 | |
|     else
 | |
|       z = atan(z);
 | |
|     if (x > 0)
 | |
|       return y > 0 ? z : -z;
 | |
|     return y > 0 ? PI - (z - PI_L) : z - PI_L - PI;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the hyperbolic sine of <code>x</code> which is defined as
 | |
|    * (exp(x) - exp(-x)) / 2.
 | |
|    *
 | |
|    * Special cases:
 | |
|    * <ul>
 | |
|    * <li>If the argument is NaN, the result is NaN</li>
 | |
|    * <li>If the argument is positive infinity, the result is positive
 | |
|    * infinity.</li>
 | |
|    * <li>If the argument is negative infinity, the result is negative
 | |
|    * infinity.</li>
 | |
|    * <li>If the argument is zero, the result is zero.</li>
 | |
|    * </ul>
 | |
|    *
 | |
|    * @param x the argument to <em>sinh</em>
 | |
|    * @return the hyperbolic sine of <code>x</code>
 | |
|    *
 | |
|    * @since 1.5
 | |
|    */
 | |
|   public static double sinh(double x)
 | |
|   {
 | |
|     // Method :
 | |
|     // mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
 | |
|     // 1. Replace x by |x| (sinh(-x) = -sinh(x)).
 | |
|     // 2.
 | |
|     //                                   E + E/(E+1)
 | |
|     //   0       <= x <= 22     :  sinh(x) := --------------,  E=expm1(x)
 | |
|     //                                        2
 | |
|     //
 | |
|     //  22       <= x <= lnovft :  sinh(x) := exp(x)/2
 | |
|     //  lnovft   <= x <= ln2ovft:  sinh(x) := exp(x/2)/2 * exp(x/2)
 | |
|     //  ln2ovft  <  x           :  sinh(x) := +inf (overflow)
 | |
| 
 | |
|     double t, w, h;
 | |
| 
 | |
|     long bits;
 | |
|     long h_bits;
 | |
|     long l_bits;
 | |
| 
 | |
|     // handle special cases
 | |
|     if (x != x)
 | |
|       return x;
 | |
|     if (x == Double.POSITIVE_INFINITY)
 | |
|       return Double.POSITIVE_INFINITY;
 | |
|     if (x == Double.NEGATIVE_INFINITY)
 | |
|       return Double.NEGATIVE_INFINITY;
 | |
| 
 | |
|     if (x < 0)
 | |
|       h = - 0.5;
 | |
|     else
 | |
|       h = 0.5;
 | |
| 
 | |
|     bits = Double.doubleToLongBits(x);
 | |
|     h_bits = getHighDWord(bits) & 0x7fffffffL;  // ignore sign
 | |
|     l_bits = getLowDWord(bits);
 | |
| 
 | |
|     // |x| in [0, 22], return sign(x) * 0.5 * (E+E/(E+1))
 | |
|     if (h_bits < 0x40360000L)          // |x| < 22
 | |
|       {
 | |
|         if (h_bits < 0x3e300000L)      // |x| < 2^-28
 | |
|           return x;                    // for tiny arguments return x
 | |
| 
 | |
|         t = expm1(abs(x));
 | |
| 
 | |
|         if (h_bits < 0x3ff00000L)
 | |
|           return h * (2.0 * t - t * t / (t + 1.0));
 | |
| 
 | |
|         return h * (t + t / (t + 1.0));
 | |
|       }
 | |
| 
 | |
|     // |x| in [22, log(Double.MAX_VALUE)], return 0.5 * exp(|x|)
 | |
|     if (h_bits < 0x40862e42L)
 | |
|       return h * exp(abs(x));
 | |
| 
 | |
|     // |x| in [log(Double.MAX_VALUE), overflowthreshold]
 | |
|     if ((h_bits < 0x408633ceL)
 | |
|         || ((h_bits == 0x408633ceL) && (l_bits <= 0x8fb9f87dL)))
 | |
|       {
 | |
|         w = exp(0.5 * abs(x));
 | |
|         t = h * w;
 | |
| 
 | |
|         return t * w;
 | |
|       }
 | |
| 
 | |
|     // |x| > overflowthershold
 | |
|     return h * Double.POSITIVE_INFINITY;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the hyperbolic cosine of <code>x</code>, which is defined as
 | |
|    * (exp(x) + exp(-x)) / 2.
 | |
|    *
 | |
|    * Special cases:
 | |
|    * <ul>
 | |
|    * <li>If the argument is NaN, the result is NaN</li>
 | |
|    * <li>If the argument is positive infinity, the result is positive
 | |
|    * infinity.</li>
 | |
|    * <li>If the argument is negative infinity, the result is positive
 | |
|    * infinity.</li>
 | |
|    * <li>If the argument is zero, the result is one.</li>
 | |
|    * </ul>
 | |
|    *
 | |
|    * @param x the argument to <em>cosh</em>
 | |
|    * @return the hyperbolic cosine of <code>x</code>
 | |
|    *
 | |
|    * @since 1.5
 | |
|    */
 | |
|   public static double cosh(double x)
 | |
|   {
 | |
|     // Method :
 | |
|     // mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
 | |
|     // 1. Replace x by |x| (cosh(x) = cosh(-x)).
 | |
|     // 2.
 | |
|     //                                             [ exp(x) - 1 ]^2
 | |
|     //  0        <= x <= ln2/2  :  cosh(x) := 1 + -------------------
 | |
|     //                                                 2*exp(x)
 | |
|     //
 | |
|     //                                        exp(x) +  1/exp(x)
 | |
|     //  ln2/2    <= x <= 22     :  cosh(x) := ------------------
 | |
|     //                                               2
 | |
|     //  22       <= x <= lnovft :  cosh(x) := exp(x)/2
 | |
|     //  lnovft   <= x <= ln2ovft:  cosh(x) := exp(x/2)/2 * exp(x/2)
 | |
|     //  ln2ovft  <  x           :  cosh(x) := +inf  (overflow)
 | |
| 
 | |
|     double t, w;
 | |
|     long bits;
 | |
|     long hx;
 | |
|     long lx;
 | |
| 
 | |
|     // handle special cases
 | |
|     if (x != x)
 | |
|       return x;
 | |
|     if (x == Double.POSITIVE_INFINITY)
 | |
|       return Double.POSITIVE_INFINITY;
 | |
|     if (x == Double.NEGATIVE_INFINITY)
 | |
|       return Double.POSITIVE_INFINITY;
 | |
| 
 | |
|     bits = Double.doubleToLongBits(x);
 | |
|     hx = getHighDWord(bits) & 0x7fffffffL;  // ignore sign
 | |
|     lx = getLowDWord(bits);
 | |
| 
 | |
|     // |x| in [0, 0.5 * ln(2)], return 1 + expm1(|x|)^2 / (2 * exp(|x|))
 | |
|     if (hx < 0x3fd62e43L)
 | |
|       {
 | |
|         t = expm1(abs(x));
 | |
|         w = 1.0 + t;
 | |
| 
 | |
|         // for tiny arguments return 1.
 | |
|         if (hx < 0x3c800000L)
 | |
|           return w;
 | |
| 
 | |
|         return 1.0 + (t * t) / (w + w);
 | |
|       }
 | |
| 
 | |
|     // |x| in [0.5 * ln(2), 22], return exp(|x|)/2 + 1 / (2 * exp(|x|))
 | |
|     if (hx < 0x40360000L)
 | |
|       {
 | |
|         t = exp(abs(x));
 | |
| 
 | |
|         return 0.5 * t + 0.5 / t;
 | |
|       }
 | |
| 
 | |
|     // |x| in [22, log(Double.MAX_VALUE)], return 0.5 * exp(|x|)
 | |
|     if (hx < 0x40862e42L)
 | |
|       return 0.5 * exp(abs(x));
 | |
| 
 | |
|     // |x| in [log(Double.MAX_VALUE), overflowthreshold],
 | |
|     // return exp(x/2)/2 * exp(x/2)
 | |
|     if ((hx < 0x408633ceL)
 | |
|         || ((hx == 0x408633ceL) && (lx <= 0x8fb9f87dL)))
 | |
|       {
 | |
|         w = exp(0.5 * abs(x));
 | |
|         t = 0.5 * w;
 | |
| 
 | |
|         return t * w;
 | |
|       }
 | |
| 
 | |
|     // |x| > overflowthreshold
 | |
|     return Double.POSITIVE_INFINITY;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the hyperbolic tangent of <code>x</code>, which is defined as
 | |
|    * (exp(x) - exp(-x)) / (exp(x) + exp(-x)), i.e. sinh(x) / cosh(x).
 | |
|    *
 | |
|    Special cases:
 | |
|    * <ul>
 | |
|    * <li>If the argument is NaN, the result is NaN</li>
 | |
|    * <li>If the argument is positive infinity, the result is 1.</li>
 | |
|    * <li>If the argument is negative infinity, the result is -1.</li>
 | |
|    * <li>If the argument is zero, the result is zero.</li>
 | |
|    * </ul>
 | |
|    *
 | |
|    * @param x the argument to <em>tanh</em>
 | |
|    * @return the hyperbolic tagent of <code>x</code>
 | |
|    *
 | |
|    * @since 1.5
 | |
|    */
 | |
|   public static double tanh(double x)
 | |
|   {
 | |
|     //  Method :
 | |
|     //  0. tanh(x) is defined to be (exp(x) - exp(-x)) / (exp(x) + exp(-x))
 | |
|     //  1. reduce x to non-negative by tanh(-x) = -tanh(x).
 | |
|     //  2.  0     <= x <= 2^-55 : tanh(x) := x * (1.0 + x)
 | |
|     //                                        -t
 | |
|     //      2^-55 <  x <= 1     : tanh(x) := -----; t = expm1(-2x)
 | |
|     //                                       t + 2
 | |
|     //                                              2
 | |
|     //      1     <= x <= 22.0  : tanh(x) := 1 -  ----- ; t=expm1(2x)
 | |
|     //                                            t + 2
 | |
|     //     22.0   <  x <= INF   : tanh(x) := 1.
 | |
| 
 | |
|     double t, z;
 | |
| 
 | |
|     long bits;
 | |
|     long h_bits;
 | |
| 
 | |
|     // handle special cases
 | |
|     if (x != x)
 | |
|       return x;
 | |
|     if (x == Double.POSITIVE_INFINITY)
 | |
|       return 1.0;
 | |
|     if (x == Double.NEGATIVE_INFINITY)
 | |
|       return -1.0;
 | |
| 
 | |
|     bits = Double.doubleToLongBits(x);
 | |
|     h_bits = getHighDWord(bits) & 0x7fffffffL;  // ingnore sign
 | |
| 
 | |
|     if (h_bits < 0x40360000L)                   // |x| <  22
 | |
|       {
 | |
|         if (h_bits < 0x3c800000L)               // |x| <  2^-55
 | |
|           return x * (1.0 + x);
 | |
| 
 | |
|         if (h_bits >= 0x3ff00000L)              // |x| >= 1
 | |
|           {
 | |
|             t = expm1(2.0 * abs(x));
 | |
|             z = 1.0 - 2.0 / (t + 2.0);
 | |
|           }
 | |
|         else                                    // |x| <  1
 | |
|           {
 | |
|             t = expm1(-2.0 * abs(x));
 | |
|             z = -t / (t + 2.0);
 | |
|           }
 | |
|       }
 | |
|     else                                        // |x| >= 22
 | |
|         z = 1.0;
 | |
| 
 | |
|     return (x >= 0) ? z : -z;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the lower two words of a long. This is intended to be
 | |
|    * used like this:
 | |
|    * <code>getLowDWord(Double.doubleToLongBits(x))</code>.
 | |
|    */
 | |
|   private static long getLowDWord(long x)
 | |
|   {
 | |
|     return x & 0x00000000ffffffffL;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the higher two words of a long. This is intended to be
 | |
|    * used like this:
 | |
|    * <code>getHighDWord(Double.doubleToLongBits(x))</code>.
 | |
|    */
 | |
|   private static long getHighDWord(long x)
 | |
|   {
 | |
|     return (x & 0xffffffff00000000L) >> 32;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a double with the IEEE754 bit pattern given in the lower
 | |
|    * and higher two words <code>lowDWord</code> and <code>highDWord</code>.
 | |
|    */
 | |
|   private static double buildDouble(long lowDWord, long highDWord)
 | |
|   {
 | |
|     return Double.longBitsToDouble(((highDWord & 0xffffffffL) << 32)
 | |
|                                    | (lowDWord & 0xffffffffL));
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the cube root of <code>x</code>. The sign of the cube root
 | |
|    * is equal to the sign of <code>x</code>.
 | |
|    *
 | |
|    * Special cases:
 | |
|    * <ul>
 | |
|    * <li>If the argument is NaN, the result is NaN</li>
 | |
|    * <li>If the argument is positive infinity, the result is positive
 | |
|    * infinity.</li>
 | |
|    * <li>If the argument is negative infinity, the result is negative
 | |
|    * infinity.</li>
 | |
|    * <li>If the argument is zero, the result is zero with the same
 | |
|    * sign as the argument.</li>
 | |
|    * </ul>
 | |
|    *
 | |
|    * @param x the number to take the cube root of
 | |
|    * @return the cube root of <code>x</code>
 | |
|    * @see #sqrt(double)
 | |
|    *
 | |
|    * @since 1.5
 | |
|    */
 | |
|   public static double cbrt(double x)
 | |
|   {
 | |
|     boolean negative = (x < 0);
 | |
|     double r;
 | |
|     double s;
 | |
|     double t;
 | |
|     double w;
 | |
| 
 | |
|     long bits;
 | |
|     long l;
 | |
|     long h;
 | |
| 
 | |
|     // handle the special cases
 | |
|     if (x != x)
 | |
|       return x;
 | |
|     if (x == Double.POSITIVE_INFINITY)
 | |
|       return Double.POSITIVE_INFINITY;
 | |
|     if (x == Double.NEGATIVE_INFINITY)
 | |
|       return Double.NEGATIVE_INFINITY;
 | |
|     if (x == 0)
 | |
|       return x;
 | |
| 
 | |
|     x = abs(x);
 | |
|     bits = Double.doubleToLongBits(x);
 | |
| 
 | |
|     if (bits < 0x0010000000000000L)   // subnormal number
 | |
|       {
 | |
|         t = TWO_54;
 | |
|         t *= x;
 | |
| 
 | |
|         // __HI(t)=__HI(t)/3+B2;
 | |
|         bits = Double.doubleToLongBits(t);
 | |
|         h = getHighDWord(bits);
 | |
|         l = getLowDWord(bits);
 | |
| 
 | |
|         h = h / 3 + CBRT_B2;
 | |
| 
 | |
|         t = buildDouble(l, h);
 | |
|       }
 | |
|     else
 | |
|       {
 | |
|         // __HI(t)=__HI(x)/3+B1;
 | |
|         h = getHighDWord(bits);
 | |
|         l = 0;
 | |
| 
 | |
|         h = h / 3 + CBRT_B1;
 | |
|         t = buildDouble(l, h);
 | |
|       }
 | |
| 
 | |
|     // new cbrt to 23 bits
 | |
|     r =  t * t / x;
 | |
|     s =  CBRT_C + r * t;
 | |
|     t *= CBRT_G + CBRT_F / (s + CBRT_E + CBRT_D / s);
 | |
| 
 | |
|     // chopped to 20 bits and make it larger than cbrt(x)
 | |
|     bits = Double.doubleToLongBits(t);
 | |
|     h = getHighDWord(bits);
 | |
| 
 | |
|     // __LO(t)=0;
 | |
|     // __HI(t)+=0x00000001;
 | |
|     l = 0;
 | |
|     h += 1;
 | |
|     t = buildDouble(l, h);
 | |
| 
 | |
|     // one step newton iteration to 53 bits with error less than 0.667 ulps
 | |
|     s = t * t;              // t * t is exact
 | |
|     r = x / s;
 | |
|     w = t + t;
 | |
|     r = (r - t) / (w + r);  // r - t is exact
 | |
|     t = t + t * r;
 | |
| 
 | |
|     return negative ? -t : t;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Take <em>e</em><sup>a</sup>.  The opposite of <code>log()</code>. If the
 | |
|    * argument is NaN, the result is NaN; if the argument is positive infinity,
 | |
|    * the result is positive infinity; and if the argument is negative
 | |
|    * infinity, the result is positive zero.
 | |
|    *
 | |
|    * @param x the number to raise to the power
 | |
|    * @return the number raised to the power of <em>e</em>
 | |
|    * @see #log(double)
 | |
|    * @see #pow(double, double)
 | |
|    */
 | |
|   public static double exp(double x)
 | |
|   {
 | |
|     if (x != x)
 | |
|       return x;
 | |
|     if (x > EXP_LIMIT_H)
 | |
|       return Double.POSITIVE_INFINITY;
 | |
|     if (x < EXP_LIMIT_L)
 | |
|       return 0;
 | |
| 
 | |
|     // Argument reduction.
 | |
|     double hi;
 | |
|     double lo;
 | |
|     int k;
 | |
|     double t = abs(x);
 | |
|     if (t > 0.5 * LN2)
 | |
|       {
 | |
|         if (t < 1.5 * LN2)
 | |
|           {
 | |
|             hi = t - LN2_H;
 | |
|             lo = LN2_L;
 | |
|             k = 1;
 | |
|           }
 | |
|         else
 | |
|           {
 | |
|             k = (int) (INV_LN2 * t + 0.5);
 | |
|             hi = t - k * LN2_H;
 | |
|             lo = k * LN2_L;
 | |
|           }
 | |
|         if (x < 0)
 | |
|           {
 | |
|             hi = -hi;
 | |
|             lo = -lo;
 | |
|             k = -k;
 | |
|           }
 | |
|         x = hi - lo;
 | |
|       }
 | |
|     else if (t < 1 / TWO_28)
 | |
|       return 1;
 | |
|     else
 | |
|       lo = hi = k = 0;
 | |
| 
 | |
|     // Now x is in primary range.
 | |
|     t = x * x;
 | |
|     double c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
 | |
|     if (k == 0)
 | |
|       return 1 - (x * c / (c - 2) - x);
 | |
|     double y = 1 - (lo - x * c / (2 - c) - hi);
 | |
|     return scale(y, k);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns <em>e</em><sup>x</sup> - 1.
 | |
|    * Special cases:
 | |
|    * <ul>
 | |
|    * <li>If the argument is NaN, the result is NaN.</li>
 | |
|    * <li>If the argument is positive infinity, the result is positive
 | |
|    * infinity</li>
 | |
|    * <li>If the argument is negative infinity, the result is -1.</li>
 | |
|    * <li>If the argument is zero, the result is zero.</li>
 | |
|    * </ul>
 | |
|    *
 | |
|    * @param x the argument to <em>e</em><sup>x</sup> - 1.
 | |
|    * @return <em>e</em> raised to the power <code>x</code> minus one.
 | |
|    * @see #exp(double)
 | |
|    */
 | |
|   public static double expm1(double x)
 | |
|   {
 | |
|     // Method
 | |
|     //   1. Argument reduction:
 | |
|     //  Given x, find r and integer k such that
 | |
|     //
 | |
|     //            x = k * ln(2) + r,  |r| <= 0.5 * ln(2)
 | |
|     //
 | |
|     //  Here a correction term c will be computed to compensate
 | |
|     //  the error in r when rounded to a floating-point number.
 | |
|     //
 | |
|     //   2. Approximating expm1(r) by a special rational function on
 | |
|     //  the interval [0, 0.5 * ln(2)]:
 | |
|     //  Since
 | |
|     //      r*(exp(r)+1)/(exp(r)-1) = 2 + r^2/6 - r^4/360 + ...
 | |
|     //  we define R1(r*r) by
 | |
|     //      r*(exp(r)+1)/(exp(r)-1) = 2 + r^2/6 * R1(r*r)
 | |
|     //  That is,
 | |
|     //      R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
 | |
|     //               = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
 | |
|     //               = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
 | |
|     //  We use a special Remes algorithm on [0, 0.347] to generate
 | |
|     //  a polynomial of degree 5 in r*r to approximate R1. The
 | |
|     //  maximum error of this polynomial approximation is bounded
 | |
|     //  by 2**-61. In other words,
 | |
|     //      R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
 | |
|     //  where   Q1  =  -1.6666666666666567384E-2,
 | |
|     //          Q2  =   3.9682539681370365873E-4,
 | |
|     //          Q3  =  -9.9206344733435987357E-6,
 | |
|     //          Q4  =   2.5051361420808517002E-7,
 | |
|     //          Q5  =  -6.2843505682382617102E-9;
 | |
|     //          (where z=r*r, and Q1 to Q5 are called EXPM1_Qx in the source)
 | |
|     //  with error bounded by
 | |
|     //      |                  5           |     -61
 | |
|     //      | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
 | |
|     //      |                              |
 | |
|     //
 | |
|     //  expm1(r) = exp(r)-1 is then computed by the following
 | |
|     //  specific way which minimize the accumulation rounding error:
 | |
|     //                         2     3
 | |
|     //                        r     r    [ 3 - (R1 + R1*r/2)  ]
 | |
|     //        expm1(r) = r + --- + --- * [--------------------]
 | |
|     //                        2     2    [ 6 - r*(3 - R1*r/2) ]
 | |
|     //
 | |
|     //  To compensate the error in the argument reduction, we use
 | |
|     //          expm1(r+c) = expm1(r) + c + expm1(r)*c
 | |
|     //                     ~ expm1(r) + c + r*c
 | |
|     //  Thus c+r*c will be added in as the correction terms for
 | |
|     //  expm1(r+c). Now rearrange the term to avoid optimization
 | |
|     //  screw up:
 | |
|     //                  (      2                                    2 )
 | |
|     //                  ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
 | |
|     //   expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
 | |
|     //                  ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
 | |
|     //                      (                                             )
 | |
|     //
 | |
|     //             = r - E
 | |
|     //   3. Scale back to obtain expm1(x):
 | |
|     //  From step 1, we have
 | |
|     //     expm1(x) = either 2^k*[expm1(r)+1] - 1
 | |
|     //              = or     2^k*[expm1(r) + (1-2^-k)]
 | |
|     //   4. Implementation notes:
 | |
|     //  (A). To save one multiplication, we scale the coefficient Qi
 | |
|     //       to Qi*2^i, and replace z by (x^2)/2.
 | |
|     //  (B). To achieve maximum accuracy, we compute expm1(x) by
 | |
|     //    (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
 | |
|     //    (ii)  if k=0, return r-E
 | |
|     //    (iii) if k=-1, return 0.5*(r-E)-0.5
 | |
|     //        (iv)      if k=1 if r < -0.25, return 2*((r+0.5)- E)
 | |
|     //                 else          return  1.0+2.0*(r-E);
 | |
|     //    (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
 | |
|     //    (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
 | |
|     //    (vii) return 2^k(1-((E+2^-k)-r))
 | |
| 
 | |
|     boolean negative = (x < 0);
 | |
|     double y, hi, lo, c, t, e, hxs, hfx, r1;
 | |
|     int k;
 | |
| 
 | |
|     long bits;
 | |
|     long h_bits;
 | |
|     long l_bits;
 | |
| 
 | |
|     c = 0.0;
 | |
|     y = abs(x);
 | |
| 
 | |
|     bits = Double.doubleToLongBits(y);
 | |
|     h_bits = getHighDWord(bits);
 | |
|     l_bits = getLowDWord(bits);
 | |
| 
 | |
|     // handle special cases and large arguments
 | |
|     if (h_bits >= 0x4043687aL)        // if |x| >= 56 * ln(2)
 | |
|       {
 | |
|         if (h_bits >= 0x40862e42L)    // if |x| >= EXP_LIMIT_H
 | |
|           {
 | |
|             if (h_bits >= 0x7ff00000L)
 | |
|               {
 | |
|                 if (((h_bits & 0x000fffffL) | (l_bits & 0xffffffffL)) != 0)
 | |
|                   return x;                        // exp(NaN) = NaN
 | |
|                 else
 | |
|                   return negative ? -1.0 : x;      // exp({+-inf}) = {+inf, -1}
 | |
|               }
 | |
| 
 | |
|             if (x > EXP_LIMIT_H)
 | |
|               return Double.POSITIVE_INFINITY;     // overflow
 | |
|           }
 | |
| 
 | |
|         if (negative)                // x <= -56 * ln(2)
 | |
|           return -1.0;
 | |
|       }
 | |
| 
 | |
|     // argument reduction
 | |
|     if (h_bits > 0x3fd62e42L)        // |x| > 0.5 * ln(2)
 | |
|       {
 | |
|         if (h_bits < 0x3ff0a2b2L)    // |x| < 1.5 * ln(2)
 | |
|           {
 | |
|             if (negative)
 | |
|               {
 | |
|                 hi = x + LN2_H;
 | |
|                 lo = -LN2_L;
 | |
|                 k = -1;
 | |
|               }
 | |
|             else
 | |
|               {
 | |
|                 hi = x - LN2_H;
 | |
|                 lo = LN2_L;
 | |
|                 k  = 1;
 | |
|               }
 | |
|           }
 | |
|         else
 | |
|           {
 | |
|             k = (int) (INV_LN2 * x + (negative ? - 0.5 : 0.5));
 | |
|             t = k;
 | |
|             hi = x - t * LN2_H;
 | |
|             lo = t * LN2_L;
 | |
|           }
 | |
| 
 | |
|         x = hi - lo;
 | |
|         c = (hi - x) - lo;
 | |
| 
 | |
|       }
 | |
|     else if (h_bits < 0x3c900000L)   // |x| < 2^-54 return x
 | |
|       return x;
 | |
|     else
 | |
|       k = 0;
 | |
| 
 | |
|     // x is now in primary range
 | |
|     hfx = 0.5 * x;
 | |
|     hxs = x * hfx;
 | |
|     r1 = 1.0 + hxs * (EXPM1_Q1
 | |
|              + hxs * (EXPM1_Q2
 | |
|              + hxs * (EXPM1_Q3
 | |
|              + hxs * (EXPM1_Q4
 | |
|              + hxs *  EXPM1_Q5))));
 | |
|     t = 3.0 - r1 * hfx;
 | |
|     e = hxs * ((r1 - t) / (6.0 - x * t));
 | |
| 
 | |
|     if (k == 0)
 | |
|       {
 | |
|         return x - (x * e - hxs);    // c == 0
 | |
|       }
 | |
|     else
 | |
|       {
 | |
|         e = x * (e - c) - c;
 | |
|         e -= hxs;
 | |
| 
 | |
|         if (k == -1)
 | |
|           return 0.5 * (x - e) - 0.5;
 | |
| 
 | |
|         if (k == 1)
 | |
|           {
 | |
|             if (x < - 0.25)
 | |
|               return -2.0 * (e - (x + 0.5));
 | |
|             else
 | |
|               return 1.0 + 2.0 * (x - e);
 | |
|           }
 | |
| 
 | |
|         if (k <= -2 || k > 56)       // sufficient to return exp(x) - 1
 | |
|           {
 | |
|             y = 1.0 - (e - x);
 | |
| 
 | |
|             bits = Double.doubleToLongBits(y);
 | |
|             h_bits = getHighDWord(bits);
 | |
|             l_bits = getLowDWord(bits);
 | |
| 
 | |
|             h_bits += (k << 20);     // add k to y's exponent
 | |
| 
 | |
|             y = buildDouble(l_bits, h_bits);
 | |
| 
 | |
|             return y - 1.0;
 | |
|           }
 | |
| 
 | |
|         t = 1.0;
 | |
|         if (k < 20)
 | |
|           {
 | |
|             bits = Double.doubleToLongBits(t);
 | |
|             h_bits = 0x3ff00000L - (0x00200000L >> k);
 | |
|             l_bits = getLowDWord(bits);
 | |
| 
 | |
|             t = buildDouble(l_bits, h_bits);      // t = 1 - 2^(-k)
 | |
|             y = t - (e - x);
 | |
| 
 | |
|             bits = Double.doubleToLongBits(y);
 | |
|             h_bits = getHighDWord(bits);
 | |
|             l_bits = getLowDWord(bits);
 | |
| 
 | |
|             h_bits += (k << 20);     // add k to y's exponent
 | |
| 
 | |
|             y = buildDouble(l_bits, h_bits);
 | |
|           }
 | |
|         else
 | |
|           {
 | |
|             bits = Double.doubleToLongBits(t);
 | |
|             h_bits = (0x000003ffL - k) << 20;
 | |
|             l_bits = getLowDWord(bits);
 | |
| 
 | |
|             t = buildDouble(l_bits, h_bits);      // t = 2^(-k)
 | |
| 
 | |
|             y = x - (e + t);
 | |
|             y += 1.0;
 | |
| 
 | |
|             bits = Double.doubleToLongBits(y);
 | |
|             h_bits = getHighDWord(bits);
 | |
|             l_bits = getLowDWord(bits);
 | |
| 
 | |
|             h_bits += (k << 20);     // add k to y's exponent
 | |
| 
 | |
|             y = buildDouble(l_bits, h_bits);
 | |
|           }
 | |
|       }
 | |
| 
 | |
|     return y;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Take ln(a) (the natural log).  The opposite of <code>exp()</code>. If the
 | |
|    * argument is NaN or negative, the result is NaN; if the argument is
 | |
|    * positive infinity, the result is positive infinity; and if the argument
 | |
|    * is either zero, the result is negative infinity.
 | |
|    *
 | |
|    * <p>Note that the way to get log<sub>b</sub>(a) is to do this:
 | |
|    * <code>ln(a) / ln(b)</code>.
 | |
|    *
 | |
|    * @param x the number to take the natural log of
 | |
|    * @return the natural log of <code>a</code>
 | |
|    * @see #exp(double)
 | |
|    */
 | |
|   public static double log(double x)
 | |
|   {
 | |
|     if (x == 0)
 | |
|       return Double.NEGATIVE_INFINITY;
 | |
|     if (x < 0)
 | |
|       return Double.NaN;
 | |
|     if (! (x < Double.POSITIVE_INFINITY))
 | |
|       return x;
 | |
| 
 | |
|     // Normalize x.
 | |
|     long bits = Double.doubleToLongBits(x);
 | |
|     int exp = (int) (bits >> 52);
 | |
|     if (exp == 0) // Subnormal x.
 | |
|       {
 | |
|         x *= TWO_54;
 | |
|         bits = Double.doubleToLongBits(x);
 | |
|         exp = (int) (bits >> 52) - 54;
 | |
|       }
 | |
|     exp -= 1023; // Unbias exponent.
 | |
|     bits = (bits & 0x000fffffffffffffL) | 0x3ff0000000000000L;
 | |
|     x = Double.longBitsToDouble(bits);
 | |
|     if (x >= SQRT_2)
 | |
|       {
 | |
|         x *= 0.5;
 | |
|         exp++;
 | |
|       }
 | |
|     x--;
 | |
|     if (abs(x) < 1 / TWO_20)
 | |
|       {
 | |
|         if (x == 0)
 | |
|           return exp * LN2_H + exp * LN2_L;
 | |
|         double r = x * x * (0.5 - 1 / 3.0 * x);
 | |
|         if (exp == 0)
 | |
|           return x - r;
 | |
|         return exp * LN2_H - ((r - exp * LN2_L) - x);
 | |
|       }
 | |
|     double s = x / (2 + x);
 | |
|     double z = s * s;
 | |
|     double w = z * z;
 | |
|     double t1 = w * (LG2 + w * (LG4 + w * LG6));
 | |
|     double t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
 | |
|     double r = t2 + t1;
 | |
|     if (bits >= 0x3ff6174a00000000L && bits < 0x3ff6b85200000000L)
 | |
|       {
 | |
|         double h = 0.5 * x * x; // Need more accuracy for x near sqrt(2).
 | |
|         if (exp == 0)
 | |
|           return x - (h - s * (h + r));
 | |
|         return exp * LN2_H - ((h - (s * (h + r) + exp * LN2_L)) - x);
 | |
|       }
 | |
|     if (exp == 0)
 | |
|       return x - s * (x - r);
 | |
|     return exp * LN2_H - ((s * (x - r) - exp * LN2_L) - x);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Take a square root. If the argument is NaN or negative, the result is
 | |
|    * NaN; if the argument is positive infinity, the result is positive
 | |
|    * infinity; and if the result is either zero, the result is the same.
 | |
|    *
 | |
|    * <p>For other roots, use pow(x, 1/rootNumber).
 | |
|    *
 | |
|    * @param x the numeric argument
 | |
|    * @return the square root of the argument
 | |
|    * @see #pow(double, double)
 | |
|    */
 | |
|   public static double sqrt(double x)
 | |
|   {
 | |
|     if (x < 0)
 | |
|       return Double.NaN;
 | |
|     if (x == 0 || ! (x < Double.POSITIVE_INFINITY))
 | |
|       return x;
 | |
| 
 | |
|     // Normalize x.
 | |
|     long bits = Double.doubleToLongBits(x);
 | |
|     int exp = (int) (bits >> 52);
 | |
|     if (exp == 0) // Subnormal x.
 | |
|       {
 | |
|         x *= TWO_54;
 | |
|         bits = Double.doubleToLongBits(x);
 | |
|         exp = (int) (bits >> 52) - 54;
 | |
|       }
 | |
|     exp -= 1023; // Unbias exponent.
 | |
|     bits = (bits & 0x000fffffffffffffL) | 0x0010000000000000L;
 | |
|     if ((exp & 1) == 1) // Odd exp, double x to make it even.
 | |
|       bits <<= 1;
 | |
|     exp >>= 1;
 | |
| 
 | |
|     // Generate sqrt(x) bit by bit.
 | |
|     bits <<= 1;
 | |
|     long q = 0;
 | |
|     long s = 0;
 | |
|     long r = 0x0020000000000000L; // Move r right to left.
 | |
|     while (r != 0)
 | |
|       {
 | |
|         long t = s + r;
 | |
|         if (t <= bits)
 | |
|           {
 | |
|             s = t + r;
 | |
|             bits -= t;
 | |
|             q += r;
 | |
|           }
 | |
|         bits <<= 1;
 | |
|         r >>= 1;
 | |
|       }
 | |
| 
 | |
|     // Use floating add to round correctly.
 | |
|     if (bits != 0)
 | |
|       q += q & 1;
 | |
|     return Double.longBitsToDouble((q >> 1) + ((exp + 1022L) << 52));
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Raise a number to a power. Special cases:<ul>
 | |
|    * <li>If the second argument is positive or negative zero, then the result
 | |
|    * is 1.0.</li>
 | |
|    * <li>If the second argument is 1.0, then the result is the same as the
 | |
|    * first argument.</li>
 | |
|    * <li>If the second argument is NaN, then the result is NaN.</li>
 | |
|    * <li>If the first argument is NaN and the second argument is nonzero,
 | |
|    * then the result is NaN.</li>
 | |
|    * <li>If the absolute value of the first argument is greater than 1 and
 | |
|    * the second argument is positive infinity, or the absolute value of the
 | |
|    * first argument is less than 1 and the second argument is negative
 | |
|    * infinity, then the result is positive infinity.</li>
 | |
|    * <li>If the absolute value of the first argument is greater than 1 and
 | |
|    * the second argument is negative infinity, or the absolute value of the
 | |
|    * first argument is less than 1 and the second argument is positive
 | |
|    * infinity, then the result is positive zero.</li>
 | |
|    * <li>If the absolute value of the first argument equals 1 and the second
 | |
|    * argument is infinite, then the result is NaN.</li>
 | |
|    * <li>If the first argument is positive zero and the second argument is
 | |
|    * greater than zero, or the first argument is positive infinity and the
 | |
|    * second argument is less than zero, then the result is positive zero.</li>
 | |
|    * <li>If the first argument is positive zero and the second argument is
 | |
|    * less than zero, or the first argument is positive infinity and the
 | |
|    * second argument is greater than zero, then the result is positive
 | |
|    * infinity.</li>
 | |
|    * <li>If the first argument is negative zero and the second argument is
 | |
|    * greater than zero but not a finite odd integer, or the first argument is
 | |
|    * negative infinity and the second argument is less than zero but not a
 | |
|    * finite odd integer, then the result is positive zero.</li>
 | |
|    * <li>If the first argument is negative zero and the second argument is a
 | |
|    * positive finite odd integer, or the first argument is negative infinity
 | |
|    * and the second argument is a negative finite odd integer, then the result
 | |
|    * is negative zero.</li>
 | |
|    * <li>If the first argument is negative zero and the second argument is
 | |
|    * less than zero but not a finite odd integer, or the first argument is
 | |
|    * negative infinity and the second argument is greater than zero but not a
 | |
|    * finite odd integer, then the result is positive infinity.</li>
 | |
|    * <li>If the first argument is negative zero and the second argument is a
 | |
|    * negative finite odd integer, or the first argument is negative infinity
 | |
|    * and the second argument is a positive finite odd integer, then the result
 | |
|    * is negative infinity.</li>
 | |
|    * <li>If the first argument is less than zero and the second argument is a
 | |
|    * finite even integer, then the result is equal to the result of raising
 | |
|    * the absolute value of the first argument to the power of the second
 | |
|    * argument.</li>
 | |
|    * <li>If the first argument is less than zero and the second argument is a
 | |
|    * finite odd integer, then the result is equal to the negative of the
 | |
|    * result of raising the absolute value of the first argument to the power
 | |
|    * of the second argument.</li>
 | |
|    * <li>If the first argument is finite and less than zero and the second
 | |
|    * argument is finite and not an integer, then the result is NaN.</li>
 | |
|    * <li>If both arguments are integers, then the result is exactly equal to
 | |
|    * the mathematical result of raising the first argument to the power of
 | |
|    * the second argument if that result can in fact be represented exactly as
 | |
|    * a double value.</li>
 | |
|    *
 | |
|    * </ul><p>(In the foregoing descriptions, a floating-point value is
 | |
|    * considered to be an integer if and only if it is a fixed point of the
 | |
|    * method {@link #ceil(double)} or, equivalently, a fixed point of the
 | |
|    * method {@link #floor(double)}. A value is a fixed point of a one-argument
 | |
|    * method if and only if the result of applying the method to the value is
 | |
|    * equal to the value.)
 | |
|    *
 | |
|    * @param x the number to raise
 | |
|    * @param y the power to raise it to
 | |
|    * @return x<sup>y</sup>
 | |
|    */
 | |
|   public static double pow(double x, double y)
 | |
|   {
 | |
|     // Special cases first.
 | |
|     if (y == 0)
 | |
|       return 1;
 | |
|     if (y == 1)
 | |
|       return x;
 | |
|     if (y == -1)
 | |
|       return 1 / x;
 | |
|     if (x != x || y != y)
 | |
|       return Double.NaN;
 | |
| 
 | |
|     // When x < 0, yisint tells if y is not an integer (0), even(1),
 | |
|     // or odd (2).
 | |
|     int yisint = 0;
 | |
|     if (x < 0 && floor(y) == y)
 | |
|       yisint = (y % 2 == 0) ? 2 : 1;
 | |
|     double ax = abs(x);
 | |
|     double ay = abs(y);
 | |
| 
 | |
|     // More special cases, of y.
 | |
|     if (ay == Double.POSITIVE_INFINITY)
 | |
|       {
 | |
|         if (ax == 1)
 | |
|           return Double.NaN;
 | |
|         if (ax > 1)
 | |
|           return y > 0 ? y : 0;
 | |
|         return y < 0 ? -y : 0;
 | |
|       }
 | |
|     if (y == 2)
 | |
|       return x * x;
 | |
|     if (y == 0.5)
 | |
|       return sqrt(x);
 | |
| 
 | |
|     // More special cases, of x.
 | |
|     if (x == 0 || ax == Double.POSITIVE_INFINITY || ax == 1)
 | |
|       {
 | |
|         if (y < 0)
 | |
|           ax = 1 / ax;
 | |
|         if (x < 0)
 | |
|           {
 | |
|             if (x == -1 && yisint == 0)
 | |
|               ax = Double.NaN;
 | |
|             else if (yisint == 1)
 | |
|               ax = -ax;
 | |
|           }
 | |
|         return ax;
 | |
|       }
 | |
|     if (x < 0 && yisint == 0)
 | |
|       return Double.NaN;
 | |
| 
 | |
|     // Now we can start!
 | |
|     double t;
 | |
|     double t1;
 | |
|     double t2;
 | |
|     double u;
 | |
|     double v;
 | |
|     double w;
 | |
|     if (ay > TWO_31)
 | |
|       {
 | |
|         if (ay > TWO_64) // Automatic over/underflow.
 | |
|           return ((ax < 1) ? y < 0 : y > 0) ? Double.POSITIVE_INFINITY : 0;
 | |
|         // Over/underflow if x is not close to one.
 | |
|         if (ax < 0.9999995231628418)
 | |
|           return y < 0 ? Double.POSITIVE_INFINITY : 0;
 | |
|         if (ax >= 1.0000009536743164)
 | |
|           return y > 0 ? Double.POSITIVE_INFINITY : 0;
 | |
|         // Now |1-x| is <= 2**-20, sufficient to compute
 | |
|         // log(x) by x-x^2/2+x^3/3-x^4/4.
 | |
|         t = x - 1;
 | |
|         w = t * t * (0.5 - t * (1 / 3.0 - t * 0.25));
 | |
|         u = INV_LN2_H * t;
 | |
|         v = t * INV_LN2_L - w * INV_LN2;
 | |
|         t1 = (float) (u + v);
 | |
|         t2 = v - (t1 - u);
 | |
|       }
 | |
|     else
 | |
|     {
 | |
|       long bits = Double.doubleToLongBits(ax);
 | |
|       int exp = (int) (bits >> 52);
 | |
|       if (exp == 0) // Subnormal x.
 | |
|         {
 | |
|           ax *= TWO_54;
 | |
|           bits = Double.doubleToLongBits(ax);
 | |
|           exp = (int) (bits >> 52) - 54;
 | |
|         }
 | |
|       exp -= 1023; // Unbias exponent.
 | |
|       ax = Double.longBitsToDouble((bits & 0x000fffffffffffffL)
 | |
|                                    | 0x3ff0000000000000L);
 | |
|       boolean k;
 | |
|       if (ax < SQRT_1_5)  // |x|<sqrt(3/2).
 | |
|         k = false;
 | |
|       else if (ax < SQRT_3) // |x|<sqrt(3).
 | |
|         k = true;
 | |
|       else
 | |
|         {
 | |
|           k = false;
 | |
|           ax *= 0.5;
 | |
|           exp++;
 | |
|         }
 | |
| 
 | |
|       // Compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5).
 | |
|       u = ax - (k ? 1.5 : 1);
 | |
|       v = 1 / (ax + (k ? 1.5 : 1));
 | |
|       double s = u * v;
 | |
|       double s_h = (float) s;
 | |
|       double t_h = (float) (ax + (k ? 1.5 : 1));
 | |
|       double t_l = ax - (t_h - (k ? 1.5 : 1));
 | |
|       double s_l = v * ((u - s_h * t_h) - s_h * t_l);
 | |
|       // Compute log(ax).
 | |
|       double s2 = s * s;
 | |
|       double r = s_l * (s_h + s) + s2 * s2
 | |
|         * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
 | |
|       s2 = s_h * s_h;
 | |
|       t_h = (float) (3.0 + s2 + r);
 | |
|       t_l = r - (t_h - 3.0 - s2);
 | |
|       // u+v = s*(1+...).
 | |
|       u = s_h * t_h;
 | |
|       v = s_l * t_h + t_l * s;
 | |
|       // 2/(3log2)*(s+...).
 | |
|       double p_h = (float) (u + v);
 | |
|       double p_l = v - (p_h - u);
 | |
|       double z_h = CP_H * p_h;
 | |
|       double z_l = CP_L * p_h + p_l * CP + (k ? DP_L : 0);
 | |
|       // log2(ax) = (s+..)*2/(3*log2) = exp + dp_h + z_h + z_l.
 | |
|       t = exp;
 | |
|       t1 = (float) (z_h + z_l + (k ? DP_H : 0) + t);
 | |
|       t2 = z_l - (t1 - t - (k ? DP_H : 0) - z_h);
 | |
|     }
 | |
| 
 | |
|     // Split up y into y1+y2 and compute (y1+y2)*(t1+t2).
 | |
|     boolean negative = x < 0 && yisint == 1;
 | |
|     double y1 = (float) y;
 | |
|     double p_l = (y - y1) * t1 + y * t2;
 | |
|     double p_h = y1 * t1;
 | |
|     double z = p_l + p_h;
 | |
|     if (z >= 1024) // Detect overflow.
 | |
|       {
 | |
|         if (z > 1024 || p_l + OVT > z - p_h)
 | |
|           return negative ? Double.NEGATIVE_INFINITY
 | |
|             : Double.POSITIVE_INFINITY;
 | |
|       }
 | |
|     else if (z <= -1075) // Detect underflow.
 | |
|       {
 | |
|         if (z < -1075 || p_l <= z - p_h)
 | |
|           return negative ? -0.0 : 0;
 | |
|       }
 | |
| 
 | |
|     // Compute 2**(p_h+p_l).
 | |
|     int n = round((float) z);
 | |
|     p_h -= n;
 | |
|     t = (float) (p_l + p_h);
 | |
|     u = t * LN2_H;
 | |
|     v = (p_l - (t - p_h)) * LN2 + t * LN2_L;
 | |
|     z = u + v;
 | |
|     w = v - (z - u);
 | |
|     t = z * z;
 | |
|     t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
 | |
|     double r = (z * t1) / (t1 - 2) - (w + z * w);
 | |
|     z = scale(1 - (r - z), n);
 | |
|     return negative ? -z : z;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Get the IEEE 754 floating point remainder on two numbers. This is the
 | |
|    * value of <code>x - y * <em>n</em></code>, where <em>n</em> is the closest
 | |
|    * double to <code>x / y</code> (ties go to the even n); for a zero
 | |
|    * remainder, the sign is that of <code>x</code>. If either argument is NaN,
 | |
|    * the first argument is infinite, or the second argument is zero, the result
 | |
|    * is NaN; if x is finite but y is infinite, the result is x.
 | |
|    *
 | |
|    * @param x the dividend (the top half)
 | |
|    * @param y the divisor (the bottom half)
 | |
|    * @return the IEEE 754-defined floating point remainder of x/y
 | |
|    * @see #rint(double)
 | |
|    */
 | |
|   public static double IEEEremainder(double x, double y)
 | |
|   {
 | |
|     // Purge off exception values.
 | |
|     if (x == Double.NEGATIVE_INFINITY || ! (x < Double.POSITIVE_INFINITY)
 | |
|         || y == 0 || y != y)
 | |
|       return Double.NaN;
 | |
| 
 | |
|     boolean negative = x < 0;
 | |
|     x = abs(x);
 | |
|     y = abs(y);
 | |
|     if (x == y || x == 0)
 | |
|       return 0 * x; // Get correct sign.
 | |
| 
 | |
|     // Achieve x < 2y, then take first shot at remainder.
 | |
|     if (y < TWO_1023)
 | |
|       x %= y + y;
 | |
| 
 | |
|     // Now adjust x to get correct precision.
 | |
|     if (y < 4 / TWO_1023)
 | |
|       {
 | |
|         if (x + x > y)
 | |
|           {
 | |
|             x -= y;
 | |
|             if (x + x >= y)
 | |
|               x -= y;
 | |
|           }
 | |
|       }
 | |
|     else
 | |
|       {
 | |
|         y *= 0.5;
 | |
|         if (x > y)
 | |
|           {
 | |
|             x -= y;
 | |
|             if (x >= y)
 | |
|               x -= y;
 | |
|           }
 | |
|       }
 | |
|     return negative ? -x : x;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Take the nearest integer that is that is greater than or equal to the
 | |
|    * argument. If the argument is NaN, infinite, or zero, the result is the
 | |
|    * same; if the argument is between -1 and 0, the result is negative zero.
 | |
|    * Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
 | |
|    *
 | |
|    * @param a the value to act upon
 | |
|    * @return the nearest integer >= <code>a</code>
 | |
|    */
 | |
|   public static double ceil(double a)
 | |
|   {
 | |
|     return -floor(-a);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Take the nearest integer that is that is less than or equal to the
 | |
|    * argument. If the argument is NaN, infinite, or zero, the result is the
 | |
|    * same. Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
 | |
|    *
 | |
|    * @param a the value to act upon
 | |
|    * @return the nearest integer <= <code>a</code>
 | |
|    */
 | |
|   public static double floor(double a)
 | |
|   {
 | |
|     double x = abs(a);
 | |
|     if (! (x < TWO_52) || (long) a == a)
 | |
|       return a; // No fraction bits; includes NaN and infinity.
 | |
|     if (x < 1)
 | |
|       return a >= 0 ? 0 * a : -1; // Worry about signed zero.
 | |
|     return a < 0 ? (long) a - 1.0 : (long) a; // Cast to long truncates.
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Take the nearest integer to the argument.  If it is exactly between
 | |
|    * two integers, the even integer is taken. If the argument is NaN,
 | |
|    * infinite, or zero, the result is the same.
 | |
|    *
 | |
|    * @param a the value to act upon
 | |
|    * @return the nearest integer to <code>a</code>
 | |
|    */
 | |
|   public static double rint(double a)
 | |
|   {
 | |
|     double x = abs(a);
 | |
|     if (! (x < TWO_52))
 | |
|       return a; // No fraction bits; includes NaN and infinity.
 | |
|     if (x <= 0.5)
 | |
|       return 0 * a; // Worry about signed zero.
 | |
|     if (x % 2 <= 0.5)
 | |
|       return (long) a; // Catch round down to even.
 | |
|     return (long) (a + (a < 0 ? -0.5 : 0.5)); // Cast to long truncates.
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Take the nearest integer to the argument.  This is equivalent to
 | |
|    * <code>(int) Math.floor(f + 0.5f)</code>. If the argument is NaN, the
 | |
|    * result is 0; otherwise if the argument is outside the range of int, the
 | |
|    * result will be Integer.MIN_VALUE or Integer.MAX_VALUE, as appropriate.
 | |
|    *
 | |
|    * @param f the argument to round
 | |
|    * @return the nearest integer to the argument
 | |
|    * @see Integer#MIN_VALUE
 | |
|    * @see Integer#MAX_VALUE
 | |
|    */
 | |
|   public static int round(float f)
 | |
|   {
 | |
|     return (int) floor(f + 0.5f);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Take the nearest long to the argument.  This is equivalent to
 | |
|    * <code>(long) Math.floor(d + 0.5)</code>. If the argument is NaN, the
 | |
|    * result is 0; otherwise if the argument is outside the range of long, the
 | |
|    * result will be Long.MIN_VALUE or Long.MAX_VALUE, as appropriate.
 | |
|    *
 | |
|    * @param d the argument to round
 | |
|    * @return the nearest long to the argument
 | |
|    * @see Long#MIN_VALUE
 | |
|    * @see Long#MAX_VALUE
 | |
|    */
 | |
|   public static long round(double d)
 | |
|   {
 | |
|     return (long) floor(d + 0.5);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Get a random number.  This behaves like Random.nextDouble(), seeded by
 | |
|    * System.currentTimeMillis() when first called. In other words, the number
 | |
|    * is from a pseudorandom sequence, and lies in the range [+0.0, 1.0).
 | |
|    * This random sequence is only used by this method, and is threadsafe,
 | |
|    * although you may want your own random number generator if it is shared
 | |
|    * among threads.
 | |
|    *
 | |
|    * @return a random number
 | |
|    * @see Random#nextDouble()
 | |
|    * @see System#currentTimeMillis()
 | |
|    */
 | |
|   public static synchronized double random()
 | |
|   {
 | |
|     if (rand == null)
 | |
|       rand = new Random();
 | |
|     return rand.nextDouble();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Convert from degrees to radians. The formula for this is
 | |
|    * radians = degrees * (pi/180); however it is not always exact given the
 | |
|    * limitations of floating point numbers.
 | |
|    *
 | |
|    * @param degrees an angle in degrees
 | |
|    * @return the angle in radians
 | |
|    */
 | |
|   public static double toRadians(double degrees)
 | |
|   {
 | |
|     return (degrees * PI) / 180;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Convert from radians to degrees. The formula for this is
 | |
|    * degrees = radians * (180/pi); however it is not always exact given the
 | |
|    * limitations of floating point numbers.
 | |
|    *
 | |
|    * @param rads an angle in radians
 | |
|    * @return the angle in degrees
 | |
|    */
 | |
|   public static double toDegrees(double rads)
 | |
|   {
 | |
|     return (rads * 180) / PI;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Constants for scaling and comparing doubles by powers of 2. The compiler
 | |
|    * must automatically inline constructs like (1/TWO_54), so we don't list
 | |
|    * negative powers of two here.
 | |
|    */
 | |
|   private static final double
 | |
|     TWO_16 = 0x10000, // Long bits 0x40f0000000000000L.
 | |
|     TWO_20 = 0x100000, // Long bits 0x4130000000000000L.
 | |
|     TWO_24 = 0x1000000, // Long bits 0x4170000000000000L.
 | |
|     TWO_27 = 0x8000000, // Long bits 0x41a0000000000000L.
 | |
|     TWO_28 = 0x10000000, // Long bits 0x41b0000000000000L.
 | |
|     TWO_29 = 0x20000000, // Long bits 0x41c0000000000000L.
 | |
|     TWO_31 = 0x80000000L, // Long bits 0x41e0000000000000L.
 | |
|     TWO_49 = 0x2000000000000L, // Long bits 0x4300000000000000L.
 | |
|     TWO_52 = 0x10000000000000L, // Long bits 0x4330000000000000L.
 | |
|     TWO_54 = 0x40000000000000L, // Long bits 0x4350000000000000L.
 | |
|     TWO_57 = 0x200000000000000L, // Long bits 0x4380000000000000L.
 | |
|     TWO_60 = 0x1000000000000000L, // Long bits 0x43b0000000000000L.
 | |
|     TWO_64 = 1.8446744073709552e19, // Long bits 0x43f0000000000000L.
 | |
|     TWO_66 = 7.378697629483821e19, // Long bits 0x4410000000000000L.
 | |
|     TWO_1023 = 8.98846567431158e307; // Long bits 0x7fe0000000000000L.
 | |
| 
 | |
|   /**
 | |
|    * Super precision for 2/pi in 24-bit chunks, for use in
 | |
|    * {@link #remPiOver2(double, double[])}.
 | |
|    */
 | |
|   private static final int TWO_OVER_PI[] = {
 | |
|     0xa2f983, 0x6e4e44, 0x1529fc, 0x2757d1, 0xf534dd, 0xc0db62,
 | |
|     0x95993c, 0x439041, 0xfe5163, 0xabdebb, 0xc561b7, 0x246e3a,
 | |
|     0x424dd2, 0xe00649, 0x2eea09, 0xd1921c, 0xfe1deb, 0x1cb129,
 | |
|     0xa73ee8, 0x8235f5, 0x2ebb44, 0x84e99c, 0x7026b4, 0x5f7e41,
 | |
|     0x3991d6, 0x398353, 0x39f49c, 0x845f8b, 0xbdf928, 0x3b1ff8,
 | |
|     0x97ffde, 0x05980f, 0xef2f11, 0x8b5a0a, 0x6d1f6d, 0x367ecf,
 | |
|     0x27cb09, 0xb74f46, 0x3f669e, 0x5fea2d, 0x7527ba, 0xc7ebe5,
 | |
|     0xf17b3d, 0x0739f7, 0x8a5292, 0xea6bfb, 0x5fb11f, 0x8d5d08,
 | |
|     0x560330, 0x46fc7b, 0x6babf0, 0xcfbc20, 0x9af436, 0x1da9e3,
 | |
|     0x91615e, 0xe61b08, 0x659985, 0x5f14a0, 0x68408d, 0xffd880,
 | |
|     0x4d7327, 0x310606, 0x1556ca, 0x73a8c9, 0x60e27b, 0xc08c6b,
 | |
|   };
 | |
| 
 | |
|   /**
 | |
|    * Super precision for pi/2 in 24-bit chunks, for use in
 | |
|    * {@link #remPiOver2(double, double[])}.
 | |
|    */
 | |
|   private static final double PI_OVER_TWO[] = {
 | |
|     1.570796251296997, // Long bits 0x3ff921fb40000000L.
 | |
|     7.549789415861596e-8, // Long bits 0x3e74442d00000000L.
 | |
|     5.390302529957765e-15, // Long bits 0x3cf8469880000000L.
 | |
|     3.282003415807913e-22, // Long bits 0x3b78cc5160000000L.
 | |
|     1.270655753080676e-29, // Long bits 0x39f01b8380000000L.
 | |
|     1.2293330898111133e-36, // Long bits 0x387a252040000000L.
 | |
|     2.7337005381646456e-44, // Long bits 0x36e3822280000000L.
 | |
|     2.1674168387780482e-51, // Long bits 0x3569f31d00000000L.
 | |
|   };
 | |
| 
 | |
|   /**
 | |
|    * More constants related to pi, used in
 | |
|    * {@link #remPiOver2(double, double[])} and elsewhere.
 | |
|    */
 | |
|   private static final double
 | |
|     PI_L = 1.2246467991473532e-16, // Long bits 0x3ca1a62633145c07L.
 | |
|     PIO2_1 = 1.5707963267341256, // Long bits 0x3ff921fb54400000L.
 | |
|     PIO2_1L = 6.077100506506192e-11, // Long bits 0x3dd0b4611a626331L.
 | |
|     PIO2_2 = 6.077100506303966e-11, // Long bits 0x3dd0b4611a600000L.
 | |
|     PIO2_2L = 2.0222662487959506e-21, // Long bits 0x3ba3198a2e037073L.
 | |
|     PIO2_3 = 2.0222662487111665e-21, // Long bits 0x3ba3198a2e000000L.
 | |
|     PIO2_3L = 8.4784276603689e-32; // Long bits 0x397b839a252049c1L.
 | |
| 
 | |
|   /**
 | |
|    * Natural log and square root constants, for calculation of
 | |
|    * {@link #exp(double)}, {@link #log(double)} and
 | |
|    * {@link #pow(double, double)}. CP is 2/(3*ln(2)).
 | |
|    */
 | |
|   private static final double
 | |
|     SQRT_1_5 = 1.224744871391589, // Long bits 0x3ff3988e1409212eL.
 | |
|     SQRT_2 = 1.4142135623730951, // Long bits 0x3ff6a09e667f3bcdL.
 | |
|     SQRT_3 = 1.7320508075688772, // Long bits 0x3ffbb67ae8584caaL.
 | |
|     EXP_LIMIT_H = 709.782712893384, // Long bits 0x40862e42fefa39efL.
 | |
|     EXP_LIMIT_L = -745.1332191019411, // Long bits 0xc0874910d52d3051L.
 | |
|     CP = 0.9617966939259756, // Long bits 0x3feec709dc3a03fdL.
 | |
|     CP_H = 0.9617967009544373, // Long bits 0x3feec709e0000000L.
 | |
|     CP_L = -7.028461650952758e-9, // Long bits 0xbe3e2fe0145b01f5L.
 | |
|     LN2 = 0.6931471805599453, // Long bits 0x3fe62e42fefa39efL.
 | |
|     LN2_H = 0.6931471803691238, // Long bits 0x3fe62e42fee00000L.
 | |
|     LN2_L = 1.9082149292705877e-10, // Long bits 0x3dea39ef35793c76L.
 | |
|     INV_LN2 = 1.4426950408889634, // Long bits 0x3ff71547652b82feL.
 | |
|     INV_LN2_H = 1.4426950216293335, // Long bits 0x3ff7154760000000L.
 | |
|     INV_LN2_L = 1.9259629911266175e-8; // Long bits 0x3e54ae0bf85ddf44L.
 | |
| 
 | |
|   /**
 | |
|    * Constants for computing {@link #log(double)}.
 | |
|    */
 | |
|   private static final double
 | |
|     LG1 = 0.6666666666666735, // Long bits 0x3fe5555555555593L.
 | |
|     LG2 = 0.3999999999940942, // Long bits 0x3fd999999997fa04L.
 | |
|     LG3 = 0.2857142874366239, // Long bits 0x3fd2492494229359L.
 | |
|     LG4 = 0.22222198432149784, // Long bits 0x3fcc71c51d8e78afL.
 | |
|     LG5 = 0.1818357216161805, // Long bits 0x3fc7466496cb03deL.
 | |
|     LG6 = 0.15313837699209373, // Long bits 0x3fc39a09d078c69fL.
 | |
|     LG7 = 0.14798198605116586; // Long bits 0x3fc2f112df3e5244L.
 | |
| 
 | |
|   /**
 | |
|    * Constants for computing {@link #pow(double, double)}. L and P are
 | |
|    * coefficients for series; OVT is -(1024-log2(ovfl+.5ulp)); and DP is ???.
 | |
|    * The P coefficients also calculate {@link #exp(double)}.
 | |
|    */
 | |
|   private static final double
 | |
|     L1 = 0.5999999999999946, // Long bits 0x3fe3333333333303L.
 | |
|     L2 = 0.4285714285785502, // Long bits 0x3fdb6db6db6fabffL.
 | |
|     L3 = 0.33333332981837743, // Long bits 0x3fd55555518f264dL.
 | |
|     L4 = 0.272728123808534, // Long bits 0x3fd17460a91d4101L.
 | |
|     L5 = 0.23066074577556175, // Long bits 0x3fcd864a93c9db65L.
 | |
|     L6 = 0.20697501780033842, // Long bits 0x3fca7e284a454eefL.
 | |
|     P1 = 0.16666666666666602, // Long bits 0x3fc555555555553eL.
 | |
|     P2 = -2.7777777777015593e-3, // Long bits 0xbf66c16c16bebd93L.
 | |
|     P3 = 6.613756321437934e-5, // Long bits 0x3f11566aaf25de2cL.
 | |
|     P4 = -1.6533902205465252e-6, // Long bits 0xbebbbd41c5d26bf1L.
 | |
|     P5 = 4.1381367970572385e-8, // Long bits 0x3e66376972bea4d0L.
 | |
|     DP_H = 0.5849624872207642, // Long bits 0x3fe2b80340000000L.
 | |
|     DP_L = 1.350039202129749e-8, // Long bits 0x3e4cfdeb43cfd006L.
 | |
|     OVT = 8.008566259537294e-17; // Long bits 0x3c971547652b82feL.
 | |
| 
 | |
|   /**
 | |
|    * Coefficients for computing {@link #sin(double)}.
 | |
|    */
 | |
|   private static final double
 | |
|     S1 = -0.16666666666666632, // Long bits 0xbfc5555555555549L.
 | |
|     S2 = 8.33333333332249e-3, // Long bits 0x3f8111111110f8a6L.
 | |
|     S3 = -1.984126982985795e-4, // Long bits 0xbf2a01a019c161d5L.
 | |
|     S4 = 2.7557313707070068e-6, // Long bits 0x3ec71de357b1fe7dL.
 | |
|     S5 = -2.5050760253406863e-8, // Long bits 0xbe5ae5e68a2b9cebL.
 | |
|     S6 = 1.58969099521155e-10; // Long bits 0x3de5d93a5acfd57cL.
 | |
| 
 | |
|   /**
 | |
|    * Coefficients for computing {@link #cos(double)}.
 | |
|    */
 | |
|   private static final double
 | |
|     C1 = 0.0416666666666666, // Long bits 0x3fa555555555554cL.
 | |
|     C2 = -1.388888888887411e-3, // Long bits 0xbf56c16c16c15177L.
 | |
|     C3 = 2.480158728947673e-5, // Long bits 0x3efa01a019cb1590L.
 | |
|     C4 = -2.7557314351390663e-7, // Long bits 0xbe927e4f809c52adL.
 | |
|     C5 = 2.087572321298175e-9, // Long bits 0x3e21ee9ebdb4b1c4L.
 | |
|     C6 = -1.1359647557788195e-11; // Long bits 0xbda8fae9be8838d4L.
 | |
| 
 | |
|   /**
 | |
|    * Coefficients for computing {@link #tan(double)}.
 | |
|    */
 | |
|   private static final double
 | |
|     T0 = 0.3333333333333341, // Long bits 0x3fd5555555555563L.
 | |
|     T1 = 0.13333333333320124, // Long bits 0x3fc111111110fe7aL.
 | |
|     T2 = 0.05396825397622605, // Long bits 0x3faba1ba1bb341feL.
 | |
|     T3 = 0.021869488294859542, // Long bits 0x3f9664f48406d637L.
 | |
|     T4 = 8.8632398235993e-3, // Long bits 0x3f8226e3e96e8493L.
 | |
|     T5 = 3.5920791075913124e-3, // Long bits 0x3f6d6d22c9560328L.
 | |
|     T6 = 1.4562094543252903e-3, // Long bits 0x3f57dbc8fee08315L.
 | |
|     T7 = 5.880412408202641e-4, // Long bits 0x3f4344d8f2f26501L.
 | |
|     T8 = 2.464631348184699e-4, // Long bits 0x3f3026f71a8d1068L.
 | |
|     T9 = 7.817944429395571e-5, // Long bits 0x3f147e88a03792a6L.
 | |
|     T10 = 7.140724913826082e-5, // Long bits 0x3f12b80f32f0a7e9L.
 | |
|     T11 = -1.8558637485527546e-5, // Long bits 0xbef375cbdb605373L.
 | |
|     T12 = 2.590730518636337e-5; // Long bits 0x3efb2a7074bf7ad4L.
 | |
| 
 | |
|   /**
 | |
|    * Coefficients for computing {@link #asin(double)} and
 | |
|    * {@link #acos(double)}.
 | |
|    */
 | |
|   private static final double
 | |
|     PS0 = 0.16666666666666666, // Long bits 0x3fc5555555555555L.
 | |
|     PS1 = -0.3255658186224009, // Long bits 0xbfd4d61203eb6f7dL.
 | |
|     PS2 = 0.20121253213486293, // Long bits 0x3fc9c1550e884455L.
 | |
|     PS3 = -0.04005553450067941, // Long bits 0xbfa48228b5688f3bL.
 | |
|     PS4 = 7.915349942898145e-4, // Long bits 0x3f49efe07501b288L.
 | |
|     PS5 = 3.479331075960212e-5, // Long bits 0x3f023de10dfdf709L.
 | |
|     QS1 = -2.403394911734414, // Long bits 0xc0033a271c8a2d4bL.
 | |
|     QS2 = 2.0209457602335057, // Long bits 0x40002ae59c598ac8L.
 | |
|     QS3 = -0.6882839716054533, // Long bits 0xbfe6066c1b8d0159L.
 | |
|     QS4 = 0.07703815055590194; // Long bits 0x3fb3b8c5b12e9282L.
 | |
| 
 | |
|   /**
 | |
|    * Coefficients for computing {@link #atan(double)}.
 | |
|    */
 | |
|   private static final double
 | |
|     ATAN_0_5H = 0.4636476090008061, // Long bits 0x3fddac670561bb4fL.
 | |
|     ATAN_0_5L = 2.2698777452961687e-17, // Long bits 0x3c7a2b7f222f65e2L.
 | |
|     ATAN_1_5H = 0.982793723247329, // Long bits 0x3fef730bd281f69bL.
 | |
|     ATAN_1_5L = 1.3903311031230998e-17, // Long bits 0x3c7007887af0cbbdL.
 | |
|     AT0 = 0.3333333333333293, // Long bits 0x3fd555555555550dL.
 | |
|     AT1 = -0.19999999999876483, // Long bits 0xbfc999999998ebc4L.
 | |
|     AT2 = 0.14285714272503466, // Long bits 0x3fc24924920083ffL.
 | |
|     AT3 = -0.11111110405462356, // Long bits 0xbfbc71c6fe231671L.
 | |
|     AT4 = 0.09090887133436507, // Long bits 0x3fb745cdc54c206eL.
 | |
|     AT5 = -0.0769187620504483, // Long bits 0xbfb3b0f2af749a6dL.
 | |
|     AT6 = 0.06661073137387531, // Long bits 0x3fb10d66a0d03d51L.
 | |
|     AT7 = -0.058335701337905735, // Long bits 0xbfadde2d52defd9aL.
 | |
|     AT8 = 0.049768779946159324, // Long bits 0x3fa97b4b24760debL.
 | |
|     AT9 = -0.036531572744216916, // Long bits 0xbfa2b4442c6a6c2fL.
 | |
|     AT10 = 0.016285820115365782; // Long bits 0x3f90ad3ae322da11L.
 | |
| 
 | |
|   /**
 | |
|    * Constants for computing {@link #cbrt(double)}.
 | |
|    */
 | |
|   private static final int
 | |
|     CBRT_B1 = 715094163, // B1 = (682-0.03306235651)*2**20
 | |
|     CBRT_B2 = 696219795; // B2 = (664-0.03306235651)*2**20
 | |
| 
 | |
|   /**
 | |
|    * Constants for computing {@link #cbrt(double)}.
 | |
|    */
 | |
|   private static final double
 | |
|     CBRT_C =  5.42857142857142815906e-01, // Long bits  0x3fe15f15f15f15f1L
 | |
|     CBRT_D = -7.05306122448979611050e-01, // Long bits  0xbfe691de2532c834L
 | |
|     CBRT_E =  1.41428571428571436819e+00, // Long bits  0x3ff6a0ea0ea0ea0fL
 | |
|     CBRT_F =  1.60714285714285720630e+00, // Long bits  0x3ff9b6db6db6db6eL
 | |
|     CBRT_G =  3.57142857142857150787e-01; // Long bits  0x3fd6db6db6db6db7L
 | |
| 
 | |
|   /**
 | |
|    * Constants for computing {@link #expm1(double)}
 | |
|    */
 | |
|   private static final double
 | |
|     EXPM1_Q1 = -3.33333333333331316428e-02, // Long bits  0xbfa11111111110f4L
 | |
|     EXPM1_Q2 =  1.58730158725481460165e-03, // Long bits  0x3f5a01a019fe5585L
 | |
|     EXPM1_Q3 = -7.93650757867487942473e-05, // Long bits  0xbf14ce199eaadbb7L
 | |
|     EXPM1_Q4 =  4.00821782732936239552e-06, // Long bits  0x3ed0cfca86e65239L
 | |
|     EXPM1_Q5 = -2.01099218183624371326e-07; // Long bits  0xbe8afdb76e09c32dL
 | |
| 
 | |
|   /**
 | |
|    * Helper function for reducing an angle to a multiple of pi/2 within
 | |
|    * [-pi/4, pi/4].
 | |
|    *
 | |
|    * @param x the angle; not infinity or NaN, and outside pi/4
 | |
|    * @param y an array of 2 doubles modified to hold the remander x % pi/2
 | |
|    * @return the quadrant of the result, mod 4: 0: [-pi/4, pi/4],
 | |
|    *         1: [pi/4, 3*pi/4], 2: [3*pi/4, 5*pi/4], 3: [-3*pi/4, -pi/4]
 | |
|    */
 | |
|   private static int remPiOver2(double x, double[] y)
 | |
|   {
 | |
|     boolean negative = x < 0;
 | |
|     x = abs(x);
 | |
|     double z;
 | |
|     int n;
 | |
|     if (Configuration.DEBUG && (x <= PI / 4 || x != x
 | |
|                                 || x == Double.POSITIVE_INFINITY))
 | |
|       throw new InternalError("Assertion failure");
 | |
|     if (x < 3 * PI / 4) // If |x| is small.
 | |
|       {
 | |
|         z = x - PIO2_1;
 | |
|         if ((float) x != (float) (PI / 2)) // 33+53 bit pi is good enough.
 | |
|           {
 | |
|             y[0] = z - PIO2_1L;
 | |
|             y[1] = z - y[0] - PIO2_1L;
 | |
|           }
 | |
|         else // Near pi/2, use 33+33+53 bit pi.
 | |
|           {
 | |
|             z -= PIO2_2;
 | |
|             y[0] = z - PIO2_2L;
 | |
|             y[1] = z - y[0] - PIO2_2L;
 | |
|           }
 | |
|         n = 1;
 | |
|       }
 | |
|     else if (x <= TWO_20 * PI / 2) // Medium size.
 | |
|       {
 | |
|         n = (int) (2 / PI * x + 0.5);
 | |
|         z = x - n * PIO2_1;
 | |
|         double w = n * PIO2_1L; // First round good to 85 bits.
 | |
|         y[0] = z - w;
 | |
|         if (n >= 32 || (float) x == (float) (w))
 | |
|           {
 | |
|             if (x / y[0] >= TWO_16) // Second iteration, good to 118 bits.
 | |
|               {
 | |
|                 double t = z;
 | |
|                 w = n * PIO2_2;
 | |
|                 z = t - w;
 | |
|                 w = n * PIO2_2L - (t - z - w);
 | |
|                 y[0] = z - w;
 | |
|                 if (x / y[0] >= TWO_49) // Third iteration, 151 bits accuracy.
 | |
|                   {
 | |
|                     t = z;
 | |
|                     w = n * PIO2_3;
 | |
|                     z = t - w;
 | |
|                     w = n * PIO2_3L - (t - z - w);
 | |
|                     y[0] = z - w;
 | |
|                   }
 | |
|               }
 | |
|           }
 | |
|         y[1] = z - y[0] - w;
 | |
|       }
 | |
|     else
 | |
|       {
 | |
|         // All other (large) arguments.
 | |
|         int e0 = (int) (Double.doubleToLongBits(x) >> 52) - 1046;
 | |
|         z = scale(x, -e0); // e0 = ilogb(z) - 23.
 | |
|         double[] tx = new double[3];
 | |
|         for (int i = 0; i < 2; i++)
 | |
|           {
 | |
|             tx[i] = (int) z;
 | |
|             z = (z - tx[i]) * TWO_24;
 | |
|           }
 | |
|         tx[2] = z;
 | |
|         int nx = 2;
 | |
|         while (tx[nx] == 0)
 | |
|           nx--;
 | |
|         n = remPiOver2(tx, y, e0, nx);
 | |
|       }
 | |
|     if (negative)
 | |
|       {
 | |
|         y[0] = -y[0];
 | |
|         y[1] = -y[1];
 | |
|         return -n;
 | |
|       }
 | |
|     return n;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Helper function for reducing an angle to a multiple of pi/2 within
 | |
|    * [-pi/4, pi/4].
 | |
|    *
 | |
|    * @param x the positive angle, broken into 24-bit chunks
 | |
|    * @param y an array of 2 doubles modified to hold the remander x % pi/2
 | |
|    * @param e0 the exponent of x[0]
 | |
|    * @param nx the last index used in x
 | |
|    * @return the quadrant of the result, mod 4: 0: [-pi/4, pi/4],
 | |
|    *         1: [pi/4, 3*pi/4], 2: [3*pi/4, 5*pi/4], 3: [-3*pi/4, -pi/4]
 | |
|    */
 | |
|   private static int remPiOver2(double[] x, double[] y, int e0, int nx)
 | |
|   {
 | |
|     int i;
 | |
|     int ih;
 | |
|     int n;
 | |
|     double fw;
 | |
|     double z;
 | |
|     int[] iq = new int[20];
 | |
|     double[] f = new double[20];
 | |
|     double[] q = new double[20];
 | |
|     boolean recompute = false;
 | |
| 
 | |
|     // Initialize jk, jz, jv, q0; note that 3>q0.
 | |
|     int jk = 4;
 | |
|     int jz = jk;
 | |
|     int jv = max((e0 - 3) / 24, 0);
 | |
|     int q0 = e0 - 24 * (jv + 1);
 | |
| 
 | |
|     // Set up f[0] to f[nx+jk] where f[nx+jk] = TWO_OVER_PI[jv+jk].
 | |
|     int j = jv - nx;
 | |
|     int m = nx + jk;
 | |
|     for (i = 0; i <= m; i++, j++)
 | |
|       f[i] = (j < 0) ? 0 : TWO_OVER_PI[j];
 | |
| 
 | |
|     // Compute q[0],q[1],...q[jk].
 | |
|     for (i = 0; i <= jk; i++)
 | |
|       {
 | |
|         for (j = 0, fw = 0; j <= nx; j++)
 | |
|           fw += x[j] * f[nx + i - j];
 | |
|         q[i] = fw;
 | |
|       }
 | |
| 
 | |
|     do
 | |
|       {
 | |
|         // Distill q[] into iq[] reversingly.
 | |
|         for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--)
 | |
|           {
 | |
|             fw = (int) (1 / TWO_24 * z);
 | |
|             iq[i] = (int) (z - TWO_24 * fw);
 | |
|             z = q[j - 1] + fw;
 | |
|           }
 | |
| 
 | |
|         // Compute n.
 | |
|         z = scale(z, q0);
 | |
|         z -= 8 * floor(z * 0.125); // Trim off integer >= 8.
 | |
|         n = (int) z;
 | |
|         z -= n;
 | |
|         ih = 0;
 | |
|         if (q0 > 0) // Need iq[jz-1] to determine n.
 | |
|           {
 | |
|             i = iq[jz - 1] >> (24 - q0);
 | |
|             n += i;
 | |
|             iq[jz - 1] -= i << (24 - q0);
 | |
|             ih = iq[jz - 1] >> (23 - q0);
 | |
|           }
 | |
|         else if (q0 == 0)
 | |
|           ih = iq[jz - 1] >> 23;
 | |
|         else if (z >= 0.5)
 | |
|           ih = 2;
 | |
| 
 | |
|         if (ih > 0) // If q > 0.5.
 | |
|           {
 | |
|             n += 1;
 | |
|             int carry = 0;
 | |
|             for (i = 0; i < jz; i++) // Compute 1-q.
 | |
|               {
 | |
|                 j = iq[i];
 | |
|                 if (carry == 0)
 | |
|                   {
 | |
|                     if (j != 0)
 | |
|                       {
 | |
|                         carry = 1;
 | |
|                         iq[i] = 0x1000000 - j;
 | |
|                       }
 | |
|                   }
 | |
|                 else
 | |
|                   iq[i] = 0xffffff - j;
 | |
|               }
 | |
|             switch (q0)
 | |
|               {
 | |
|               case 1: // Rare case: chance is 1 in 12 for non-default.
 | |
|                 iq[jz - 1] &= 0x7fffff;
 | |
|                 break;
 | |
|               case 2:
 | |
|                 iq[jz - 1] &= 0x3fffff;
 | |
|               }
 | |
|             if (ih == 2)
 | |
|               {
 | |
|                 z = 1 - z;
 | |
|                 if (carry != 0)
 | |
|                   z -= scale(1, q0);
 | |
|               }
 | |
|           }
 | |
| 
 | |
|         // Check if recomputation is needed.
 | |
|         if (z == 0)
 | |
|           {
 | |
|             j = 0;
 | |
|             for (i = jz - 1; i >= jk; i--)
 | |
|               j |= iq[i];
 | |
|             if (j == 0) // Need recomputation.
 | |
|               {
 | |
|                 int k; // k = no. of terms needed.
 | |
|                 for (k = 1; iq[jk - k] == 0; k++)
 | |
|                   ;
 | |
| 
 | |
|                 for (i = jz + 1; i <= jz + k; i++) // Add q[jz+1] to q[jz+k].
 | |
|                   {
 | |
|                     f[nx + i] = TWO_OVER_PI[jv + i];
 | |
|                     for (j = 0, fw = 0; j <= nx; j++)
 | |
|                       fw += x[j] * f[nx + i - j];
 | |
|                     q[i] = fw;
 | |
|                   }
 | |
|                 jz += k;
 | |
|                 recompute = true;
 | |
|               }
 | |
|           }
 | |
|       }
 | |
|     while (recompute);
 | |
| 
 | |
|     // Chop off zero terms.
 | |
|     if (z == 0)
 | |
|       {
 | |
|         jz--;
 | |
|         q0 -= 24;
 | |
|         while (iq[jz] == 0)
 | |
|           {
 | |
|             jz--;
 | |
|             q0 -= 24;
 | |
|           }
 | |
|       }
 | |
|     else // Break z into 24-bit if necessary.
 | |
|       {
 | |
|         z = scale(z, -q0);
 | |
|         if (z >= TWO_24)
 | |
|           {
 | |
|             fw = (int) (1 / TWO_24 * z);
 | |
|             iq[jz] = (int) (z - TWO_24 * fw);
 | |
|             jz++;
 | |
|             q0 += 24;
 | |
|             iq[jz] = (int) fw;
 | |
|           }
 | |
|         else
 | |
|           iq[jz] = (int) z;
 | |
|       }
 | |
| 
 | |
|     // Convert integer "bit" chunk to floating-point value.
 | |
|     fw = scale(1, q0);
 | |
|     for (i = jz; i >= 0; i--)
 | |
|       {
 | |
|         q[i] = fw * iq[i];
 | |
|         fw *= 1 / TWO_24;
 | |
|       }
 | |
| 
 | |
|     // Compute PI_OVER_TWO[0,...,jk]*q[jz,...,0].
 | |
|     double[] fq = new double[20];
 | |
|     for (i = jz; i >= 0; i--)
 | |
|       {
 | |
|         fw = 0;
 | |
|         for (int k = 0; k <= jk && k <= jz - i; k++)
 | |
|           fw += PI_OVER_TWO[k] * q[i + k];
 | |
|         fq[jz - i] = fw;
 | |
|       }
 | |
| 
 | |
|     // Compress fq[] into y[].
 | |
|     fw = 0;
 | |
|     for (i = jz; i >= 0; i--)
 | |
|       fw += fq[i];
 | |
|     y[0] = (ih == 0) ? fw : -fw;
 | |
|     fw = fq[0] - fw;
 | |
|     for (i = 1; i <= jz; i++)
 | |
|       fw += fq[i];
 | |
|     y[1] = (ih == 0) ? fw : -fw;
 | |
|     return n;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Helper method for scaling a double by a power of 2.
 | |
|    *
 | |
|    * @param x the double
 | |
|    * @param n the scale; |n| < 2048
 | |
|    * @return x * 2**n
 | |
|    */
 | |
|   private static double scale(double x, int n)
 | |
|   {
 | |
|     if (Configuration.DEBUG && abs(n) >= 2048)
 | |
|       throw new InternalError("Assertion failure");
 | |
|     if (x == 0 || x == Double.NEGATIVE_INFINITY
 | |
|         || ! (x < Double.POSITIVE_INFINITY) || n == 0)
 | |
|       return x;
 | |
|     long bits = Double.doubleToLongBits(x);
 | |
|     int exp = (int) (bits >> 52) & 0x7ff;
 | |
|     if (exp == 0) // Subnormal x.
 | |
|       {
 | |
|         x *= TWO_54;
 | |
|         exp = ((int) (Double.doubleToLongBits(x) >> 52) & 0x7ff) - 54;
 | |
|       }
 | |
|     exp += n;
 | |
|     if (exp > 0x7fe) // Overflow.
 | |
|       return Double.POSITIVE_INFINITY * x;
 | |
|     if (exp > 0) // Normal.
 | |
|       return Double.longBitsToDouble((bits & 0x800fffffffffffffL)
 | |
|                                      | ((long) exp << 52));
 | |
|     if (exp <= -54)
 | |
|       return 0 * x; // Underflow.
 | |
|     exp += 54; // Subnormal result.
 | |
|     x = Double.longBitsToDouble((bits & 0x800fffffffffffffL)
 | |
|                                 | ((long) exp << 52));
 | |
|     return x * (1 / TWO_54);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Helper trig function; computes sin in range [-pi/4, pi/4].
 | |
|    *
 | |
|    * @param x angle within about pi/4
 | |
|    * @param y tail of x, created by remPiOver2
 | |
|    * @return sin(x+y)
 | |
|    */
 | |
|   private static double sin(double x, double y)
 | |
|   {
 | |
|     if (Configuration.DEBUG && abs(x + y) > 0.7854)
 | |
|       throw new InternalError("Assertion failure");
 | |
|     if (abs(x) < 1 / TWO_27)
 | |
|       return x;  // If |x| ~< 2**-27, already know answer.
 | |
| 
 | |
|     double z = x * x;
 | |
|     double v = z * x;
 | |
|     double r = S2 + z * (S3 + z * (S4 + z * (S5 + z * S6)));
 | |
|     if (y == 0)
 | |
|       return x + v * (S1 + z * r);
 | |
|     return x - ((z * (0.5 * y - v * r) - y) - v * S1);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Helper trig function; computes cos in range [-pi/4, pi/4].
 | |
|    *
 | |
|    * @param x angle within about pi/4
 | |
|    * @param y tail of x, created by remPiOver2
 | |
|    * @return cos(x+y)
 | |
|    */
 | |
|   private static double cos(double x, double y)
 | |
|   {
 | |
|     if (Configuration.DEBUG && abs(x + y) > 0.7854)
 | |
|       throw new InternalError("Assertion failure");
 | |
|     x = abs(x);
 | |
|     if (x < 1 / TWO_27)
 | |
|       return 1;  // If |x| ~< 2**-27, already know answer.
 | |
| 
 | |
|     double z = x * x;
 | |
|     double r = z * (C1 + z * (C2 + z * (C3 + z * (C4 + z * (C5 + z * C6)))));
 | |
| 
 | |
|     if (x < 0.3)
 | |
|       return 1 - (0.5 * z - (z * r - x * y));
 | |
| 
 | |
|     double qx = (x > 0.78125) ? 0.28125 : (x * 0.25);
 | |
|     return 1 - qx - ((0.5 * z - qx) - (z * r - x * y));
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Helper trig function; computes tan in range [-pi/4, pi/4].
 | |
|    *
 | |
|    * @param x angle within about pi/4
 | |
|    * @param y tail of x, created by remPiOver2
 | |
|    * @param invert true iff -1/tan should be returned instead
 | |
|    * @return tan(x+y)
 | |
|    */
 | |
|   private static double tan(double x, double y, boolean invert)
 | |
|   {
 | |
|     // PI/2 is irrational, so no double is a perfect multiple of it.
 | |
|     if (Configuration.DEBUG && (abs(x + y) > 0.7854 || (x == 0 && invert)))
 | |
|       throw new InternalError("Assertion failure");
 | |
|     boolean negative = x < 0;
 | |
|     if (negative)
 | |
|       {
 | |
|         x = -x;
 | |
|         y = -y;
 | |
|       }
 | |
|     if (x < 1 / TWO_28) // If |x| ~< 2**-28, already know answer.
 | |
|       return (negative ? -1 : 1) * (invert ? -1 / x : x);
 | |
| 
 | |
|     double z;
 | |
|     double w;
 | |
|     boolean large = x >= 0.6744;
 | |
|     if (large)
 | |
|       {
 | |
|         z = PI / 4 - x;
 | |
|         w = PI_L / 4 - y;
 | |
|         x = z + w;
 | |
|         y = 0;
 | |
|       }
 | |
|     z = x * x;
 | |
|     w = z * z;
 | |
|     // Break x**5*(T1+x**2*T2+...) into
 | |
|     //   x**5(T1+x**4*T3+...+x**20*T11)
 | |
|     // + x**5(x**2*(T2+x**4*T4+...+x**22*T12)).
 | |
|     double r = T1 + w * (T3 + w * (T5 + w * (T7 + w * (T9 + w * T11))));
 | |
|     double v = z * (T2 + w * (T4 + w * (T6 + w * (T8 + w * (T10 + w * T12)))));
 | |
|     double s = z * x;
 | |
|     r = y + z * (s * (r + v) + y);
 | |
|     r += T0 * s;
 | |
|     w = x + r;
 | |
|     if (large)
 | |
|       {
 | |
|         v = invert ? -1 : 1;
 | |
|         return (negative ? -1 : 1) * (v - 2 * (x - (w * w / (w + v) - r)));
 | |
|       }
 | |
|     if (! invert)
 | |
|       return w;
 | |
| 
 | |
|     // Compute -1.0/(x+r) accurately.
 | |
|     z = (float) w;
 | |
|     v = r - (z - x);
 | |
|     double a = -1 / w;
 | |
|     double t = (float) a;
 | |
|     return t + a * (1 + t * z + t * v);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * <p>
 | |
|    * Returns the sign of the argument as follows:
 | |
|    * </p>
 | |
|    * <ul>
 | |
|    * <li>If <code>a</code> is greater than zero, the result is 1.0.</li>
 | |
|    * <li>If <code>a</code> is less than zero, the result is -1.0.</li>
 | |
|    * <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>.
 | |
|    * <li>If <code>a</code> is positive or negative zero, the result is the
 | |
|    * same.</li>
 | |
|    * </ul>
 | |
|    *
 | |
|    * @param a the numeric argument.
 | |
|    * @return the sign of the argument.
 | |
|    * @since 1.5.
 | |
|    */
 | |
|   public static double signum(double a)
 | |
|   {
 | |
|     // There's no difference.
 | |
|     return Math.signum(a);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * <p>
 | |
|    * Returns the sign of the argument as follows:
 | |
|    * </p>
 | |
|    * <ul>
 | |
|    * <li>If <code>a</code> is greater than zero, the result is 1.0f.</li>
 | |
|    * <li>If <code>a</code> is less than zero, the result is -1.0f.</li>
 | |
|    * <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>.
 | |
|    * <li>If <code>a</code> is positive or negative zero, the result is the
 | |
|    * same.</li>
 | |
|    * </ul>
 | |
|    *
 | |
|    * @param a the numeric argument.
 | |
|    * @return the sign of the argument.
 | |
|    * @since 1.5.
 | |
|    */
 | |
|   public static float signum(float a)
 | |
|   {
 | |
|     // There's no difference.
 | |
|     return Math.signum(a);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the ulp for the given double argument.  The ulp is the
 | |
|    * difference between the argument and the next larger double.  Note
 | |
|    * that the sign of the double argument is ignored, that is,
 | |
|    * ulp(x) == ulp(-x).  If the argument is a NaN, then NaN is returned.
 | |
|    * If the argument is an infinity, then +Inf is returned.  If the
 | |
|    * argument is zero (either positive or negative), then
 | |
|    * {@link Double#MIN_VALUE} is returned.
 | |
|    * @param d the double whose ulp should be returned
 | |
|    * @return the difference between the argument and the next larger double
 | |
|    * @since 1.5
 | |
|    */
 | |
|   public static double ulp(double d)
 | |
|   {
 | |
|     // There's no difference.
 | |
|     return Math.ulp(d);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the ulp for the given float argument.  The ulp is the
 | |
|    * difference between the argument and the next larger float.  Note
 | |
|    * that the sign of the float argument is ignored, that is,
 | |
|    * ulp(x) == ulp(-x).  If the argument is a NaN, then NaN is returned.
 | |
|    * If the argument is an infinity, then +Inf is returned.  If the
 | |
|    * argument is zero (either positive or negative), then
 | |
|    * {@link Float#MIN_VALUE} is returned.
 | |
|    * @param f the float whose ulp should be returned
 | |
|    * @return the difference between the argument and the next larger float
 | |
|    * @since 1.5
 | |
|    */
 | |
|   public static float ulp(float f)
 | |
|   {
 | |
|     // There's no difference.
 | |
|     return Math.ulp(f);
 | |
|   }
 | |
| }
 |