mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			125 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			125 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| /* From e_hypotl.c -- long double version of e_hypot.c.
 | |
|  * Conversion to long double by Jakub Jelinek, jakub@redhat.com.
 | |
|  * Conversion to __float128 by FX Coudert, fxcoudert@gcc.gnu.org.
 | |
|  */
 | |
| 
 | |
| /* hypotq(x,y)
 | |
|  *
 | |
|  * Method :
 | |
|  *	If (assume round-to-nearest) z=x*x+y*y
 | |
|  *	has error less than sqrtl(2)/2 ulp, than
 | |
|  *	sqrtl(z) has error less than 1 ulp (exercise).
 | |
|  *
 | |
|  *	So, compute sqrtl(x*x+y*y) with some care as
 | |
|  *	follows to get the error below 1 ulp:
 | |
|  *
 | |
|  *	Assume x>y>0;
 | |
|  *	(if possible, set rounding to round-to-nearest)
 | |
|  *	1. if x > 2y  use
 | |
|  *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
 | |
|  *	where x1 = x with lower 64 bits cleared, x2 = x-x1; else
 | |
|  *	2. if x <= 2y use
 | |
|  *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
 | |
|  *	where t1 = 2x with lower 64 bits cleared, t2 = 2x-t1,
 | |
|  *	y1= y with lower 64 bits chopped, y2 = y-y1.
 | |
|  *
 | |
|  *	NOTE: scaling may be necessary if some argument is too
 | |
|  *	      large or too tiny
 | |
|  *
 | |
|  * Special cases:
 | |
|  *	hypotq(x,y) is INF if x or y is +INF or -INF; else
 | |
|  *	hypotq(x,y) is NAN if x or y is NAN.
 | |
|  *
 | |
|  * Accuracy:
 | |
|  * 	hypotq(x,y) returns sqrtl(x^2+y^2) with error less
 | |
|  * 	than 1 ulps (units in the last place)
 | |
|  */
 | |
| 
 | |
| #include "quadmath-imp.h"
 | |
| 
 | |
| __float128
 | |
| hypotq (__float128 x, __float128 y)
 | |
| {
 | |
|   __float128 a, b, t1, t2, y1, y2, w;
 | |
|   int64_t j, k, ha, hb;
 | |
| 
 | |
|   GET_FLT128_MSW64(ha,x);
 | |
|   ha &= 0x7fffffffffffffffLL;
 | |
|   GET_FLT128_MSW64(hb,y);
 | |
|   hb &= 0x7fffffffffffffffLL;
 | |
|   if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
 | |
|   SET_FLT128_MSW64(a,ha);	/* a <- |a| */
 | |
|   SET_FLT128_MSW64(b,hb);	/* b <- |b| */
 | |
|   if((ha-hb)>0x78000000000000LL) {return a+b;} /* x/y > 2**120 */
 | |
|   k=0;
 | |
|   if(ha > 0x5f3f000000000000LL) {	/* a>2**8000 */
 | |
|      if(ha >= 0x7fff000000000000LL) {	/* Inf or NaN */
 | |
|          uint64_t low;
 | |
|          w = a+b;			/* for sNaN */
 | |
|          GET_FLT128_LSW64(low,a);
 | |
|          if(((ha&0xffffffffffffLL)|low)==0) w = a;
 | |
|          GET_FLT128_LSW64(low,b);
 | |
|          if(((hb^0x7fff000000000000LL)|low)==0) w = b;
 | |
|          return w;
 | |
|      }
 | |
|      /* scale a and b by 2**-9600 */
 | |
|      ha -= 0x2580000000000000LL;
 | |
|      hb -= 0x2580000000000000LL;	k += 9600;
 | |
|      SET_FLT128_MSW64(a,ha);
 | |
|      SET_FLT128_MSW64(b,hb);
 | |
|   }
 | |
|   if(hb < 0x20bf000000000000LL) {	/* b < 2**-8000 */
 | |
|       if(hb <= 0x0000ffffffffffffLL) {	/* subnormal b or 0 */
 | |
|           uint64_t low;
 | |
|   	GET_FLT128_LSW64(low,b);
 | |
|   	if((hb|low)==0) return a;
 | |
|   	t1=0;
 | |
|   	SET_FLT128_MSW64(t1,0x7ffd000000000000LL); /* t1=2^16382 */
 | |
|   	b *= t1;
 | |
|   	a *= t1;
 | |
|   	k -= 16382;
 | |
|       } else {		/* scale a and b by 2^9600 */
 | |
|           ha += 0x2580000000000000LL; 	/* a *= 2^9600 */
 | |
|   	hb += 0x2580000000000000LL;	/* b *= 2^9600 */
 | |
|   	k -= 9600;
 | |
|   	SET_FLT128_MSW64(a,ha);
 | |
|   	SET_FLT128_MSW64(b,hb);
 | |
|       }
 | |
|   }
 | |
|     /* medium size a and b */
 | |
|   w = a-b;
 | |
|   if (w>b) {
 | |
|       t1 = 0;
 | |
|       SET_FLT128_MSW64(t1,ha);
 | |
|       t2 = a-t1;
 | |
|       w  = sqrtq(t1*t1-(b*(-b)-t2*(a+t1)));
 | |
|   } else {
 | |
|       a  = a+a;
 | |
|       y1 = 0;
 | |
|       SET_FLT128_MSW64(y1,hb);
 | |
|       y2 = b - y1;
 | |
|       t1 = 0;
 | |
|       SET_FLT128_MSW64(t1,ha+0x0001000000000000LL);
 | |
|       t2 = a - t1;
 | |
|       w  = sqrtq(t1*y1-(w*(-w)-(t1*y2+t2*b)));
 | |
|   }
 | |
|   if(k!=0) {
 | |
|       uint64_t high;
 | |
|       t1 = 1.0Q;
 | |
|       GET_FLT128_MSW64(high,t1);
 | |
|       SET_FLT128_MSW64(t1,high+(k<<48));
 | |
|       return t1*w;
 | |
|   } else return w;
 | |
| }
 |