mirror of git://gcc.gnu.org/git/gcc.git
8066 lines
292 KiB
Ada
8066 lines
292 KiB
Ada
------------------------------------------------------------------------------
|
|
-- --
|
|
-- GNAT COMPILER COMPONENTS --
|
|
-- --
|
|
-- E X P _ A T T R --
|
|
-- --
|
|
-- B o d y --
|
|
-- --
|
|
-- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
|
|
-- --
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
|
-- for more details. You should have received a copy of the GNU General --
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
|
-- --
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
|
-- --
|
|
------------------------------------------------------------------------------
|
|
|
|
with Aspects; use Aspects;
|
|
with Atree; use Atree;
|
|
with Checks; use Checks;
|
|
with Einfo; use Einfo;
|
|
with Elists; use Elists;
|
|
with Exp_Atag; use Exp_Atag;
|
|
with Exp_Ch2; use Exp_Ch2;
|
|
with Exp_Ch3; use Exp_Ch3;
|
|
with Exp_Ch6; use Exp_Ch6;
|
|
with Exp_Ch9; use Exp_Ch9;
|
|
with Exp_Dist; use Exp_Dist;
|
|
with Exp_Imgv; use Exp_Imgv;
|
|
with Exp_Pakd; use Exp_Pakd;
|
|
with Exp_Strm; use Exp_Strm;
|
|
with Exp_Tss; use Exp_Tss;
|
|
with Exp_Util; use Exp_Util;
|
|
with Fname; use Fname;
|
|
with Freeze; use Freeze;
|
|
with Gnatvsn; use Gnatvsn;
|
|
with Itypes; use Itypes;
|
|
with Lib; use Lib;
|
|
with Namet; use Namet;
|
|
with Nmake; use Nmake;
|
|
with Nlists; use Nlists;
|
|
with Opt; use Opt;
|
|
with Restrict; use Restrict;
|
|
with Rident; use Rident;
|
|
with Rtsfind; use Rtsfind;
|
|
with Sem; use Sem;
|
|
with Sem_Aux; use Sem_Aux;
|
|
with Sem_Ch6; use Sem_Ch6;
|
|
with Sem_Ch7; use Sem_Ch7;
|
|
with Sem_Ch8; use Sem_Ch8;
|
|
with Sem_Eval; use Sem_Eval;
|
|
with Sem_Res; use Sem_Res;
|
|
with Sem_Util; use Sem_Util;
|
|
with Sinfo; use Sinfo;
|
|
with Snames; use Snames;
|
|
with Stand; use Stand;
|
|
with Stringt; use Stringt;
|
|
with Targparm; use Targparm;
|
|
with Tbuild; use Tbuild;
|
|
with Ttypes; use Ttypes;
|
|
with Uintp; use Uintp;
|
|
with Uname; use Uname;
|
|
with Validsw; use Validsw;
|
|
|
|
package body Exp_Attr is
|
|
|
|
-----------------------
|
|
-- Local Subprograms --
|
|
-----------------------
|
|
|
|
function Build_Array_VS_Func
|
|
(A_Type : Entity_Id;
|
|
Nod : Node_Id) return Entity_Id;
|
|
-- Build function to test Valid_Scalars for array type A_Type. Nod is the
|
|
-- Valid_Scalars attribute node, used to insert the function body, and the
|
|
-- value returned is the entity of the constructed function body. We do not
|
|
-- bother to generate a separate spec for this subprogram.
|
|
|
|
function Build_Record_VS_Func
|
|
(R_Type : Entity_Id;
|
|
Nod : Node_Id) return Entity_Id;
|
|
-- Build function to test Valid_Scalars for record type A_Type. Nod is the
|
|
-- Valid_Scalars attribute node, used to insert the function body, and the
|
|
-- value returned is the entity of the constructed function body. We do not
|
|
-- bother to generate a separate spec for this subprogram.
|
|
|
|
procedure Compile_Stream_Body_In_Scope
|
|
(N : Node_Id;
|
|
Decl : Node_Id;
|
|
Arr : Entity_Id;
|
|
Check : Boolean);
|
|
-- The body for a stream subprogram may be generated outside of the scope
|
|
-- of the type. If the type is fully private, it may depend on the full
|
|
-- view of other types (e.g. indexes) that are currently private as well.
|
|
-- We install the declarations of the package in which the type is declared
|
|
-- before compiling the body in what is its proper environment. The Check
|
|
-- parameter indicates if checks are to be suppressed for the stream body.
|
|
-- We suppress checks for array/record reads, since the rule is that these
|
|
-- are like assignments, out of range values due to uninitialized storage,
|
|
-- or other invalid values do NOT cause a Constraint_Error to be raised.
|
|
-- If we are within an instance body all visibility has been established
|
|
-- already and there is no need to install the package.
|
|
|
|
-- This mechanism is now extended to the component types of the array type,
|
|
-- when the component type is not in scope and is private, to handle
|
|
-- properly the case when the full view has defaulted discriminants.
|
|
|
|
-- This special processing is ultimately caused by the fact that the
|
|
-- compiler lacks a well-defined phase when full views are visible
|
|
-- everywhere. Having such a separate pass would remove much of the
|
|
-- special-case code that shuffles partial and full views in the middle
|
|
-- of semantic analysis and expansion.
|
|
|
|
procedure Expand_Access_To_Protected_Op
|
|
(N : Node_Id;
|
|
Pref : Node_Id;
|
|
Typ : Entity_Id);
|
|
-- An attribute reference to a protected subprogram is transformed into
|
|
-- a pair of pointers: one to the object, and one to the operations.
|
|
-- This expansion is performed for 'Access and for 'Unrestricted_Access.
|
|
|
|
procedure Expand_Fpt_Attribute
|
|
(N : Node_Id;
|
|
Pkg : RE_Id;
|
|
Nam : Name_Id;
|
|
Args : List_Id);
|
|
-- This procedure expands a call to a floating-point attribute function.
|
|
-- N is the attribute reference node, and Args is a list of arguments to
|
|
-- be passed to the function call. Pkg identifies the package containing
|
|
-- the appropriate instantiation of System.Fat_Gen. Float arguments in Args
|
|
-- have already been converted to the floating-point type for which Pkg was
|
|
-- instantiated. The Nam argument is the relevant attribute processing
|
|
-- routine to be called. This is the same as the attribute name, except in
|
|
-- the Unaligned_Valid case.
|
|
|
|
procedure Expand_Fpt_Attribute_R (N : Node_Id);
|
|
-- This procedure expands a call to a floating-point attribute function
|
|
-- that takes a single floating-point argument. The function to be called
|
|
-- is always the same as the attribute name.
|
|
|
|
procedure Expand_Fpt_Attribute_RI (N : Node_Id);
|
|
-- This procedure expands a call to a floating-point attribute function
|
|
-- that takes one floating-point argument and one integer argument. The
|
|
-- function to be called is always the same as the attribute name.
|
|
|
|
procedure Expand_Fpt_Attribute_RR (N : Node_Id);
|
|
-- This procedure expands a call to a floating-point attribute function
|
|
-- that takes two floating-point arguments. The function to be called
|
|
-- is always the same as the attribute name.
|
|
|
|
procedure Expand_Loop_Entry_Attribute (N : Node_Id);
|
|
-- Handle the expansion of attribute 'Loop_Entry. As a result, the related
|
|
-- loop may be converted into a conditional block. See body for details.
|
|
|
|
procedure Expand_Min_Max_Attribute (N : Node_Id);
|
|
-- Handle the expansion of attributes 'Max and 'Min, including expanding
|
|
-- then out if we are in Modify_Tree_For_C mode.
|
|
|
|
procedure Expand_Pred_Succ_Attribute (N : Node_Id);
|
|
-- Handles expansion of Pred or Succ attributes for case of non-real
|
|
-- operand with overflow checking required.
|
|
|
|
procedure Expand_Update_Attribute (N : Node_Id);
|
|
-- Handle the expansion of attribute Update
|
|
|
|
function Get_Index_Subtype (N : Node_Id) return Entity_Id;
|
|
-- Used for Last, Last, and Length, when the prefix is an array type.
|
|
-- Obtains the corresponding index subtype.
|
|
|
|
procedure Find_Fat_Info
|
|
(T : Entity_Id;
|
|
Fat_Type : out Entity_Id;
|
|
Fat_Pkg : out RE_Id);
|
|
-- Given a floating-point type T, identifies the package containing the
|
|
-- attributes for this type (returned in Fat_Pkg), and the corresponding
|
|
-- type for which this package was instantiated from Fat_Gen. Error if T
|
|
-- is not a floating-point type.
|
|
|
|
function Find_Stream_Subprogram
|
|
(Typ : Entity_Id;
|
|
Nam : TSS_Name_Type) return Entity_Id;
|
|
-- Returns the stream-oriented subprogram attribute for Typ. For tagged
|
|
-- types, the corresponding primitive operation is looked up, else the
|
|
-- appropriate TSS from the type itself, or from its closest ancestor
|
|
-- defining it, is returned. In both cases, inheritance of representation
|
|
-- aspects is thus taken into account.
|
|
|
|
function Full_Base (T : Entity_Id) return Entity_Id;
|
|
-- The stream functions need to examine the underlying representation of
|
|
-- composite types. In some cases T may be non-private but its base type
|
|
-- is, in which case the function returns the corresponding full view.
|
|
|
|
function Get_Stream_Convert_Pragma (T : Entity_Id) return Node_Id;
|
|
-- Given a type, find a corresponding stream convert pragma that applies to
|
|
-- the implementation base type of this type (Typ). If found, return the
|
|
-- pragma node, otherwise return Empty if no pragma is found.
|
|
|
|
function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean;
|
|
-- Utility for array attributes, returns true on packed constrained
|
|
-- arrays, and on access to same.
|
|
|
|
function Is_Inline_Floating_Point_Attribute (N : Node_Id) return Boolean;
|
|
-- Returns true iff the given node refers to an attribute call that
|
|
-- can be expanded directly by the back end and does not need front end
|
|
-- expansion. Typically used for rounding and truncation attributes that
|
|
-- appear directly inside a conversion to integer.
|
|
|
|
-------------------------
|
|
-- Build_Array_VS_Func --
|
|
-------------------------
|
|
|
|
function Build_Array_VS_Func
|
|
(A_Type : Entity_Id;
|
|
Nod : Node_Id) return Entity_Id
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (Nod);
|
|
Func_Id : constant Entity_Id := Make_Temporary (Loc, 'V');
|
|
Comp_Type : constant Entity_Id := Component_Type (A_Type);
|
|
Body_Stmts : List_Id;
|
|
Index_List : List_Id;
|
|
Formals : List_Id;
|
|
|
|
function Test_Component return List_Id;
|
|
-- Create one statement to test validity of one component designated by
|
|
-- a full set of indexes. Returns statement list containing test.
|
|
|
|
function Test_One_Dimension (N : Int) return List_Id;
|
|
-- Create loop to test one dimension of the array. The single statement
|
|
-- in the loop body tests the inner dimensions if any, or else the
|
|
-- single component. Note that this procedure is called recursively,
|
|
-- with N being the dimension to be initialized. A call with N greater
|
|
-- than the number of dimensions simply generates the component test,
|
|
-- terminating the recursion. Returns statement list containing tests.
|
|
|
|
--------------------
|
|
-- Test_Component --
|
|
--------------------
|
|
|
|
function Test_Component return List_Id is
|
|
Comp : Node_Id;
|
|
Anam : Name_Id;
|
|
|
|
begin
|
|
Comp :=
|
|
Make_Indexed_Component (Loc,
|
|
Prefix => Make_Identifier (Loc, Name_uA),
|
|
Expressions => Index_List);
|
|
|
|
if Is_Scalar_Type (Comp_Type) then
|
|
Anam := Name_Valid;
|
|
else
|
|
Anam := Name_Valid_Scalars;
|
|
end if;
|
|
|
|
return New_List (
|
|
Make_If_Statement (Loc,
|
|
Condition =>
|
|
Make_Op_Not (Loc,
|
|
Right_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Anam,
|
|
Prefix => Comp)),
|
|
Then_Statements => New_List (
|
|
Make_Simple_Return_Statement (Loc,
|
|
Expression => New_Occurrence_Of (Standard_False, Loc)))));
|
|
end Test_Component;
|
|
|
|
------------------------
|
|
-- Test_One_Dimension --
|
|
------------------------
|
|
|
|
function Test_One_Dimension (N : Int) return List_Id is
|
|
Index : Entity_Id;
|
|
|
|
begin
|
|
-- If all dimensions dealt with, we simply test the component
|
|
|
|
if N > Number_Dimensions (A_Type) then
|
|
return Test_Component;
|
|
|
|
-- Here we generate the required loop
|
|
|
|
else
|
|
Index :=
|
|
Make_Defining_Identifier (Loc, New_External_Name ('J', N));
|
|
|
|
Append (New_Occurrence_Of (Index, Loc), Index_List);
|
|
|
|
return New_List (
|
|
Make_Implicit_Loop_Statement (Nod,
|
|
Identifier => Empty,
|
|
Iteration_Scheme =>
|
|
Make_Iteration_Scheme (Loc,
|
|
Loop_Parameter_Specification =>
|
|
Make_Loop_Parameter_Specification (Loc,
|
|
Defining_Identifier => Index,
|
|
Discrete_Subtype_Definition =>
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => Make_Identifier (Loc, Name_uA),
|
|
Attribute_Name => Name_Range,
|
|
Expressions => New_List (
|
|
Make_Integer_Literal (Loc, N))))),
|
|
Statements => Test_One_Dimension (N + 1)),
|
|
Make_Simple_Return_Statement (Loc,
|
|
Expression => New_Occurrence_Of (Standard_True, Loc)));
|
|
end if;
|
|
end Test_One_Dimension;
|
|
|
|
-- Start of processing for Build_Array_VS_Func
|
|
|
|
begin
|
|
Index_List := New_List;
|
|
Body_Stmts := Test_One_Dimension (1);
|
|
|
|
-- Parameter is always (A : A_Typ)
|
|
|
|
Formals := New_List (
|
|
Make_Parameter_Specification (Loc,
|
|
Defining_Identifier => Make_Defining_Identifier (Loc, Name_uA),
|
|
In_Present => True,
|
|
Out_Present => False,
|
|
Parameter_Type => New_Occurrence_Of (A_Type, Loc)));
|
|
|
|
-- Build body
|
|
|
|
Set_Ekind (Func_Id, E_Function);
|
|
Set_Is_Internal (Func_Id);
|
|
|
|
Insert_Action (Nod,
|
|
Make_Subprogram_Body (Loc,
|
|
Specification =>
|
|
Make_Function_Specification (Loc,
|
|
Defining_Unit_Name => Func_Id,
|
|
Parameter_Specifications => Formals,
|
|
Result_Definition =>
|
|
New_Occurrence_Of (Standard_Boolean, Loc)),
|
|
Declarations => New_List,
|
|
Handled_Statement_Sequence =>
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
|
Statements => Body_Stmts)));
|
|
|
|
if not Debug_Generated_Code then
|
|
Set_Debug_Info_Off (Func_Id);
|
|
end if;
|
|
|
|
Set_Is_Pure (Func_Id);
|
|
return Func_Id;
|
|
end Build_Array_VS_Func;
|
|
|
|
--------------------------
|
|
-- Build_Record_VS_Func --
|
|
--------------------------
|
|
|
|
-- Generates:
|
|
|
|
-- function _Valid_Scalars (X : T) return Boolean is
|
|
-- begin
|
|
-- -- Check discriminants
|
|
|
|
-- if not X.D1'Valid_Scalars or else
|
|
-- not X.D2'Valid_Scalars or else
|
|
-- ...
|
|
-- then
|
|
-- return False;
|
|
-- end if;
|
|
|
|
-- -- Check components
|
|
|
|
-- if not X.C1'Valid_Scalars or else
|
|
-- not X.C2'Valid_Scalars or else
|
|
-- ...
|
|
-- then
|
|
-- return False;
|
|
-- end if;
|
|
|
|
-- -- Check variant part
|
|
|
|
-- case X.D1 is
|
|
-- when V1 =>
|
|
-- if not X.C2'Valid_Scalars or else
|
|
-- not X.C3'Valid_Scalars or else
|
|
-- ...
|
|
-- then
|
|
-- return False;
|
|
-- end if;
|
|
-- ...
|
|
-- when Vn =>
|
|
-- if not X.Cn'Valid_Scalars or else
|
|
-- ...
|
|
-- then
|
|
-- return False;
|
|
-- end if;
|
|
-- end case;
|
|
|
|
-- return True;
|
|
-- end _Valid_Scalars;
|
|
|
|
function Build_Record_VS_Func
|
|
(R_Type : Entity_Id;
|
|
Nod : Node_Id) return Entity_Id
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (R_Type);
|
|
Func_Id : constant Entity_Id := Make_Temporary (Loc, 'V');
|
|
X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_X);
|
|
|
|
function Make_VS_Case
|
|
(E : Entity_Id;
|
|
CL : Node_Id;
|
|
Discrs : Elist_Id := New_Elmt_List) return List_Id;
|
|
-- Building block for variant valid scalars. Given a Component_List node
|
|
-- CL, it generates an 'if' followed by a 'case' statement that compares
|
|
-- all components of local temporaries named X and Y (that are declared
|
|
-- as formals at some upper level). E provides the Sloc to be used for
|
|
-- the generated code.
|
|
|
|
function Make_VS_If
|
|
(E : Entity_Id;
|
|
L : List_Id) return Node_Id;
|
|
-- Building block for variant validate scalars. Given the list, L, of
|
|
-- components (or discriminants) L, it generates a return statement that
|
|
-- compares all components of local temporaries named X and Y (that are
|
|
-- declared as formals at some upper level). E provides the Sloc to be
|
|
-- used for the generated code.
|
|
|
|
------------------
|
|
-- Make_VS_Case --
|
|
------------------
|
|
|
|
-- <Make_VS_If on shared components>
|
|
|
|
-- case X.D1 is
|
|
-- when V1 => <Make_VS_Case> on subcomponents
|
|
-- ...
|
|
-- when Vn => <Make_VS_Case> on subcomponents
|
|
-- end case;
|
|
|
|
function Make_VS_Case
|
|
(E : Entity_Id;
|
|
CL : Node_Id;
|
|
Discrs : Elist_Id := New_Elmt_List) return List_Id
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (E);
|
|
Result : constant List_Id := New_List;
|
|
Variant : Node_Id;
|
|
Alt_List : List_Id;
|
|
|
|
begin
|
|
Append_To (Result, Make_VS_If (E, Component_Items (CL)));
|
|
|
|
if No (Variant_Part (CL)) then
|
|
return Result;
|
|
end if;
|
|
|
|
Variant := First_Non_Pragma (Variants (Variant_Part (CL)));
|
|
|
|
if No (Variant) then
|
|
return Result;
|
|
end if;
|
|
|
|
Alt_List := New_List;
|
|
while Present (Variant) loop
|
|
Append_To (Alt_List,
|
|
Make_Case_Statement_Alternative (Loc,
|
|
Discrete_Choices => New_Copy_List (Discrete_Choices (Variant)),
|
|
Statements =>
|
|
Make_VS_Case (E, Component_List (Variant), Discrs)));
|
|
Next_Non_Pragma (Variant);
|
|
end loop;
|
|
|
|
Append_To (Result,
|
|
Make_Case_Statement (Loc,
|
|
Expression =>
|
|
Make_Selected_Component (Loc,
|
|
Prefix => Make_Identifier (Loc, Name_X),
|
|
Selector_Name => New_Copy (Name (Variant_Part (CL)))),
|
|
Alternatives => Alt_List));
|
|
|
|
return Result;
|
|
end Make_VS_Case;
|
|
|
|
----------------
|
|
-- Make_VS_If --
|
|
----------------
|
|
|
|
-- Generates:
|
|
|
|
-- if
|
|
-- not X.C1'Valid_Scalars
|
|
-- or else
|
|
-- not X.C2'Valid_Scalars
|
|
-- ...
|
|
-- then
|
|
-- return False;
|
|
-- end if;
|
|
|
|
-- or a null statement if the list L is empty
|
|
|
|
function Make_VS_If
|
|
(E : Entity_Id;
|
|
L : List_Id) return Node_Id
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (E);
|
|
C : Node_Id;
|
|
Def_Id : Entity_Id;
|
|
Field_Name : Name_Id;
|
|
Cond : Node_Id;
|
|
|
|
begin
|
|
if No (L) then
|
|
return Make_Null_Statement (Loc);
|
|
|
|
else
|
|
Cond := Empty;
|
|
|
|
C := First_Non_Pragma (L);
|
|
while Present (C) loop
|
|
Def_Id := Defining_Identifier (C);
|
|
Field_Name := Chars (Def_Id);
|
|
|
|
-- The tags need not be checked since they will always be valid
|
|
|
|
-- Note also that in the following, we use Make_Identifier for
|
|
-- the component names. Use of New_Occurrence_Of to identify
|
|
-- the components would be incorrect because wrong entities for
|
|
-- discriminants could be picked up in the private type case.
|
|
|
|
-- Don't bother with abstract parent in interface case
|
|
|
|
if Field_Name = Name_uParent
|
|
and then Is_Interface (Etype (Def_Id))
|
|
then
|
|
null;
|
|
|
|
-- Don't bother with tag, always valid, and not scalar anyway
|
|
|
|
elsif Field_Name = Name_uTag then
|
|
null;
|
|
|
|
-- Don't bother with component with no scalar components
|
|
|
|
elsif not Scalar_Part_Present (Etype (Def_Id)) then
|
|
null;
|
|
|
|
-- Normal case, generate Valid_Scalars attribute reference
|
|
|
|
else
|
|
Evolve_Or_Else (Cond,
|
|
Make_Op_Not (Loc,
|
|
Right_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix =>
|
|
Make_Selected_Component (Loc,
|
|
Prefix =>
|
|
Make_Identifier (Loc, Name_X),
|
|
Selector_Name =>
|
|
Make_Identifier (Loc, Field_Name)),
|
|
Attribute_Name => Name_Valid_Scalars)));
|
|
end if;
|
|
|
|
Next_Non_Pragma (C);
|
|
end loop;
|
|
|
|
if No (Cond) then
|
|
return Make_Null_Statement (Loc);
|
|
|
|
else
|
|
return
|
|
Make_Implicit_If_Statement (E,
|
|
Condition => Cond,
|
|
Then_Statements => New_List (
|
|
Make_Simple_Return_Statement (Loc,
|
|
Expression =>
|
|
New_Occurrence_Of (Standard_False, Loc))));
|
|
end if;
|
|
end if;
|
|
end Make_VS_If;
|
|
|
|
-- Local variables
|
|
|
|
Def : constant Node_Id := Parent (R_Type);
|
|
Comps : constant Node_Id := Component_List (Type_Definition (Def));
|
|
Stmts : constant List_Id := New_List;
|
|
Pspecs : constant List_Id := New_List;
|
|
|
|
-- Start of processing for Build_Record_VS_Func
|
|
|
|
begin
|
|
Append_To (Pspecs,
|
|
Make_Parameter_Specification (Loc,
|
|
Defining_Identifier => X,
|
|
Parameter_Type => New_Occurrence_Of (R_Type, Loc)));
|
|
|
|
Append_To (Stmts,
|
|
Make_VS_If (R_Type, Discriminant_Specifications (Def)));
|
|
Append_List_To (Stmts, Make_VS_Case (R_Type, Comps));
|
|
|
|
Append_To (Stmts,
|
|
Make_Simple_Return_Statement (Loc,
|
|
Expression => New_Occurrence_Of (Standard_True, Loc)));
|
|
|
|
Insert_Action (Nod,
|
|
Make_Subprogram_Body (Loc,
|
|
Specification =>
|
|
Make_Function_Specification (Loc,
|
|
Defining_Unit_Name => Func_Id,
|
|
Parameter_Specifications => Pspecs,
|
|
Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
|
|
Declarations => New_List,
|
|
Handled_Statement_Sequence =>
|
|
Make_Handled_Sequence_Of_Statements (Loc, Statements => Stmts)),
|
|
Suppress => Discriminant_Check);
|
|
|
|
if not Debug_Generated_Code then
|
|
Set_Debug_Info_Off (Func_Id);
|
|
end if;
|
|
|
|
Set_Is_Pure (Func_Id);
|
|
return Func_Id;
|
|
end Build_Record_VS_Func;
|
|
|
|
----------------------------------
|
|
-- Compile_Stream_Body_In_Scope --
|
|
----------------------------------
|
|
|
|
procedure Compile_Stream_Body_In_Scope
|
|
(N : Node_Id;
|
|
Decl : Node_Id;
|
|
Arr : Entity_Id;
|
|
Check : Boolean)
|
|
is
|
|
C_Type : constant Entity_Id := Base_Type (Component_Type (Arr));
|
|
Curr : constant Entity_Id := Current_Scope;
|
|
Install : Boolean := False;
|
|
Scop : Entity_Id := Scope (Arr);
|
|
|
|
begin
|
|
if Is_Hidden (Arr)
|
|
and then not In_Open_Scopes (Scop)
|
|
and then Ekind (Scop) = E_Package
|
|
then
|
|
Install := True;
|
|
|
|
else
|
|
-- The component type may be private, in which case we install its
|
|
-- full view to compile the subprogram.
|
|
|
|
-- The component type may be private, in which case we install its
|
|
-- full view to compile the subprogram. We do not do this if the
|
|
-- type has a Stream_Convert pragma, which indicates that there are
|
|
-- special stream-processing operations for that type (for example
|
|
-- Unbounded_String and its wide varieties).
|
|
|
|
Scop := Scope (C_Type);
|
|
|
|
if Is_Private_Type (C_Type)
|
|
and then Present (Full_View (C_Type))
|
|
and then not In_Open_Scopes (Scop)
|
|
and then Ekind (Scop) = E_Package
|
|
and then No (Get_Stream_Convert_Pragma (C_Type))
|
|
then
|
|
Install := True;
|
|
end if;
|
|
end if;
|
|
|
|
-- If we are within an instance body, then all visibility has been
|
|
-- established already and there is no need to install the package.
|
|
|
|
if Install and then not In_Instance_Body then
|
|
Push_Scope (Scop);
|
|
Install_Visible_Declarations (Scop);
|
|
Install_Private_Declarations (Scop);
|
|
|
|
-- The entities in the package are now visible, but the generated
|
|
-- stream entity must appear in the current scope (usually an
|
|
-- enclosing stream function) so that itypes all have their proper
|
|
-- scopes.
|
|
|
|
Push_Scope (Curr);
|
|
else
|
|
Install := False;
|
|
end if;
|
|
|
|
if Check then
|
|
Insert_Action (N, Decl);
|
|
else
|
|
Insert_Action (N, Decl, Suppress => All_Checks);
|
|
end if;
|
|
|
|
if Install then
|
|
|
|
-- Remove extra copy of current scope, and package itself
|
|
|
|
Pop_Scope;
|
|
End_Package_Scope (Scop);
|
|
end if;
|
|
end Compile_Stream_Body_In_Scope;
|
|
|
|
-----------------------------------
|
|
-- Expand_Access_To_Protected_Op --
|
|
-----------------------------------
|
|
|
|
procedure Expand_Access_To_Protected_Op
|
|
(N : Node_Id;
|
|
Pref : Node_Id;
|
|
Typ : Entity_Id)
|
|
is
|
|
-- The value of the attribute_reference is a record containing two
|
|
-- fields: an access to the protected object, and an access to the
|
|
-- subprogram itself. The prefix is a selected component.
|
|
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Agg : Node_Id;
|
|
Btyp : constant Entity_Id := Base_Type (Typ);
|
|
Sub : Entity_Id;
|
|
Sub_Ref : Node_Id;
|
|
E_T : constant Entity_Id := Equivalent_Type (Btyp);
|
|
Acc : constant Entity_Id :=
|
|
Etype (Next_Component (First_Component (E_T)));
|
|
Obj_Ref : Node_Id;
|
|
Curr : Entity_Id;
|
|
|
|
-- Start of processing for Expand_Access_To_Protected_Op
|
|
|
|
begin
|
|
-- Within the body of the protected type, the prefix designates a local
|
|
-- operation, and the object is the first parameter of the corresponding
|
|
-- protected body of the current enclosing operation.
|
|
|
|
if Is_Entity_Name (Pref) then
|
|
-- All indirect calls are external calls, so must do locking and
|
|
-- barrier reevaluation, even if the 'Access occurs within the
|
|
-- protected body. Hence the call to External_Subprogram, as opposed
|
|
-- to Protected_Body_Subprogram, below. See RM-9.5(5). This means
|
|
-- that indirect calls from within the same protected body will
|
|
-- deadlock, as allowed by RM-9.5.1(8,15,17).
|
|
|
|
Sub := New_Occurrence_Of (External_Subprogram (Entity (Pref)), Loc);
|
|
|
|
-- Don't traverse the scopes when the attribute occurs within an init
|
|
-- proc, because we directly use the _init formal of the init proc in
|
|
-- that case.
|
|
|
|
Curr := Current_Scope;
|
|
if not Is_Init_Proc (Curr) then
|
|
pragma Assert (In_Open_Scopes (Scope (Entity (Pref))));
|
|
|
|
while Scope (Curr) /= Scope (Entity (Pref)) loop
|
|
Curr := Scope (Curr);
|
|
end loop;
|
|
end if;
|
|
|
|
-- In case of protected entries the first formal of its Protected_
|
|
-- Body_Subprogram is the address of the object.
|
|
|
|
if Ekind (Curr) = E_Entry then
|
|
Obj_Ref :=
|
|
New_Occurrence_Of
|
|
(First_Formal
|
|
(Protected_Body_Subprogram (Curr)), Loc);
|
|
|
|
-- If the current scope is an init proc, then use the address of the
|
|
-- _init formal as the object reference.
|
|
|
|
elsif Is_Init_Proc (Curr) then
|
|
Obj_Ref :=
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (First_Formal (Curr), Loc),
|
|
Attribute_Name => Name_Address);
|
|
|
|
-- In case of protected subprograms the first formal of its
|
|
-- Protected_Body_Subprogram is the object and we get its address.
|
|
|
|
else
|
|
Obj_Ref :=
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix =>
|
|
New_Occurrence_Of
|
|
(First_Formal
|
|
(Protected_Body_Subprogram (Curr)), Loc),
|
|
Attribute_Name => Name_Address);
|
|
end if;
|
|
|
|
-- Case where the prefix is not an entity name. Find the
|
|
-- version of the protected operation to be called from
|
|
-- outside the protected object.
|
|
|
|
else
|
|
Sub :=
|
|
New_Occurrence_Of
|
|
(External_Subprogram
|
|
(Entity (Selector_Name (Pref))), Loc);
|
|
|
|
Obj_Ref :=
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => Relocate_Node (Prefix (Pref)),
|
|
Attribute_Name => Name_Address);
|
|
end if;
|
|
|
|
Sub_Ref :=
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => Sub,
|
|
Attribute_Name => Name_Access);
|
|
|
|
-- We set the type of the access reference to the already generated
|
|
-- access_to_subprogram type, and declare the reference analyzed, to
|
|
-- prevent further expansion when the enclosing aggregate is analyzed.
|
|
|
|
Set_Etype (Sub_Ref, Acc);
|
|
Set_Analyzed (Sub_Ref);
|
|
|
|
Agg :=
|
|
Make_Aggregate (Loc,
|
|
Expressions => New_List (Obj_Ref, Sub_Ref));
|
|
|
|
-- Sub_Ref has been marked as analyzed, but we still need to make sure
|
|
-- Sub is correctly frozen.
|
|
|
|
Freeze_Before (N, Entity (Sub));
|
|
|
|
Rewrite (N, Agg);
|
|
Analyze_And_Resolve (N, E_T);
|
|
|
|
-- For subsequent analysis, the node must retain its type. The backend
|
|
-- will replace it with the equivalent type where needed.
|
|
|
|
Set_Etype (N, Typ);
|
|
end Expand_Access_To_Protected_Op;
|
|
|
|
--------------------------
|
|
-- Expand_Fpt_Attribute --
|
|
--------------------------
|
|
|
|
procedure Expand_Fpt_Attribute
|
|
(N : Node_Id;
|
|
Pkg : RE_Id;
|
|
Nam : Name_Id;
|
|
Args : List_Id)
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Typ : constant Entity_Id := Etype (N);
|
|
Fnm : Node_Id;
|
|
|
|
begin
|
|
-- The function name is the selected component Attr_xxx.yyy where
|
|
-- Attr_xxx is the package name, and yyy is the argument Nam.
|
|
|
|
-- Note: it would be more usual to have separate RE entries for each
|
|
-- of the entities in the Fat packages, but first they have identical
|
|
-- names (so we would have to have lots of renaming declarations to
|
|
-- meet the normal RE rule of separate names for all runtime entities),
|
|
-- and second there would be an awful lot of them.
|
|
|
|
Fnm :=
|
|
Make_Selected_Component (Loc,
|
|
Prefix => New_Occurrence_Of (RTE (Pkg), Loc),
|
|
Selector_Name => Make_Identifier (Loc, Nam));
|
|
|
|
-- The generated call is given the provided set of parameters, and then
|
|
-- wrapped in a conversion which converts the result to the target type
|
|
-- We use the base type as the target because a range check may be
|
|
-- required.
|
|
|
|
Rewrite (N,
|
|
Unchecked_Convert_To (Base_Type (Etype (N)),
|
|
Make_Function_Call (Loc,
|
|
Name => Fnm,
|
|
Parameter_Associations => Args)));
|
|
|
|
Analyze_And_Resolve (N, Typ);
|
|
end Expand_Fpt_Attribute;
|
|
|
|
----------------------------
|
|
-- Expand_Fpt_Attribute_R --
|
|
----------------------------
|
|
|
|
-- The single argument is converted to its root type to call the
|
|
-- appropriate runtime function, with the actual call being built
|
|
-- by Expand_Fpt_Attribute
|
|
|
|
procedure Expand_Fpt_Attribute_R (N : Node_Id) is
|
|
E1 : constant Node_Id := First (Expressions (N));
|
|
Ftp : Entity_Id;
|
|
Pkg : RE_Id;
|
|
begin
|
|
Find_Fat_Info (Etype (E1), Ftp, Pkg);
|
|
Expand_Fpt_Attribute
|
|
(N, Pkg, Attribute_Name (N),
|
|
New_List (Unchecked_Convert_To (Ftp, Relocate_Node (E1))));
|
|
end Expand_Fpt_Attribute_R;
|
|
|
|
-----------------------------
|
|
-- Expand_Fpt_Attribute_RI --
|
|
-----------------------------
|
|
|
|
-- The first argument is converted to its root type and the second
|
|
-- argument is converted to standard long long integer to call the
|
|
-- appropriate runtime function, with the actual call being built
|
|
-- by Expand_Fpt_Attribute
|
|
|
|
procedure Expand_Fpt_Attribute_RI (N : Node_Id) is
|
|
E1 : constant Node_Id := First (Expressions (N));
|
|
Ftp : Entity_Id;
|
|
Pkg : RE_Id;
|
|
E2 : constant Node_Id := Next (E1);
|
|
begin
|
|
Find_Fat_Info (Etype (E1), Ftp, Pkg);
|
|
Expand_Fpt_Attribute
|
|
(N, Pkg, Attribute_Name (N),
|
|
New_List (
|
|
Unchecked_Convert_To (Ftp, Relocate_Node (E1)),
|
|
Unchecked_Convert_To (Standard_Integer, Relocate_Node (E2))));
|
|
end Expand_Fpt_Attribute_RI;
|
|
|
|
-----------------------------
|
|
-- Expand_Fpt_Attribute_RR --
|
|
-----------------------------
|
|
|
|
-- The two arguments are converted to their root types to call the
|
|
-- appropriate runtime function, with the actual call being built
|
|
-- by Expand_Fpt_Attribute
|
|
|
|
procedure Expand_Fpt_Attribute_RR (N : Node_Id) is
|
|
E1 : constant Node_Id := First (Expressions (N));
|
|
E2 : constant Node_Id := Next (E1);
|
|
Ftp : Entity_Id;
|
|
Pkg : RE_Id;
|
|
|
|
begin
|
|
Find_Fat_Info (Etype (E1), Ftp, Pkg);
|
|
Expand_Fpt_Attribute
|
|
(N, Pkg, Attribute_Name (N),
|
|
New_List (
|
|
Unchecked_Convert_To (Ftp, Relocate_Node (E1)),
|
|
Unchecked_Convert_To (Ftp, Relocate_Node (E2))));
|
|
end Expand_Fpt_Attribute_RR;
|
|
|
|
---------------------------------
|
|
-- Expand_Loop_Entry_Attribute --
|
|
---------------------------------
|
|
|
|
procedure Expand_Loop_Entry_Attribute (N : Node_Id) is
|
|
procedure Build_Conditional_Block
|
|
(Loc : Source_Ptr;
|
|
Cond : Node_Id;
|
|
Loop_Stmt : Node_Id;
|
|
If_Stmt : out Node_Id;
|
|
Blk_Stmt : out Node_Id);
|
|
-- Create a block Blk_Stmt with an empty declarative list and a single
|
|
-- loop Loop_Stmt. The block is encased in an if statement If_Stmt with
|
|
-- condition Cond. If_Stmt is Empty when there is no condition provided.
|
|
|
|
function Is_Array_Iteration (N : Node_Id) return Boolean;
|
|
-- Determine whether loop statement N denotes an Ada 2012 iteration over
|
|
-- an array object.
|
|
|
|
-----------------------------
|
|
-- Build_Conditional_Block --
|
|
-----------------------------
|
|
|
|
procedure Build_Conditional_Block
|
|
(Loc : Source_Ptr;
|
|
Cond : Node_Id;
|
|
Loop_Stmt : Node_Id;
|
|
If_Stmt : out Node_Id;
|
|
Blk_Stmt : out Node_Id)
|
|
is
|
|
begin
|
|
-- Do not reanalyze the original loop statement because it is simply
|
|
-- being relocated.
|
|
|
|
Set_Analyzed (Loop_Stmt);
|
|
|
|
Blk_Stmt :=
|
|
Make_Block_Statement (Loc,
|
|
Declarations => New_List,
|
|
Handled_Statement_Sequence =>
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
|
Statements => New_List (Loop_Stmt)));
|
|
|
|
if Present (Cond) then
|
|
If_Stmt :=
|
|
Make_If_Statement (Loc,
|
|
Condition => Cond,
|
|
Then_Statements => New_List (Blk_Stmt));
|
|
else
|
|
If_Stmt := Empty;
|
|
end if;
|
|
end Build_Conditional_Block;
|
|
|
|
------------------------
|
|
-- Is_Array_Iteration --
|
|
------------------------
|
|
|
|
function Is_Array_Iteration (N : Node_Id) return Boolean is
|
|
Stmt : constant Node_Id := Original_Node (N);
|
|
Iter : Node_Id;
|
|
|
|
begin
|
|
if Nkind (Stmt) = N_Loop_Statement
|
|
and then Present (Iteration_Scheme (Stmt))
|
|
and then Present (Iterator_Specification (Iteration_Scheme (Stmt)))
|
|
then
|
|
Iter := Iterator_Specification (Iteration_Scheme (Stmt));
|
|
|
|
return
|
|
Of_Present (Iter) and then Is_Array_Type (Etype (Name (Iter)));
|
|
end if;
|
|
|
|
return False;
|
|
end Is_Array_Iteration;
|
|
|
|
-- Local variables
|
|
|
|
Exprs : constant List_Id := Expressions (N);
|
|
Pref : constant Node_Id := Prefix (N);
|
|
Typ : constant Entity_Id := Etype (Pref);
|
|
Blk : Node_Id;
|
|
CW_Decl : Node_Id;
|
|
CW_Temp : Entity_Id;
|
|
CW_Typ : Entity_Id;
|
|
Decls : List_Id;
|
|
Installed : Boolean;
|
|
Loc : Source_Ptr;
|
|
Loop_Id : Entity_Id;
|
|
Loop_Stmt : Node_Id;
|
|
Result : Node_Id;
|
|
Scheme : Node_Id;
|
|
Temp_Decl : Node_Id;
|
|
Temp_Id : Entity_Id;
|
|
|
|
-- Start of processing for Expand_Loop_Entry_Attribute
|
|
|
|
begin
|
|
-- Step 1: Find the related loop
|
|
|
|
-- The loop label variant of attribute 'Loop_Entry already has all the
|
|
-- information in its expression.
|
|
|
|
if Present (Exprs) then
|
|
Loop_Id := Entity (First (Exprs));
|
|
Loop_Stmt := Label_Construct (Parent (Loop_Id));
|
|
|
|
-- Climb the parent chain to find the nearest enclosing loop. Skip all
|
|
-- internally generated loops for quantified expressions and for
|
|
-- element iterators over multidimensional arrays: pragma applies to
|
|
-- source loop.
|
|
|
|
else
|
|
Loop_Stmt := N;
|
|
while Present (Loop_Stmt) loop
|
|
if Nkind (Loop_Stmt) = N_Loop_Statement
|
|
and then Comes_From_Source (Loop_Stmt)
|
|
then
|
|
exit;
|
|
end if;
|
|
|
|
Loop_Stmt := Parent (Loop_Stmt);
|
|
end loop;
|
|
|
|
Loop_Id := Entity (Identifier (Loop_Stmt));
|
|
end if;
|
|
|
|
Loc := Sloc (Loop_Stmt);
|
|
|
|
-- Step 2: Transform the loop
|
|
|
|
-- The loop has already been transformed during the expansion of a prior
|
|
-- 'Loop_Entry attribute. Retrieve the declarative list of the block.
|
|
|
|
if Has_Loop_Entry_Attributes (Loop_Id) then
|
|
|
|
-- When the related loop name appears as the argument of attribute
|
|
-- Loop_Entry, the corresponding label construct is the generated
|
|
-- block statement. This is because the expander reuses the label.
|
|
|
|
if Nkind (Loop_Stmt) = N_Block_Statement then
|
|
Decls := Declarations (Loop_Stmt);
|
|
|
|
-- In all other cases, the loop must appear in the handled sequence
|
|
-- of statements of the generated block.
|
|
|
|
else
|
|
pragma Assert
|
|
(Nkind (Parent (Loop_Stmt)) = N_Handled_Sequence_Of_Statements
|
|
and then
|
|
Nkind (Parent (Parent (Loop_Stmt))) = N_Block_Statement);
|
|
|
|
Decls := Declarations (Parent (Parent (Loop_Stmt)));
|
|
end if;
|
|
|
|
Result := Empty;
|
|
|
|
-- Transform the loop into a conditional block
|
|
|
|
else
|
|
Set_Has_Loop_Entry_Attributes (Loop_Id);
|
|
Scheme := Iteration_Scheme (Loop_Stmt);
|
|
|
|
-- Infinite loops are transformed into:
|
|
|
|
-- declare
|
|
-- Temp1 : constant <type of Pref1> := <Pref1>;
|
|
-- . . .
|
|
-- TempN : constant <type of PrefN> := <PrefN>;
|
|
-- begin
|
|
-- loop
|
|
-- <original source statements with attribute rewrites>
|
|
-- end loop;
|
|
-- end;
|
|
|
|
if No (Scheme) then
|
|
Build_Conditional_Block (Loc,
|
|
Cond => Empty,
|
|
Loop_Stmt => Relocate_Node (Loop_Stmt),
|
|
If_Stmt => Result,
|
|
Blk_Stmt => Blk);
|
|
|
|
Result := Blk;
|
|
|
|
-- While loops are transformed into:
|
|
|
|
-- function Fnn return Boolean is
|
|
-- begin
|
|
-- <condition actions>
|
|
-- return <condition>;
|
|
-- end Fnn;
|
|
|
|
-- if Fnn then
|
|
-- declare
|
|
-- Temp1 : constant <type of Pref1> := <Pref1>;
|
|
-- . . .
|
|
-- TempN : constant <type of PrefN> := <PrefN>;
|
|
-- begin
|
|
-- loop
|
|
-- <original source statements with attribute rewrites>
|
|
-- exit when not Fnn;
|
|
-- end loop;
|
|
-- end;
|
|
-- end if;
|
|
|
|
-- Note that loops over iterators and containers are already
|
|
-- converted into while loops.
|
|
|
|
elsif Present (Condition (Scheme)) then
|
|
declare
|
|
Func_Decl : Node_Id;
|
|
Func_Id : Entity_Id;
|
|
Stmts : List_Id;
|
|
|
|
begin
|
|
-- Wrap the condition of the while loop in a Boolean function.
|
|
-- This avoids the duplication of the same code which may lead
|
|
-- to gigi issues with respect to multiple declaration of the
|
|
-- same entity in the presence of side effects or checks. Note
|
|
-- that the condition actions must also be relocated to the
|
|
-- wrapping function.
|
|
|
|
-- Generate:
|
|
-- <condition actions>
|
|
-- return <condition>;
|
|
|
|
if Present (Condition_Actions (Scheme)) then
|
|
Stmts := Condition_Actions (Scheme);
|
|
else
|
|
Stmts := New_List;
|
|
end if;
|
|
|
|
Append_To (Stmts,
|
|
Make_Simple_Return_Statement (Loc,
|
|
Expression => Relocate_Node (Condition (Scheme))));
|
|
|
|
-- Generate:
|
|
-- function Fnn return Boolean is
|
|
-- begin
|
|
-- <Stmts>
|
|
-- end Fnn;
|
|
|
|
Func_Id := Make_Temporary (Loc, 'F');
|
|
Func_Decl :=
|
|
Make_Subprogram_Body (Loc,
|
|
Specification =>
|
|
Make_Function_Specification (Loc,
|
|
Defining_Unit_Name => Func_Id,
|
|
Result_Definition =>
|
|
New_Occurrence_Of (Standard_Boolean, Loc)),
|
|
Declarations => Empty_List,
|
|
Handled_Statement_Sequence =>
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
|
Statements => Stmts));
|
|
|
|
-- The function is inserted before the related loop. Make sure
|
|
-- to analyze it in the context of the loop's enclosing scope.
|
|
|
|
Push_Scope (Scope (Loop_Id));
|
|
Insert_Action (Loop_Stmt, Func_Decl);
|
|
Pop_Scope;
|
|
|
|
-- Transform the original while loop into an infinite loop
|
|
-- where the last statement checks the negated condition. This
|
|
-- placement ensures that the condition will not be evaluated
|
|
-- twice on the first iteration.
|
|
|
|
Set_Iteration_Scheme (Loop_Stmt, Empty);
|
|
Scheme := Empty;
|
|
|
|
-- Generate:
|
|
-- exit when not Fnn;
|
|
|
|
Append_To (Statements (Loop_Stmt),
|
|
Make_Exit_Statement (Loc,
|
|
Condition =>
|
|
Make_Op_Not (Loc,
|
|
Right_Opnd =>
|
|
Make_Function_Call (Loc,
|
|
Name => New_Occurrence_Of (Func_Id, Loc)))));
|
|
|
|
Build_Conditional_Block (Loc,
|
|
Cond =>
|
|
Make_Function_Call (Loc,
|
|
Name => New_Occurrence_Of (Func_Id, Loc)),
|
|
Loop_Stmt => Relocate_Node (Loop_Stmt),
|
|
If_Stmt => Result,
|
|
Blk_Stmt => Blk);
|
|
end;
|
|
|
|
-- Ada 2012 iteration over an array is transformed into:
|
|
|
|
-- if <Array_Nam>'Length (1) > 0
|
|
-- and then <Array_Nam>'Length (N) > 0
|
|
-- then
|
|
-- declare
|
|
-- Temp1 : constant <type of Pref1> := <Pref1>;
|
|
-- . . .
|
|
-- TempN : constant <type of PrefN> := <PrefN>;
|
|
-- begin
|
|
-- for X in ... loop -- multiple loops depending on dims
|
|
-- <original source statements with attribute rewrites>
|
|
-- end loop;
|
|
-- end;
|
|
-- end if;
|
|
|
|
elsif Is_Array_Iteration (Loop_Stmt) then
|
|
declare
|
|
Array_Nam : constant Entity_Id :=
|
|
Entity (Name (Iterator_Specification
|
|
(Iteration_Scheme (Original_Node (Loop_Stmt)))));
|
|
Num_Dims : constant Pos :=
|
|
Number_Dimensions (Etype (Array_Nam));
|
|
Cond : Node_Id := Empty;
|
|
Check : Node_Id;
|
|
|
|
begin
|
|
-- Generate a check which determines whether all dimensions of
|
|
-- the array are non-null.
|
|
|
|
for Dim in 1 .. Num_Dims loop
|
|
Check :=
|
|
Make_Op_Gt (Loc,
|
|
Left_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Array_Nam, Loc),
|
|
Attribute_Name => Name_Length,
|
|
Expressions => New_List (
|
|
Make_Integer_Literal (Loc, Dim))),
|
|
Right_Opnd =>
|
|
Make_Integer_Literal (Loc, 0));
|
|
|
|
if No (Cond) then
|
|
Cond := Check;
|
|
else
|
|
Cond :=
|
|
Make_And_Then (Loc,
|
|
Left_Opnd => Cond,
|
|
Right_Opnd => Check);
|
|
end if;
|
|
end loop;
|
|
|
|
Build_Conditional_Block (Loc,
|
|
Cond => Cond,
|
|
Loop_Stmt => Relocate_Node (Loop_Stmt),
|
|
If_Stmt => Result,
|
|
Blk_Stmt => Blk);
|
|
end;
|
|
|
|
-- For loops are transformed into:
|
|
|
|
-- if <Low> <= <High> then
|
|
-- declare
|
|
-- Temp1 : constant <type of Pref1> := <Pref1>;
|
|
-- . . .
|
|
-- TempN : constant <type of PrefN> := <PrefN>;
|
|
-- begin
|
|
-- for <Def_Id> in <Low> .. <High> loop
|
|
-- <original source statements with attribute rewrites>
|
|
-- end loop;
|
|
-- end;
|
|
-- end if;
|
|
|
|
elsif Present (Loop_Parameter_Specification (Scheme)) then
|
|
declare
|
|
Loop_Spec : constant Node_Id :=
|
|
Loop_Parameter_Specification (Scheme);
|
|
Cond : Node_Id;
|
|
Subt_Def : Node_Id;
|
|
|
|
begin
|
|
Subt_Def := Discrete_Subtype_Definition (Loop_Spec);
|
|
|
|
-- When the loop iterates over a subtype indication with a
|
|
-- range, use the low and high bounds of the subtype itself.
|
|
|
|
if Nkind (Subt_Def) = N_Subtype_Indication then
|
|
Subt_Def := Scalar_Range (Etype (Subt_Def));
|
|
end if;
|
|
|
|
pragma Assert (Nkind (Subt_Def) = N_Range);
|
|
|
|
-- Generate
|
|
-- Low <= High
|
|
|
|
Cond :=
|
|
Make_Op_Le (Loc,
|
|
Left_Opnd => New_Copy_Tree (Low_Bound (Subt_Def)),
|
|
Right_Opnd => New_Copy_Tree (High_Bound (Subt_Def)));
|
|
|
|
Build_Conditional_Block (Loc,
|
|
Cond => Cond,
|
|
Loop_Stmt => Relocate_Node (Loop_Stmt),
|
|
If_Stmt => Result,
|
|
Blk_Stmt => Blk);
|
|
end;
|
|
end if;
|
|
|
|
Decls := Declarations (Blk);
|
|
end if;
|
|
|
|
-- Step 3: Create a constant to capture the value of the prefix at the
|
|
-- entry point into the loop.
|
|
|
|
Temp_Id := Make_Temporary (Loc, 'P');
|
|
|
|
-- Preserve the tag of the prefix by offering a specific view of the
|
|
-- class-wide version of the prefix.
|
|
|
|
if Is_Tagged_Type (Typ) then
|
|
|
|
-- Generate:
|
|
-- CW_Temp : constant Typ'Class := Typ'Class (Pref);
|
|
|
|
CW_Temp := Make_Temporary (Loc, 'T');
|
|
CW_Typ := Class_Wide_Type (Typ);
|
|
|
|
CW_Decl :=
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => CW_Temp,
|
|
Constant_Present => True,
|
|
Object_Definition => New_Occurrence_Of (CW_Typ, Loc),
|
|
Expression =>
|
|
Convert_To (CW_Typ, Relocate_Node (Pref)));
|
|
Append_To (Decls, CW_Decl);
|
|
|
|
-- Generate:
|
|
-- Temp : Typ renames Typ (CW_Temp);
|
|
|
|
Temp_Decl :=
|
|
Make_Object_Renaming_Declaration (Loc,
|
|
Defining_Identifier => Temp_Id,
|
|
Subtype_Mark => New_Occurrence_Of (Typ, Loc),
|
|
Name =>
|
|
Convert_To (Typ, New_Occurrence_Of (CW_Temp, Loc)));
|
|
Append_To (Decls, Temp_Decl);
|
|
|
|
-- Non-tagged case
|
|
|
|
else
|
|
CW_Decl := Empty;
|
|
|
|
-- Generate:
|
|
-- Temp : constant Typ := Pref;
|
|
|
|
Temp_Decl :=
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => Temp_Id,
|
|
Constant_Present => True,
|
|
Object_Definition => New_Occurrence_Of (Typ, Loc),
|
|
Expression => Relocate_Node (Pref));
|
|
Append_To (Decls, Temp_Decl);
|
|
end if;
|
|
|
|
-- Step 4: Analyze all bits
|
|
|
|
Installed := Current_Scope = Scope (Loop_Id);
|
|
|
|
-- Depending on the pracement of attribute 'Loop_Entry relative to the
|
|
-- associated loop, ensure the proper visibility for analysis.
|
|
|
|
if not Installed then
|
|
Push_Scope (Scope (Loop_Id));
|
|
end if;
|
|
|
|
-- The analysis of the conditional block takes care of the constant
|
|
-- declaration.
|
|
|
|
if Present (Result) then
|
|
Rewrite (Loop_Stmt, Result);
|
|
Analyze (Loop_Stmt);
|
|
|
|
-- The conditional block was analyzed when a previous 'Loop_Entry was
|
|
-- expanded. There is no point in reanalyzing the block, simply analyze
|
|
-- the declaration of the constant.
|
|
|
|
else
|
|
if Present (CW_Decl) then
|
|
Analyze (CW_Decl);
|
|
end if;
|
|
|
|
Analyze (Temp_Decl);
|
|
end if;
|
|
|
|
Rewrite (N, New_Occurrence_Of (Temp_Id, Loc));
|
|
Analyze (N);
|
|
|
|
if not Installed then
|
|
Pop_Scope;
|
|
end if;
|
|
end Expand_Loop_Entry_Attribute;
|
|
|
|
------------------------------
|
|
-- Expand_Min_Max_Attribute --
|
|
------------------------------
|
|
|
|
procedure Expand_Min_Max_Attribute (N : Node_Id) is
|
|
begin
|
|
-- Min and Max are handled by the back end (except that static cases
|
|
-- have already been evaluated during semantic processing, although the
|
|
-- back end should not count on this). The one bit of special processing
|
|
-- required in the normal case is that these two attributes typically
|
|
-- generate conditionals in the code, so check the relevant restriction.
|
|
|
|
Check_Restriction (No_Implicit_Conditionals, N);
|
|
|
|
-- In Modify_Tree_For_C mode, we rewrite as an if expression
|
|
|
|
if Modify_Tree_For_C then
|
|
declare
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Typ : constant Entity_Id := Etype (N);
|
|
Expr : constant Node_Id := First (Expressions (N));
|
|
Left : constant Node_Id := Relocate_Node (Expr);
|
|
Right : constant Node_Id := Relocate_Node (Next (Expr));
|
|
|
|
function Make_Compare (Left, Right : Node_Id) return Node_Id;
|
|
-- Returns Left >= Right for Max, Left <= Right for Min
|
|
|
|
------------------
|
|
-- Make_Compare --
|
|
------------------
|
|
|
|
function Make_Compare (Left, Right : Node_Id) return Node_Id is
|
|
begin
|
|
if Attribute_Name (N) = Name_Max then
|
|
return
|
|
Make_Op_Ge (Loc,
|
|
Left_Opnd => Left,
|
|
Right_Opnd => Right);
|
|
else
|
|
return
|
|
Make_Op_Le (Loc,
|
|
Left_Opnd => Left,
|
|
Right_Opnd => Right);
|
|
end if;
|
|
end Make_Compare;
|
|
|
|
-- Start of processing for Min_Max
|
|
|
|
begin
|
|
-- If both Left and Right are side effect free, then we can just
|
|
-- use Duplicate_Expr to duplicate the references and return
|
|
|
|
-- (if Left >=|<= Right then Left else Right)
|
|
|
|
if Side_Effect_Free (Left) and then Side_Effect_Free (Right) then
|
|
Rewrite (N,
|
|
Make_If_Expression (Loc,
|
|
Expressions => New_List (
|
|
Make_Compare (Left, Right),
|
|
Duplicate_Subexpr_No_Checks (Left),
|
|
Duplicate_Subexpr_No_Checks (Right))));
|
|
|
|
-- Otherwise we generate declarations to capture the values.
|
|
|
|
-- The translation is
|
|
|
|
-- do
|
|
-- T1 : constant typ := Left;
|
|
-- T2 : constant typ := Right;
|
|
-- in
|
|
-- (if T1 >=|<= T2 then T1 else T2)
|
|
-- end;
|
|
|
|
else
|
|
declare
|
|
T1 : constant Entity_Id := Make_Temporary (Loc, 'T', Left);
|
|
T2 : constant Entity_Id := Make_Temporary (Loc, 'T', Right);
|
|
|
|
begin
|
|
Rewrite (N,
|
|
Make_Expression_With_Actions (Loc,
|
|
Actions => New_List (
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => T1,
|
|
Constant_Present => True,
|
|
Object_Definition =>
|
|
New_Occurrence_Of (Etype (Left), Loc),
|
|
Expression => Relocate_Node (Left)),
|
|
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => T2,
|
|
Constant_Present => True,
|
|
Object_Definition =>
|
|
New_Occurrence_Of (Etype (Right), Loc),
|
|
Expression => Relocate_Node (Right))),
|
|
|
|
Expression =>
|
|
Make_If_Expression (Loc,
|
|
Expressions => New_List (
|
|
Make_Compare
|
|
(New_Occurrence_Of (T1, Loc),
|
|
New_Occurrence_Of (T2, Loc)),
|
|
New_Occurrence_Of (T1, Loc),
|
|
New_Occurrence_Of (T2, Loc)))));
|
|
end;
|
|
end if;
|
|
|
|
Analyze_And_Resolve (N, Typ);
|
|
end;
|
|
end if;
|
|
end Expand_Min_Max_Attribute;
|
|
|
|
----------------------------------
|
|
-- Expand_N_Attribute_Reference --
|
|
----------------------------------
|
|
|
|
procedure Expand_N_Attribute_Reference (N : Node_Id) is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Typ : constant Entity_Id := Etype (N);
|
|
Btyp : constant Entity_Id := Base_Type (Typ);
|
|
Pref : constant Node_Id := Prefix (N);
|
|
Ptyp : constant Entity_Id := Etype (Pref);
|
|
Exprs : constant List_Id := Expressions (N);
|
|
Id : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (N));
|
|
|
|
procedure Rewrite_Stream_Proc_Call (Pname : Entity_Id);
|
|
-- Rewrites a stream attribute for Read, Write or Output with the
|
|
-- procedure call. Pname is the entity for the procedure to call.
|
|
|
|
------------------------------
|
|
-- Rewrite_Stream_Proc_Call --
|
|
------------------------------
|
|
|
|
procedure Rewrite_Stream_Proc_Call (Pname : Entity_Id) is
|
|
Item : constant Node_Id := Next (First (Exprs));
|
|
Formal : constant Entity_Id := Next_Formal (First_Formal (Pname));
|
|
Formal_Typ : constant Entity_Id := Etype (Formal);
|
|
Is_Written : constant Boolean := (Ekind (Formal) /= E_In_Parameter);
|
|
|
|
begin
|
|
-- The expansion depends on Item, the second actual, which is
|
|
-- the object being streamed in or out.
|
|
|
|
-- If the item is a component of a packed array type, and
|
|
-- a conversion is needed on exit, we introduce a temporary to
|
|
-- hold the value, because otherwise the packed reference will
|
|
-- not be properly expanded.
|
|
|
|
if Nkind (Item) = N_Indexed_Component
|
|
and then Is_Packed (Base_Type (Etype (Prefix (Item))))
|
|
and then Base_Type (Etype (Item)) /= Base_Type (Formal_Typ)
|
|
and then Is_Written
|
|
then
|
|
declare
|
|
Temp : constant Entity_Id := Make_Temporary (Loc, 'V');
|
|
Decl : Node_Id;
|
|
Assn : Node_Id;
|
|
|
|
begin
|
|
Decl :=
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => Temp,
|
|
Object_Definition =>
|
|
New_Occurrence_Of (Formal_Typ, Loc));
|
|
Set_Etype (Temp, Formal_Typ);
|
|
|
|
Assn :=
|
|
Make_Assignment_Statement (Loc,
|
|
Name => New_Copy_Tree (Item),
|
|
Expression =>
|
|
Unchecked_Convert_To
|
|
(Etype (Item), New_Occurrence_Of (Temp, Loc)));
|
|
|
|
Rewrite (Item, New_Occurrence_Of (Temp, Loc));
|
|
Insert_Actions (N,
|
|
New_List (
|
|
Decl,
|
|
Make_Procedure_Call_Statement (Loc,
|
|
Name => New_Occurrence_Of (Pname, Loc),
|
|
Parameter_Associations => Exprs),
|
|
Assn));
|
|
|
|
Rewrite (N, Make_Null_Statement (Loc));
|
|
return;
|
|
end;
|
|
end if;
|
|
|
|
-- For the class-wide dispatching cases, and for cases in which
|
|
-- the base type of the second argument matches the base type of
|
|
-- the corresponding formal parameter (that is to say the stream
|
|
-- operation is not inherited), we are all set, and can use the
|
|
-- argument unchanged.
|
|
|
|
-- For all other cases we do an unchecked conversion of the second
|
|
-- parameter to the type of the formal of the procedure we are
|
|
-- calling. This deals with the private type cases, and with going
|
|
-- to the root type as required in elementary type case.
|
|
|
|
if not Is_Class_Wide_Type (Entity (Pref))
|
|
and then not Is_Class_Wide_Type (Etype (Item))
|
|
and then Base_Type (Etype (Item)) /= Base_Type (Formal_Typ)
|
|
then
|
|
Rewrite (Item,
|
|
Unchecked_Convert_To (Formal_Typ, Relocate_Node (Item)));
|
|
|
|
-- For untagged derived types set Assignment_OK, to prevent
|
|
-- copies from being created when the unchecked conversion
|
|
-- is expanded (which would happen in Remove_Side_Effects
|
|
-- if Expand_N_Unchecked_Conversion were allowed to call
|
|
-- Force_Evaluation). The copy could violate Ada semantics in
|
|
-- cases such as an actual that is an out parameter. Note that
|
|
-- this approach is also used in exp_ch7 for calls to controlled
|
|
-- type operations to prevent problems with actuals wrapped in
|
|
-- unchecked conversions.
|
|
|
|
if Is_Untagged_Derivation (Etype (Expression (Item))) then
|
|
Set_Assignment_OK (Item);
|
|
end if;
|
|
end if;
|
|
|
|
-- The stream operation to call may be a renaming created by an
|
|
-- attribute definition clause, and may not be frozen yet. Ensure
|
|
-- that it has the necessary extra formals.
|
|
|
|
if not Is_Frozen (Pname) then
|
|
Create_Extra_Formals (Pname);
|
|
end if;
|
|
|
|
-- And now rewrite the call
|
|
|
|
Rewrite (N,
|
|
Make_Procedure_Call_Statement (Loc,
|
|
Name => New_Occurrence_Of (Pname, Loc),
|
|
Parameter_Associations => Exprs));
|
|
|
|
Analyze (N);
|
|
end Rewrite_Stream_Proc_Call;
|
|
|
|
-- Start of processing for Expand_N_Attribute_Reference
|
|
|
|
begin
|
|
-- Do required validity checking, if enabled. Do not apply check to
|
|
-- output parameters of an Asm instruction, since the value of this
|
|
-- is not set till after the attribute has been elaborated, and do
|
|
-- not apply the check to the arguments of a 'Read or 'Input attribute
|
|
-- reference since the scalar argument is an OUT scalar.
|
|
|
|
if Validity_Checks_On and then Validity_Check_Operands
|
|
and then Id /= Attribute_Asm_Output
|
|
and then Id /= Attribute_Read
|
|
and then Id /= Attribute_Input
|
|
then
|
|
declare
|
|
Expr : Node_Id;
|
|
begin
|
|
Expr := First (Expressions (N));
|
|
while Present (Expr) loop
|
|
Ensure_Valid (Expr);
|
|
Next (Expr);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
|
|
-- Ada 2005 (AI-318-02): If attribute prefix is a call to a build-in-
|
|
-- place function, then a temporary return object needs to be created
|
|
-- and access to it must be passed to the function. Currently we limit
|
|
-- such functions to those with inherently limited result subtypes, but
|
|
-- eventually we plan to expand the functions that are treated as
|
|
-- build-in-place to include other composite result types.
|
|
|
|
if Ada_Version >= Ada_2005
|
|
and then Is_Build_In_Place_Function_Call (Pref)
|
|
then
|
|
Make_Build_In_Place_Call_In_Anonymous_Context (Pref);
|
|
end if;
|
|
|
|
-- If prefix is a protected type name, this is a reference to the
|
|
-- current instance of the type. For a component definition, nothing
|
|
-- to do (expansion will occur in the init proc). In other contexts,
|
|
-- rewrite into reference to current instance.
|
|
|
|
if Is_Protected_Self_Reference (Pref)
|
|
and then not
|
|
(Nkind_In (Parent (N), N_Index_Or_Discriminant_Constraint,
|
|
N_Discriminant_Association)
|
|
and then Nkind (Parent (Parent (Parent (Parent (N))))) =
|
|
N_Component_Definition)
|
|
|
|
-- No action needed for these attributes since the current instance
|
|
-- will be rewritten to be the name of the _object parameter
|
|
-- associated with the enclosing protected subprogram (see below).
|
|
|
|
and then Id /= Attribute_Access
|
|
and then Id /= Attribute_Unchecked_Access
|
|
and then Id /= Attribute_Unrestricted_Access
|
|
then
|
|
Rewrite (Pref, Concurrent_Ref (Pref));
|
|
Analyze (Pref);
|
|
end if;
|
|
|
|
-- Remaining processing depends on specific attribute
|
|
|
|
-- Note: individual sections of the following case statement are
|
|
-- allowed to assume there is no code after the case statement, and
|
|
-- are legitimately allowed to execute return statements if they have
|
|
-- nothing more to do.
|
|
|
|
case Id is
|
|
|
|
-- Attributes related to Ada 2012 iterators
|
|
|
|
when Attribute_Constant_Indexing |
|
|
Attribute_Default_Iterator |
|
|
Attribute_Implicit_Dereference |
|
|
Attribute_Iterable |
|
|
Attribute_Iterator_Element |
|
|
Attribute_Variable_Indexing =>
|
|
null;
|
|
|
|
-- Internal attributes used to deal with Ada 2012 delayed aspects. These
|
|
-- were already rejected by the parser. Thus they shouldn't appear here.
|
|
|
|
when Internal_Attribute_Id =>
|
|
raise Program_Error;
|
|
|
|
------------
|
|
-- Access --
|
|
------------
|
|
|
|
when Attribute_Access |
|
|
Attribute_Unchecked_Access |
|
|
Attribute_Unrestricted_Access =>
|
|
|
|
Access_Cases : declare
|
|
Ref_Object : constant Node_Id := Get_Referenced_Object (Pref);
|
|
Btyp_DDT : Entity_Id;
|
|
|
|
function Enclosing_Object (N : Node_Id) return Node_Id;
|
|
-- If N denotes a compound name (selected component, indexed
|
|
-- component, or slice), returns the name of the outermost such
|
|
-- enclosing object. Otherwise returns N. If the object is a
|
|
-- renaming, then the renamed object is returned.
|
|
|
|
----------------------
|
|
-- Enclosing_Object --
|
|
----------------------
|
|
|
|
function Enclosing_Object (N : Node_Id) return Node_Id is
|
|
Obj_Name : Node_Id;
|
|
|
|
begin
|
|
Obj_Name := N;
|
|
while Nkind_In (Obj_Name, N_Selected_Component,
|
|
N_Indexed_Component,
|
|
N_Slice)
|
|
loop
|
|
Obj_Name := Prefix (Obj_Name);
|
|
end loop;
|
|
|
|
return Get_Referenced_Object (Obj_Name);
|
|
end Enclosing_Object;
|
|
|
|
-- Local declarations
|
|
|
|
Enc_Object : constant Node_Id := Enclosing_Object (Ref_Object);
|
|
|
|
-- Start of processing for Access_Cases
|
|
|
|
begin
|
|
Btyp_DDT := Designated_Type (Btyp);
|
|
|
|
-- Handle designated types that come from the limited view
|
|
|
|
if From_Limited_With (Btyp_DDT)
|
|
and then Has_Non_Limited_View (Btyp_DDT)
|
|
then
|
|
Btyp_DDT := Non_Limited_View (Btyp_DDT);
|
|
end if;
|
|
|
|
-- In order to improve the text of error messages, the designated
|
|
-- type of access-to-subprogram itypes is set by the semantics as
|
|
-- the associated subprogram entity (see sem_attr). Now we replace
|
|
-- such node with the proper E_Subprogram_Type itype.
|
|
|
|
if Id = Attribute_Unrestricted_Access
|
|
and then Is_Subprogram (Directly_Designated_Type (Typ))
|
|
then
|
|
-- The following conditions ensure that this special management
|
|
-- is done only for "Address!(Prim'Unrestricted_Access)" nodes.
|
|
-- At this stage other cases in which the designated type is
|
|
-- still a subprogram (instead of an E_Subprogram_Type) are
|
|
-- wrong because the semantics must have overridden the type of
|
|
-- the node with the type imposed by the context.
|
|
|
|
if Nkind (Parent (N)) = N_Unchecked_Type_Conversion
|
|
and then Etype (Parent (N)) = RTE (RE_Prim_Ptr)
|
|
then
|
|
Set_Etype (N, RTE (RE_Prim_Ptr));
|
|
|
|
else
|
|
declare
|
|
Subp : constant Entity_Id :=
|
|
Directly_Designated_Type (Typ);
|
|
Etyp : Entity_Id;
|
|
Extra : Entity_Id := Empty;
|
|
New_Formal : Entity_Id;
|
|
Old_Formal : Entity_Id := First_Formal (Subp);
|
|
Subp_Typ : Entity_Id;
|
|
|
|
begin
|
|
Subp_Typ := Create_Itype (E_Subprogram_Type, N);
|
|
Set_Etype (Subp_Typ, Etype (Subp));
|
|
Set_Returns_By_Ref (Subp_Typ, Returns_By_Ref (Subp));
|
|
|
|
if Present (Old_Formal) then
|
|
New_Formal := New_Copy (Old_Formal);
|
|
Set_First_Entity (Subp_Typ, New_Formal);
|
|
|
|
loop
|
|
Set_Scope (New_Formal, Subp_Typ);
|
|
Etyp := Etype (New_Formal);
|
|
|
|
-- Handle itypes. There is no need to duplicate
|
|
-- here the itypes associated with record types
|
|
-- (i.e the implicit full view of private types).
|
|
|
|
if Is_Itype (Etyp)
|
|
and then Ekind (Base_Type (Etyp)) /= E_Record_Type
|
|
then
|
|
Extra := New_Copy (Etyp);
|
|
Set_Parent (Extra, New_Formal);
|
|
Set_Etype (New_Formal, Extra);
|
|
Set_Scope (Extra, Subp_Typ);
|
|
end if;
|
|
|
|
Extra := New_Formal;
|
|
Next_Formal (Old_Formal);
|
|
exit when No (Old_Formal);
|
|
|
|
Set_Next_Entity (New_Formal,
|
|
New_Copy (Old_Formal));
|
|
Next_Entity (New_Formal);
|
|
end loop;
|
|
|
|
Set_Next_Entity (New_Formal, Empty);
|
|
Set_Last_Entity (Subp_Typ, Extra);
|
|
end if;
|
|
|
|
-- Now that the explicit formals have been duplicated,
|
|
-- any extra formals needed by the subprogram must be
|
|
-- created.
|
|
|
|
if Present (Extra) then
|
|
Set_Extra_Formal (Extra, Empty);
|
|
end if;
|
|
|
|
Create_Extra_Formals (Subp_Typ);
|
|
Set_Directly_Designated_Type (Typ, Subp_Typ);
|
|
end;
|
|
end if;
|
|
end if;
|
|
|
|
if Is_Access_Protected_Subprogram_Type (Btyp) then
|
|
Expand_Access_To_Protected_Op (N, Pref, Typ);
|
|
|
|
-- If prefix is a type name, this is a reference to the current
|
|
-- instance of the type, within its initialization procedure.
|
|
|
|
elsif Is_Entity_Name (Pref)
|
|
and then Is_Type (Entity (Pref))
|
|
then
|
|
declare
|
|
Par : Node_Id;
|
|
Formal : Entity_Id;
|
|
|
|
begin
|
|
-- If the current instance name denotes a task type, then
|
|
-- the access attribute is rewritten to be the name of the
|
|
-- "_task" parameter associated with the task type's task
|
|
-- procedure. An unchecked conversion is applied to ensure
|
|
-- a type match in cases of expander-generated calls (e.g.
|
|
-- init procs).
|
|
|
|
if Is_Task_Type (Entity (Pref)) then
|
|
Formal :=
|
|
First_Entity (Get_Task_Body_Procedure (Entity (Pref)));
|
|
while Present (Formal) loop
|
|
exit when Chars (Formal) = Name_uTask;
|
|
Next_Entity (Formal);
|
|
end loop;
|
|
|
|
pragma Assert (Present (Formal));
|
|
|
|
Rewrite (N,
|
|
Unchecked_Convert_To (Typ,
|
|
New_Occurrence_Of (Formal, Loc)));
|
|
Set_Etype (N, Typ);
|
|
|
|
elsif Is_Protected_Type (Entity (Pref)) then
|
|
|
|
-- No action needed for current instance located in a
|
|
-- component definition (expansion will occur in the
|
|
-- init proc)
|
|
|
|
if Is_Protected_Type (Current_Scope) then
|
|
null;
|
|
|
|
-- If the current instance reference is located in a
|
|
-- protected subprogram or entry then rewrite the access
|
|
-- attribute to be the name of the "_object" parameter.
|
|
-- An unchecked conversion is applied to ensure a type
|
|
-- match in cases of expander-generated calls (e.g. init
|
|
-- procs).
|
|
|
|
-- The code may be nested in a block, so find enclosing
|
|
-- scope that is a protected operation.
|
|
|
|
else
|
|
declare
|
|
Subp : Entity_Id;
|
|
|
|
begin
|
|
Subp := Current_Scope;
|
|
while Ekind_In (Subp, E_Loop, E_Block) loop
|
|
Subp := Scope (Subp);
|
|
end loop;
|
|
|
|
Formal :=
|
|
First_Entity
|
|
(Protected_Body_Subprogram (Subp));
|
|
|
|
-- For a protected subprogram the _Object parameter
|
|
-- is the protected record, so we create an access
|
|
-- to it. The _Object parameter of an entry is an
|
|
-- address.
|
|
|
|
if Ekind (Subp) = E_Entry then
|
|
Rewrite (N,
|
|
Unchecked_Convert_To (Typ,
|
|
New_Occurrence_Of (Formal, Loc)));
|
|
Set_Etype (N, Typ);
|
|
|
|
else
|
|
Rewrite (N,
|
|
Unchecked_Convert_To (Typ,
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Unrestricted_Access,
|
|
Prefix =>
|
|
New_Occurrence_Of (Formal, Loc))));
|
|
Analyze_And_Resolve (N);
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
-- The expression must appear in a default expression,
|
|
-- (which in the initialization procedure is the right-hand
|
|
-- side of an assignment), and not in a discriminant
|
|
-- constraint.
|
|
|
|
else
|
|
Par := Parent (N);
|
|
while Present (Par) loop
|
|
exit when Nkind (Par) = N_Assignment_Statement;
|
|
|
|
if Nkind (Par) = N_Component_Declaration then
|
|
return;
|
|
end if;
|
|
|
|
Par := Parent (Par);
|
|
end loop;
|
|
|
|
if Present (Par) then
|
|
Rewrite (N,
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => Make_Identifier (Loc, Name_uInit),
|
|
Attribute_Name => Attribute_Name (N)));
|
|
|
|
Analyze_And_Resolve (N, Typ);
|
|
end if;
|
|
end if;
|
|
end;
|
|
|
|
-- If the prefix of an Access attribute is a dereference of an
|
|
-- access parameter (or a renaming of such a dereference, or a
|
|
-- subcomponent of such a dereference) and the context is a
|
|
-- general access type (including the type of an object or
|
|
-- component with an access_definition, but not the anonymous
|
|
-- type of an access parameter or access discriminant), then
|
|
-- apply an accessibility check to the access parameter. We used
|
|
-- to rewrite the access parameter as a type conversion, but that
|
|
-- could only be done if the immediate prefix of the Access
|
|
-- attribute was the dereference, and didn't handle cases where
|
|
-- the attribute is applied to a subcomponent of the dereference,
|
|
-- since there's generally no available, appropriate access type
|
|
-- to convert to in that case. The attribute is passed as the
|
|
-- point to insert the check, because the access parameter may
|
|
-- come from a renaming, possibly in a different scope, and the
|
|
-- check must be associated with the attribute itself.
|
|
|
|
elsif Id = Attribute_Access
|
|
and then Nkind (Enc_Object) = N_Explicit_Dereference
|
|
and then Is_Entity_Name (Prefix (Enc_Object))
|
|
and then (Ekind (Btyp) = E_General_Access_Type
|
|
or else Is_Local_Anonymous_Access (Btyp))
|
|
and then Ekind (Entity (Prefix (Enc_Object))) in Formal_Kind
|
|
and then Ekind (Etype (Entity (Prefix (Enc_Object))))
|
|
= E_Anonymous_Access_Type
|
|
and then Present (Extra_Accessibility
|
|
(Entity (Prefix (Enc_Object))))
|
|
then
|
|
Apply_Accessibility_Check (Prefix (Enc_Object), Typ, N);
|
|
|
|
-- Ada 2005 (AI-251): If the designated type is an interface we
|
|
-- add an implicit conversion to force the displacement of the
|
|
-- pointer to reference the secondary dispatch table.
|
|
|
|
elsif Is_Interface (Btyp_DDT)
|
|
and then (Comes_From_Source (N)
|
|
or else Comes_From_Source (Ref_Object)
|
|
or else (Nkind (Ref_Object) in N_Has_Chars
|
|
and then Chars (Ref_Object) = Name_uInit))
|
|
then
|
|
if Nkind (Ref_Object) /= N_Explicit_Dereference then
|
|
|
|
-- No implicit conversion required if types match, or if
|
|
-- the prefix is the class_wide_type of the interface. In
|
|
-- either case passing an object of the interface type has
|
|
-- already set the pointer correctly.
|
|
|
|
if Btyp_DDT = Etype (Ref_Object)
|
|
or else (Is_Class_Wide_Type (Etype (Ref_Object))
|
|
and then
|
|
Class_Wide_Type (Btyp_DDT) = Etype (Ref_Object))
|
|
then
|
|
null;
|
|
|
|
else
|
|
Rewrite (Prefix (N),
|
|
Convert_To (Btyp_DDT,
|
|
New_Copy_Tree (Prefix (N))));
|
|
|
|
Analyze_And_Resolve (Prefix (N), Btyp_DDT);
|
|
end if;
|
|
|
|
-- When the object is an explicit dereference, convert the
|
|
-- dereference's prefix.
|
|
|
|
else
|
|
declare
|
|
Obj_DDT : constant Entity_Id :=
|
|
Base_Type
|
|
(Directly_Designated_Type
|
|
(Etype (Prefix (Ref_Object))));
|
|
begin
|
|
-- No implicit conversion required if designated types
|
|
-- match, or if we have an unrestricted access.
|
|
|
|
if Obj_DDT /= Btyp_DDT
|
|
and then Id /= Attribute_Unrestricted_Access
|
|
and then not (Is_Class_Wide_Type (Obj_DDT)
|
|
and then Etype (Obj_DDT) = Btyp_DDT)
|
|
then
|
|
Rewrite (N,
|
|
Convert_To (Typ,
|
|
New_Copy_Tree (Prefix (Ref_Object))));
|
|
Analyze_And_Resolve (N, Typ);
|
|
end if;
|
|
end;
|
|
end if;
|
|
end if;
|
|
end Access_Cases;
|
|
|
|
--------------
|
|
-- Adjacent --
|
|
--------------
|
|
|
|
-- Transforms 'Adjacent into a call to the floating-point attribute
|
|
-- function Adjacent in Fat_xxx (where xxx is the root type)
|
|
|
|
when Attribute_Adjacent =>
|
|
Expand_Fpt_Attribute_RR (N);
|
|
|
|
-------------
|
|
-- Address --
|
|
-------------
|
|
|
|
when Attribute_Address => Address : declare
|
|
Task_Proc : Entity_Id;
|
|
|
|
begin
|
|
-- If the prefix is a task or a task type, the useful address is that
|
|
-- of the procedure for the task body, i.e. the actual program unit.
|
|
-- We replace the original entity with that of the procedure.
|
|
|
|
if Is_Entity_Name (Pref)
|
|
and then Is_Task_Type (Entity (Pref))
|
|
then
|
|
Task_Proc := Next_Entity (Root_Type (Ptyp));
|
|
|
|
while Present (Task_Proc) loop
|
|
exit when Ekind (Task_Proc) = E_Procedure
|
|
and then Etype (First_Formal (Task_Proc)) =
|
|
Corresponding_Record_Type (Ptyp);
|
|
Next_Entity (Task_Proc);
|
|
end loop;
|
|
|
|
if Present (Task_Proc) then
|
|
Set_Entity (Pref, Task_Proc);
|
|
Set_Etype (Pref, Etype (Task_Proc));
|
|
end if;
|
|
|
|
-- Similarly, the address of a protected operation is the address
|
|
-- of the corresponding protected body, regardless of the protected
|
|
-- object from which it is selected.
|
|
|
|
elsif Nkind (Pref) = N_Selected_Component
|
|
and then Is_Subprogram (Entity (Selector_Name (Pref)))
|
|
and then Is_Protected_Type (Scope (Entity (Selector_Name (Pref))))
|
|
then
|
|
Rewrite (Pref,
|
|
New_Occurrence_Of (
|
|
External_Subprogram (Entity (Selector_Name (Pref))), Loc));
|
|
|
|
elsif Nkind (Pref) = N_Explicit_Dereference
|
|
and then Ekind (Ptyp) = E_Subprogram_Type
|
|
and then Convention (Ptyp) = Convention_Protected
|
|
then
|
|
-- The prefix is be a dereference of an access_to_protected_
|
|
-- subprogram. The desired address is the second component of
|
|
-- the record that represents the access.
|
|
|
|
declare
|
|
Addr : constant Entity_Id := Etype (N);
|
|
Ptr : constant Node_Id := Prefix (Pref);
|
|
T : constant Entity_Id :=
|
|
Equivalent_Type (Base_Type (Etype (Ptr)));
|
|
|
|
begin
|
|
Rewrite (N,
|
|
Unchecked_Convert_To (Addr,
|
|
Make_Selected_Component (Loc,
|
|
Prefix => Unchecked_Convert_To (T, Ptr),
|
|
Selector_Name => New_Occurrence_Of (
|
|
Next_Entity (First_Entity (T)), Loc))));
|
|
|
|
Analyze_And_Resolve (N, Addr);
|
|
end;
|
|
|
|
-- Ada 2005 (AI-251): Class-wide interface objects are always
|
|
-- "displaced" to reference the tag associated with the interface
|
|
-- type. In order to obtain the real address of such objects we
|
|
-- generate a call to a run-time subprogram that returns the base
|
|
-- address of the object.
|
|
|
|
-- This processing is not needed in the VM case, where dispatching
|
|
-- issues are taken care of by the virtual machine.
|
|
|
|
elsif Is_Class_Wide_Type (Ptyp)
|
|
and then Is_Interface (Ptyp)
|
|
and then Tagged_Type_Expansion
|
|
and then not (Nkind (Pref) in N_Has_Entity
|
|
and then Is_Subprogram (Entity (Pref)))
|
|
then
|
|
Rewrite (N,
|
|
Make_Function_Call (Loc,
|
|
Name => New_Occurrence_Of (RTE (RE_Base_Address), Loc),
|
|
Parameter_Associations => New_List (
|
|
Relocate_Node (N))));
|
|
Analyze (N);
|
|
return;
|
|
end if;
|
|
|
|
-- Deal with packed array reference, other cases are handled by
|
|
-- the back end.
|
|
|
|
if Involves_Packed_Array_Reference (Pref) then
|
|
Expand_Packed_Address_Reference (N);
|
|
end if;
|
|
end Address;
|
|
|
|
---------------
|
|
-- Alignment --
|
|
---------------
|
|
|
|
when Attribute_Alignment => Alignment : declare
|
|
New_Node : Node_Id;
|
|
|
|
begin
|
|
-- For class-wide types, X'Class'Alignment is transformed into a
|
|
-- direct reference to the Alignment of the class type, so that the
|
|
-- back end does not have to deal with the X'Class'Alignment
|
|
-- reference.
|
|
|
|
if Is_Entity_Name (Pref)
|
|
and then Is_Class_Wide_Type (Entity (Pref))
|
|
then
|
|
Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
|
|
return;
|
|
|
|
-- For x'Alignment applied to an object of a class wide type,
|
|
-- transform X'Alignment into a call to the predefined primitive
|
|
-- operation _Alignment applied to X.
|
|
|
|
elsif Is_Class_Wide_Type (Ptyp) then
|
|
New_Node :=
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => Pref,
|
|
Attribute_Name => Name_Tag);
|
|
|
|
New_Node := Build_Get_Alignment (Loc, New_Node);
|
|
|
|
-- Case where the context is a specific integer type with which
|
|
-- the original attribute was compatible. The function has a
|
|
-- specific type as well, so to preserve the compatibility we
|
|
-- must convert explicitly.
|
|
|
|
if Typ /= Standard_Integer then
|
|
New_Node := Convert_To (Typ, New_Node);
|
|
end if;
|
|
|
|
Rewrite (N, New_Node);
|
|
Analyze_And_Resolve (N, Typ);
|
|
return;
|
|
|
|
-- For all other cases, we just have to deal with the case of
|
|
-- the fact that the result can be universal.
|
|
|
|
else
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
|
end if;
|
|
end Alignment;
|
|
|
|
---------
|
|
-- Bit --
|
|
---------
|
|
|
|
-- We compute this if a packed array reference was present, otherwise we
|
|
-- leave the computation up to the back end.
|
|
|
|
when Attribute_Bit =>
|
|
if Involves_Packed_Array_Reference (Pref) then
|
|
Expand_Packed_Bit_Reference (N);
|
|
else
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
|
end if;
|
|
|
|
------------------
|
|
-- Bit_Position --
|
|
------------------
|
|
|
|
-- We compute this if a component clause was present, otherwise we leave
|
|
-- the computation up to the back end, since we don't know what layout
|
|
-- will be chosen.
|
|
|
|
-- Note that the attribute can apply to a naked record component
|
|
-- in generated code (i.e. the prefix is an identifier that
|
|
-- references the component or discriminant entity).
|
|
|
|
when Attribute_Bit_Position => Bit_Position : declare
|
|
CE : Entity_Id;
|
|
|
|
begin
|
|
if Nkind (Pref) = N_Identifier then
|
|
CE := Entity (Pref);
|
|
else
|
|
CE := Entity (Selector_Name (Pref));
|
|
end if;
|
|
|
|
if Known_Static_Component_Bit_Offset (CE) then
|
|
Rewrite (N,
|
|
Make_Integer_Literal (Loc,
|
|
Intval => Component_Bit_Offset (CE)));
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
else
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
|
end if;
|
|
end Bit_Position;
|
|
|
|
------------------
|
|
-- Body_Version --
|
|
------------------
|
|
|
|
-- A reference to P'Body_Version or P'Version is expanded to
|
|
|
|
-- Vnn : Unsigned;
|
|
-- pragma Import (C, Vnn, "uuuuT");
|
|
-- ...
|
|
-- Get_Version_String (Vnn)
|
|
|
|
-- where uuuu is the unit name (dots replaced by double underscore)
|
|
-- and T is B for the cases of Body_Version, or Version applied to a
|
|
-- subprogram acting as its own spec, and S for Version applied to a
|
|
-- subprogram spec or package. This sequence of code references the
|
|
-- unsigned constant created in the main program by the binder.
|
|
|
|
-- A special exception occurs for Standard, where the string returned
|
|
-- is a copy of the library string in gnatvsn.ads.
|
|
|
|
when Attribute_Body_Version | Attribute_Version => Version : declare
|
|
E : constant Entity_Id := Make_Temporary (Loc, 'V');
|
|
Pent : Entity_Id;
|
|
S : String_Id;
|
|
|
|
begin
|
|
-- If not library unit, get to containing library unit
|
|
|
|
Pent := Entity (Pref);
|
|
while Pent /= Standard_Standard
|
|
and then Scope (Pent) /= Standard_Standard
|
|
and then not Is_Child_Unit (Pent)
|
|
loop
|
|
Pent := Scope (Pent);
|
|
end loop;
|
|
|
|
-- Special case Standard and Standard.ASCII
|
|
|
|
if Pent = Standard_Standard or else Pent = Standard_ASCII then
|
|
Rewrite (N,
|
|
Make_String_Literal (Loc,
|
|
Strval => Verbose_Library_Version));
|
|
|
|
-- All other cases
|
|
|
|
else
|
|
-- Build required string constant
|
|
|
|
Get_Name_String (Get_Unit_Name (Pent));
|
|
|
|
Start_String;
|
|
for J in 1 .. Name_Len - 2 loop
|
|
if Name_Buffer (J) = '.' then
|
|
Store_String_Chars ("__");
|
|
else
|
|
Store_String_Char (Get_Char_Code (Name_Buffer (J)));
|
|
end if;
|
|
end loop;
|
|
|
|
-- Case of subprogram acting as its own spec, always use body
|
|
|
|
if Nkind (Declaration_Node (Pent)) in N_Subprogram_Specification
|
|
and then Nkind (Parent (Declaration_Node (Pent))) =
|
|
N_Subprogram_Body
|
|
and then Acts_As_Spec (Parent (Declaration_Node (Pent)))
|
|
then
|
|
Store_String_Chars ("B");
|
|
|
|
-- Case of no body present, always use spec
|
|
|
|
elsif not Unit_Requires_Body (Pent) then
|
|
Store_String_Chars ("S");
|
|
|
|
-- Otherwise use B for Body_Version, S for spec
|
|
|
|
elsif Id = Attribute_Body_Version then
|
|
Store_String_Chars ("B");
|
|
else
|
|
Store_String_Chars ("S");
|
|
end if;
|
|
|
|
S := End_String;
|
|
Lib.Version_Referenced (S);
|
|
|
|
-- Insert the object declaration
|
|
|
|
Insert_Actions (N, New_List (
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => E,
|
|
Object_Definition =>
|
|
New_Occurrence_Of (RTE (RE_Unsigned), Loc))));
|
|
|
|
-- Set entity as imported with correct external name
|
|
|
|
Set_Is_Imported (E);
|
|
Set_Interface_Name (E, Make_String_Literal (Loc, S));
|
|
|
|
-- Set entity as internal to ensure proper Sprint output of its
|
|
-- implicit importation.
|
|
|
|
Set_Is_Internal (E);
|
|
|
|
-- And now rewrite original reference
|
|
|
|
Rewrite (N,
|
|
Make_Function_Call (Loc,
|
|
Name => New_Occurrence_Of (RTE (RE_Get_Version_String), Loc),
|
|
Parameter_Associations => New_List (
|
|
New_Occurrence_Of (E, Loc))));
|
|
end if;
|
|
|
|
Analyze_And_Resolve (N, RTE (RE_Version_String));
|
|
end Version;
|
|
|
|
-------------
|
|
-- Ceiling --
|
|
-------------
|
|
|
|
-- Transforms 'Ceiling into a call to the floating-point attribute
|
|
-- function Ceiling in Fat_xxx (where xxx is the root type)
|
|
|
|
when Attribute_Ceiling =>
|
|
Expand_Fpt_Attribute_R (N);
|
|
|
|
--------------
|
|
-- Callable --
|
|
--------------
|
|
|
|
-- Transforms 'Callable attribute into a call to the Callable function
|
|
|
|
when Attribute_Callable => Callable :
|
|
begin
|
|
-- We have an object of a task interface class-wide type as a prefix
|
|
-- to Callable. Generate:
|
|
-- callable (Task_Id (Pref._disp_get_task_id));
|
|
|
|
if Ada_Version >= Ada_2005
|
|
and then Ekind (Ptyp) = E_Class_Wide_Type
|
|
and then Is_Interface (Ptyp)
|
|
and then Is_Task_Interface (Ptyp)
|
|
then
|
|
Rewrite (N,
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of (RTE (RE_Callable), Loc),
|
|
Parameter_Associations => New_List (
|
|
Make_Unchecked_Type_Conversion (Loc,
|
|
Subtype_Mark =>
|
|
New_Occurrence_Of (RTE (RO_ST_Task_Id), Loc),
|
|
Expression =>
|
|
Make_Selected_Component (Loc,
|
|
Prefix =>
|
|
New_Copy_Tree (Pref),
|
|
Selector_Name =>
|
|
Make_Identifier (Loc, Name_uDisp_Get_Task_Id))))));
|
|
|
|
else
|
|
Rewrite (N,
|
|
Build_Call_With_Task (Pref, RTE (RE_Callable)));
|
|
end if;
|
|
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
|
end Callable;
|
|
|
|
------------
|
|
-- Caller --
|
|
------------
|
|
|
|
-- Transforms 'Caller attribute into a call to either the
|
|
-- Task_Entry_Caller or the Protected_Entry_Caller function.
|
|
|
|
when Attribute_Caller => Caller : declare
|
|
Id_Kind : constant Entity_Id := RTE (RO_AT_Task_Id);
|
|
Ent : constant Entity_Id := Entity (Pref);
|
|
Conctype : constant Entity_Id := Scope (Ent);
|
|
Nest_Depth : Integer := 0;
|
|
Name : Node_Id;
|
|
S : Entity_Id;
|
|
|
|
begin
|
|
-- Protected case
|
|
|
|
if Is_Protected_Type (Conctype) then
|
|
case Corresponding_Runtime_Package (Conctype) is
|
|
when System_Tasking_Protected_Objects_Entries =>
|
|
Name :=
|
|
New_Occurrence_Of
|
|
(RTE (RE_Protected_Entry_Caller), Loc);
|
|
|
|
when System_Tasking_Protected_Objects_Single_Entry =>
|
|
Name :=
|
|
New_Occurrence_Of
|
|
(RTE (RE_Protected_Single_Entry_Caller), Loc);
|
|
|
|
when others =>
|
|
raise Program_Error;
|
|
end case;
|
|
|
|
Rewrite (N,
|
|
Unchecked_Convert_To (Id_Kind,
|
|
Make_Function_Call (Loc,
|
|
Name => Name,
|
|
Parameter_Associations => New_List (
|
|
New_Occurrence_Of
|
|
(Find_Protection_Object (Current_Scope), Loc)))));
|
|
|
|
-- Task case
|
|
|
|
else
|
|
-- Determine the nesting depth of the E'Caller attribute, that
|
|
-- is, how many accept statements are nested within the accept
|
|
-- statement for E at the point of E'Caller. The runtime uses
|
|
-- this depth to find the specified entry call.
|
|
|
|
for J in reverse 0 .. Scope_Stack.Last loop
|
|
S := Scope_Stack.Table (J).Entity;
|
|
|
|
-- We should not reach the scope of the entry, as it should
|
|
-- already have been checked in Sem_Attr that this attribute
|
|
-- reference is within a matching accept statement.
|
|
|
|
pragma Assert (S /= Conctype);
|
|
|
|
if S = Ent then
|
|
exit;
|
|
|
|
elsif Is_Entry (S) then
|
|
Nest_Depth := Nest_Depth + 1;
|
|
end if;
|
|
end loop;
|
|
|
|
Rewrite (N,
|
|
Unchecked_Convert_To (Id_Kind,
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of (RTE (RE_Task_Entry_Caller), Loc),
|
|
Parameter_Associations => New_List (
|
|
Make_Integer_Literal (Loc,
|
|
Intval => Int (Nest_Depth))))));
|
|
end if;
|
|
|
|
Analyze_And_Resolve (N, Id_Kind);
|
|
end Caller;
|
|
|
|
-------------
|
|
-- Compose --
|
|
-------------
|
|
|
|
-- Transforms 'Compose into a call to the floating-point attribute
|
|
-- function Compose in Fat_xxx (where xxx is the root type)
|
|
|
|
-- Note: we strictly should have special code here to deal with the
|
|
-- case of absurdly negative arguments (less than Integer'First)
|
|
-- which will return a (signed) zero value, but it hardly seems
|
|
-- worth the effort. Absurdly large positive arguments will raise
|
|
-- constraint error which is fine.
|
|
|
|
when Attribute_Compose =>
|
|
Expand_Fpt_Attribute_RI (N);
|
|
|
|
-----------------
|
|
-- Constrained --
|
|
-----------------
|
|
|
|
when Attribute_Constrained => Constrained : declare
|
|
Formal_Ent : constant Entity_Id := Param_Entity (Pref);
|
|
|
|
function Is_Constrained_Aliased_View (Obj : Node_Id) return Boolean;
|
|
-- Ada 2005 (AI-363): Returns True if the object name Obj denotes a
|
|
-- view of an aliased object whose subtype is constrained.
|
|
|
|
---------------------------------
|
|
-- Is_Constrained_Aliased_View --
|
|
---------------------------------
|
|
|
|
function Is_Constrained_Aliased_View (Obj : Node_Id) return Boolean is
|
|
E : Entity_Id;
|
|
|
|
begin
|
|
if Is_Entity_Name (Obj) then
|
|
E := Entity (Obj);
|
|
|
|
if Present (Renamed_Object (E)) then
|
|
return Is_Constrained_Aliased_View (Renamed_Object (E));
|
|
else
|
|
return Is_Aliased (E) and then Is_Constrained (Etype (E));
|
|
end if;
|
|
|
|
else
|
|
return Is_Aliased_View (Obj)
|
|
and then
|
|
(Is_Constrained (Etype (Obj))
|
|
or else
|
|
(Nkind (Obj) = N_Explicit_Dereference
|
|
and then
|
|
not Object_Type_Has_Constrained_Partial_View
|
|
(Typ => Base_Type (Etype (Obj)),
|
|
Scop => Current_Scope)));
|
|
end if;
|
|
end Is_Constrained_Aliased_View;
|
|
|
|
-- Start of processing for Constrained
|
|
|
|
begin
|
|
-- Reference to a parameter where the value is passed as an extra
|
|
-- actual, corresponding to the extra formal referenced by the
|
|
-- Extra_Constrained field of the corresponding formal. If this
|
|
-- is an entry in-parameter, it is replaced by a constant renaming
|
|
-- for which Extra_Constrained is never created.
|
|
|
|
if Present (Formal_Ent)
|
|
and then Ekind (Formal_Ent) /= E_Constant
|
|
and then Present (Extra_Constrained (Formal_Ent))
|
|
then
|
|
Rewrite (N,
|
|
New_Occurrence_Of
|
|
(Extra_Constrained (Formal_Ent), Sloc (N)));
|
|
|
|
-- For variables with a Extra_Constrained field, we use the
|
|
-- corresponding entity.
|
|
|
|
elsif Nkind (Pref) = N_Identifier
|
|
and then Ekind (Entity (Pref)) = E_Variable
|
|
and then Present (Extra_Constrained (Entity (Pref)))
|
|
then
|
|
Rewrite (N,
|
|
New_Occurrence_Of
|
|
(Extra_Constrained (Entity (Pref)), Sloc (N)));
|
|
|
|
-- For all other entity names, we can tell at compile time
|
|
|
|
elsif Is_Entity_Name (Pref) then
|
|
declare
|
|
Ent : constant Entity_Id := Entity (Pref);
|
|
Res : Boolean;
|
|
|
|
begin
|
|
-- (RM J.4) obsolescent cases
|
|
|
|
if Is_Type (Ent) then
|
|
|
|
-- Private type
|
|
|
|
if Is_Private_Type (Ent) then
|
|
Res := not Has_Discriminants (Ent)
|
|
or else Is_Constrained (Ent);
|
|
|
|
-- It not a private type, must be a generic actual type
|
|
-- that corresponded to a private type. We know that this
|
|
-- correspondence holds, since otherwise the reference
|
|
-- within the generic template would have been illegal.
|
|
|
|
else
|
|
if Is_Composite_Type (Underlying_Type (Ent)) then
|
|
Res := Is_Constrained (Ent);
|
|
else
|
|
Res := True;
|
|
end if;
|
|
end if;
|
|
|
|
-- If the prefix is not a variable or is aliased, then
|
|
-- definitely true; if it's a formal parameter without an
|
|
-- associated extra formal, then treat it as constrained.
|
|
|
|
-- Ada 2005 (AI-363): An aliased prefix must be known to be
|
|
-- constrained in order to set the attribute to True.
|
|
|
|
elsif not Is_Variable (Pref)
|
|
or else Present (Formal_Ent)
|
|
or else (Ada_Version < Ada_2005
|
|
and then Is_Aliased_View (Pref))
|
|
or else (Ada_Version >= Ada_2005
|
|
and then Is_Constrained_Aliased_View (Pref))
|
|
then
|
|
Res := True;
|
|
|
|
-- Variable case, look at type to see if it is constrained.
|
|
-- Note that the one case where this is not accurate (the
|
|
-- procedure formal case), has been handled above.
|
|
|
|
-- We use the Underlying_Type here (and below) in case the
|
|
-- type is private without discriminants, but the full type
|
|
-- has discriminants. This case is illegal, but we generate it
|
|
-- internally for passing to the Extra_Constrained parameter.
|
|
|
|
else
|
|
-- In Ada 2012, test for case of a limited tagged type, in
|
|
-- which case the attribute is always required to return
|
|
-- True. The underlying type is tested, to make sure we also
|
|
-- return True for cases where there is an unconstrained
|
|
-- object with an untagged limited partial view which has
|
|
-- defaulted discriminants (such objects always produce a
|
|
-- False in earlier versions of Ada). (Ada 2012: AI05-0214)
|
|
|
|
Res := Is_Constrained (Underlying_Type (Etype (Ent)))
|
|
or else
|
|
(Ada_Version >= Ada_2012
|
|
and then Is_Tagged_Type (Underlying_Type (Ptyp))
|
|
and then Is_Limited_Type (Ptyp));
|
|
end if;
|
|
|
|
Rewrite (N, New_Occurrence_Of (Boolean_Literals (Res), Loc));
|
|
end;
|
|
|
|
-- Prefix is not an entity name. These are also cases where we can
|
|
-- always tell at compile time by looking at the form and type of the
|
|
-- prefix. If an explicit dereference of an object with constrained
|
|
-- partial view, this is unconstrained (Ada 2005: AI95-0363). If the
|
|
-- underlying type is a limited tagged type, then Constrained is
|
|
-- required to always return True (Ada 2012: AI05-0214).
|
|
|
|
else
|
|
Rewrite (N,
|
|
New_Occurrence_Of (
|
|
Boolean_Literals (
|
|
not Is_Variable (Pref)
|
|
or else
|
|
(Nkind (Pref) = N_Explicit_Dereference
|
|
and then
|
|
not Object_Type_Has_Constrained_Partial_View
|
|
(Typ => Base_Type (Ptyp),
|
|
Scop => Current_Scope))
|
|
or else Is_Constrained (Underlying_Type (Ptyp))
|
|
or else (Ada_Version >= Ada_2012
|
|
and then Is_Tagged_Type (Underlying_Type (Ptyp))
|
|
and then Is_Limited_Type (Ptyp))),
|
|
Loc));
|
|
end if;
|
|
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
|
end Constrained;
|
|
|
|
---------------
|
|
-- Copy_Sign --
|
|
---------------
|
|
|
|
-- Transforms 'Copy_Sign into a call to the floating-point attribute
|
|
-- function Copy_Sign in Fat_xxx (where xxx is the root type)
|
|
|
|
when Attribute_Copy_Sign =>
|
|
Expand_Fpt_Attribute_RR (N);
|
|
|
|
-----------
|
|
-- Count --
|
|
-----------
|
|
|
|
-- Transforms 'Count attribute into a call to the Count function
|
|
|
|
when Attribute_Count => Count : declare
|
|
Call : Node_Id;
|
|
Conctyp : Entity_Id;
|
|
Entnam : Node_Id;
|
|
Entry_Id : Entity_Id;
|
|
Index : Node_Id;
|
|
Name : Node_Id;
|
|
|
|
begin
|
|
-- If the prefix is a member of an entry family, retrieve both
|
|
-- entry name and index. For a simple entry there is no index.
|
|
|
|
if Nkind (Pref) = N_Indexed_Component then
|
|
Entnam := Prefix (Pref);
|
|
Index := First (Expressions (Pref));
|
|
else
|
|
Entnam := Pref;
|
|
Index := Empty;
|
|
end if;
|
|
|
|
Entry_Id := Entity (Entnam);
|
|
|
|
-- Find the concurrent type in which this attribute is referenced
|
|
-- (there had better be one).
|
|
|
|
Conctyp := Current_Scope;
|
|
while not Is_Concurrent_Type (Conctyp) loop
|
|
Conctyp := Scope (Conctyp);
|
|
end loop;
|
|
|
|
-- Protected case
|
|
|
|
if Is_Protected_Type (Conctyp) then
|
|
case Corresponding_Runtime_Package (Conctyp) is
|
|
when System_Tasking_Protected_Objects_Entries =>
|
|
Name := New_Occurrence_Of (RTE (RE_Protected_Count), Loc);
|
|
|
|
Call :=
|
|
Make_Function_Call (Loc,
|
|
Name => Name,
|
|
Parameter_Associations => New_List (
|
|
New_Occurrence_Of
|
|
(Find_Protection_Object (Current_Scope), Loc),
|
|
Entry_Index_Expression
|
|
(Loc, Entry_Id, Index, Scope (Entry_Id))));
|
|
|
|
when System_Tasking_Protected_Objects_Single_Entry =>
|
|
Name :=
|
|
New_Occurrence_Of (RTE (RE_Protected_Count_Entry), Loc);
|
|
|
|
Call :=
|
|
Make_Function_Call (Loc,
|
|
Name => Name,
|
|
Parameter_Associations => New_List (
|
|
New_Occurrence_Of
|
|
(Find_Protection_Object (Current_Scope), Loc)));
|
|
|
|
when others =>
|
|
raise Program_Error;
|
|
end case;
|
|
|
|
-- Task case
|
|
|
|
else
|
|
Call :=
|
|
Make_Function_Call (Loc,
|
|
Name => New_Occurrence_Of (RTE (RE_Task_Count), Loc),
|
|
Parameter_Associations => New_List (
|
|
Entry_Index_Expression (Loc,
|
|
Entry_Id, Index, Scope (Entry_Id))));
|
|
end if;
|
|
|
|
-- The call returns type Natural but the context is universal integer
|
|
-- so any integer type is allowed. The attribute was already resolved
|
|
-- so its Etype is the required result type. If the base type of the
|
|
-- context type is other than Standard.Integer we put in a conversion
|
|
-- to the required type. This can be a normal typed conversion since
|
|
-- both input and output types of the conversion are integer types
|
|
|
|
if Base_Type (Typ) /= Base_Type (Standard_Integer) then
|
|
Rewrite (N, Convert_To (Typ, Call));
|
|
else
|
|
Rewrite (N, Call);
|
|
end if;
|
|
|
|
Analyze_And_Resolve (N, Typ);
|
|
end Count;
|
|
|
|
---------------------
|
|
-- Descriptor_Size --
|
|
---------------------
|
|
|
|
when Attribute_Descriptor_Size =>
|
|
|
|
-- Attribute Descriptor_Size is handled by the back end when applied
|
|
-- to an unconstrained array type.
|
|
|
|
if Is_Array_Type (Ptyp)
|
|
and then not Is_Constrained (Ptyp)
|
|
then
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
|
|
|
-- For any other type, the descriptor size is 0 because there is no
|
|
-- actual descriptor, but the result is not formally static.
|
|
|
|
else
|
|
Rewrite (N, Make_Integer_Literal (Loc, 0));
|
|
Analyze (N);
|
|
Set_Is_Static_Expression (N, False);
|
|
end if;
|
|
|
|
---------------
|
|
-- Elab_Body --
|
|
---------------
|
|
|
|
-- This processing is shared by Elab_Spec
|
|
|
|
-- What we do is to insert the following declarations
|
|
|
|
-- procedure tnn;
|
|
-- pragma Import (C, enn, "name___elabb/s");
|
|
|
|
-- and then the Elab_Body/Spec attribute is replaced by a reference
|
|
-- to this defining identifier.
|
|
|
|
when Attribute_Elab_Body |
|
|
Attribute_Elab_Spec =>
|
|
|
|
-- Leave attribute unexpanded in CodePeer mode: the gnat2scil
|
|
-- back-end knows how to handle these attributes directly.
|
|
|
|
if CodePeer_Mode then
|
|
return;
|
|
end if;
|
|
|
|
Elab_Body : declare
|
|
Ent : constant Entity_Id := Make_Temporary (Loc, 'E');
|
|
Str : String_Id;
|
|
Lang : Node_Id;
|
|
|
|
procedure Make_Elab_String (Nod : Node_Id);
|
|
-- Given Nod, an identifier, or a selected component, put the
|
|
-- image into the current string literal, with double underline
|
|
-- between components.
|
|
|
|
----------------------
|
|
-- Make_Elab_String --
|
|
----------------------
|
|
|
|
procedure Make_Elab_String (Nod : Node_Id) is
|
|
begin
|
|
if Nkind (Nod) = N_Selected_Component then
|
|
Make_Elab_String (Prefix (Nod));
|
|
Store_String_Char ('_');
|
|
Store_String_Char ('_');
|
|
Get_Name_String (Chars (Selector_Name (Nod)));
|
|
|
|
else
|
|
pragma Assert (Nkind (Nod) = N_Identifier);
|
|
Get_Name_String (Chars (Nod));
|
|
end if;
|
|
|
|
Store_String_Chars (Name_Buffer (1 .. Name_Len));
|
|
end Make_Elab_String;
|
|
|
|
-- Start of processing for Elab_Body/Elab_Spec
|
|
|
|
begin
|
|
-- First we need to prepare the string literal for the name of
|
|
-- the elaboration routine to be referenced.
|
|
|
|
Start_String;
|
|
Make_Elab_String (Pref);
|
|
Store_String_Chars ("___elab");
|
|
Lang := Make_Identifier (Loc, Name_C);
|
|
|
|
if Id = Attribute_Elab_Body then
|
|
Store_String_Char ('b');
|
|
else
|
|
Store_String_Char ('s');
|
|
end if;
|
|
|
|
Str := End_String;
|
|
|
|
Insert_Actions (N, New_List (
|
|
Make_Subprogram_Declaration (Loc,
|
|
Specification =>
|
|
Make_Procedure_Specification (Loc,
|
|
Defining_Unit_Name => Ent)),
|
|
|
|
Make_Pragma (Loc,
|
|
Chars => Name_Import,
|
|
Pragma_Argument_Associations => New_List (
|
|
Make_Pragma_Argument_Association (Loc, Expression => Lang),
|
|
|
|
Make_Pragma_Argument_Association (Loc,
|
|
Expression => Make_Identifier (Loc, Chars (Ent))),
|
|
|
|
Make_Pragma_Argument_Association (Loc,
|
|
Expression => Make_String_Literal (Loc, Str))))));
|
|
|
|
Set_Entity (N, Ent);
|
|
Rewrite (N, New_Occurrence_Of (Ent, Loc));
|
|
end Elab_Body;
|
|
|
|
--------------------
|
|
-- Elab_Subp_Body --
|
|
--------------------
|
|
|
|
-- Always ignored. In CodePeer mode, gnat2scil knows how to handle
|
|
-- this attribute directly, and if we are not in CodePeer mode it is
|
|
-- entirely ignored ???
|
|
|
|
when Attribute_Elab_Subp_Body =>
|
|
return;
|
|
|
|
----------------
|
|
-- Elaborated --
|
|
----------------
|
|
|
|
-- Elaborated is always True for preelaborated units, predefined units,
|
|
-- pure units and units which have Elaborate_Body pragmas. These units
|
|
-- have no elaboration entity.
|
|
|
|
-- Note: The Elaborated attribute is never passed to the back end
|
|
|
|
when Attribute_Elaborated => Elaborated : declare
|
|
Ent : constant Entity_Id := Entity (Pref);
|
|
|
|
begin
|
|
if Present (Elaboration_Entity (Ent)) then
|
|
Rewrite (N,
|
|
Make_Op_Ne (Loc,
|
|
Left_Opnd =>
|
|
New_Occurrence_Of (Elaboration_Entity (Ent), Loc),
|
|
Right_Opnd =>
|
|
Make_Integer_Literal (Loc, Uint_0)));
|
|
Analyze_And_Resolve (N, Typ);
|
|
else
|
|
Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
|
|
end if;
|
|
end Elaborated;
|
|
|
|
--------------
|
|
-- Enum_Rep --
|
|
--------------
|
|
|
|
when Attribute_Enum_Rep => Enum_Rep :
|
|
begin
|
|
-- X'Enum_Rep (Y) expands to
|
|
|
|
-- target-type (Y)
|
|
|
|
-- This is simply a direct conversion from the enumeration type to
|
|
-- the target integer type, which is treated by the back end as a
|
|
-- normal integer conversion, treating the enumeration type as an
|
|
-- integer, which is exactly what we want. We set Conversion_OK to
|
|
-- make sure that the analyzer does not complain about what otherwise
|
|
-- might be an illegal conversion.
|
|
|
|
if Is_Non_Empty_List (Exprs) then
|
|
Rewrite (N,
|
|
OK_Convert_To (Typ, Relocate_Node (First (Exprs))));
|
|
|
|
-- X'Enum_Rep where X is an enumeration literal is replaced by
|
|
-- the literal value.
|
|
|
|
elsif Ekind (Entity (Pref)) = E_Enumeration_Literal then
|
|
Rewrite (N,
|
|
Make_Integer_Literal (Loc, Enumeration_Rep (Entity (Pref))));
|
|
|
|
-- If this is a renaming of a literal, recover the representation
|
|
-- of the original. If it renames an expression there is nothing
|
|
-- to fold.
|
|
|
|
elsif Ekind (Entity (Pref)) = E_Constant
|
|
and then Present (Renamed_Object (Entity (Pref)))
|
|
and then Is_Entity_Name (Renamed_Object (Entity (Pref)))
|
|
and then Ekind (Entity (Renamed_Object (Entity (Pref)))) =
|
|
E_Enumeration_Literal
|
|
then
|
|
Rewrite (N,
|
|
Make_Integer_Literal (Loc,
|
|
Enumeration_Rep (Entity (Renamed_Object (Entity (Pref))))));
|
|
|
|
-- X'Enum_Rep where X is an object does a direct unchecked conversion
|
|
-- of the object value, as described for the type case above.
|
|
|
|
else
|
|
Rewrite (N,
|
|
OK_Convert_To (Typ, Relocate_Node (Pref)));
|
|
end if;
|
|
|
|
Set_Etype (N, Typ);
|
|
Analyze_And_Resolve (N, Typ);
|
|
end Enum_Rep;
|
|
|
|
--------------
|
|
-- Enum_Val --
|
|
--------------
|
|
|
|
when Attribute_Enum_Val => Enum_Val : declare
|
|
Expr : Node_Id;
|
|
Btyp : constant Entity_Id := Base_Type (Ptyp);
|
|
|
|
begin
|
|
-- X'Enum_Val (Y) expands to
|
|
|
|
-- [constraint_error when _rep_to_pos (Y, False) = -1, msg]
|
|
-- X!(Y);
|
|
|
|
Expr := Unchecked_Convert_To (Ptyp, First (Exprs));
|
|
|
|
Insert_Action (N,
|
|
Make_Raise_Constraint_Error (Loc,
|
|
Condition =>
|
|
Make_Op_Eq (Loc,
|
|
Left_Opnd =>
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of (TSS (Btyp, TSS_Rep_To_Pos), Loc),
|
|
Parameter_Associations => New_List (
|
|
Relocate_Node (Duplicate_Subexpr (Expr)),
|
|
New_Occurrence_Of (Standard_False, Loc))),
|
|
|
|
Right_Opnd => Make_Integer_Literal (Loc, -1)),
|
|
Reason => CE_Range_Check_Failed));
|
|
|
|
Rewrite (N, Expr);
|
|
Analyze_And_Resolve (N, Ptyp);
|
|
end Enum_Val;
|
|
|
|
--------------
|
|
-- Exponent --
|
|
--------------
|
|
|
|
-- Transforms 'Exponent into a call to the floating-point attribute
|
|
-- function Exponent in Fat_xxx (where xxx is the root type)
|
|
|
|
when Attribute_Exponent =>
|
|
Expand_Fpt_Attribute_R (N);
|
|
|
|
------------------
|
|
-- External_Tag --
|
|
------------------
|
|
|
|
-- transforme X'External_Tag into Ada.Tags.External_Tag (X'tag)
|
|
|
|
when Attribute_External_Tag => External_Tag :
|
|
begin
|
|
Rewrite (N,
|
|
Make_Function_Call (Loc,
|
|
Name => New_Occurrence_Of (RTE (RE_External_Tag), Loc),
|
|
Parameter_Associations => New_List (
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Tag,
|
|
Prefix => Prefix (N)))));
|
|
|
|
Analyze_And_Resolve (N, Standard_String);
|
|
end External_Tag;
|
|
|
|
-----------
|
|
-- First --
|
|
-----------
|
|
|
|
when Attribute_First =>
|
|
|
|
-- If the prefix type is a constrained packed array type which
|
|
-- already has a Packed_Array_Impl_Type representation defined, then
|
|
-- replace this attribute with a direct reference to 'First of the
|
|
-- appropriate index subtype (since otherwise the back end will try
|
|
-- to give us the value of 'First for this implementation type).
|
|
|
|
if Is_Constrained_Packed_Array (Ptyp) then
|
|
Rewrite (N,
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_First,
|
|
Prefix =>
|
|
New_Occurrence_Of (Get_Index_Subtype (N), Loc)));
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
-- For access type, apply access check as needed
|
|
|
|
elsif Is_Access_Type (Ptyp) then
|
|
Apply_Access_Check (N);
|
|
|
|
-- For scalar type, if low bound is a reference to an entity, just
|
|
-- replace with a direct reference. Note that we can only have a
|
|
-- reference to a constant entity at this stage, anything else would
|
|
-- have already been rewritten.
|
|
|
|
elsif Is_Scalar_Type (Ptyp) then
|
|
declare
|
|
Lo : constant Node_Id := Type_Low_Bound (Ptyp);
|
|
begin
|
|
if Is_Entity_Name (Lo) then
|
|
Rewrite (N, New_Occurrence_Of (Entity (Lo), Loc));
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
---------------
|
|
-- First_Bit --
|
|
---------------
|
|
|
|
-- Compute this if component clause was present, otherwise we leave the
|
|
-- computation to be completed in the back-end, since we don't know what
|
|
-- layout will be chosen.
|
|
|
|
when Attribute_First_Bit => First_Bit_Attr : declare
|
|
CE : constant Entity_Id := Entity (Selector_Name (Pref));
|
|
|
|
begin
|
|
-- In Ada 2005 (or later) if we have the non-default bit order, then
|
|
-- we return the original value as given in the component clause
|
|
-- (RM 2005 13.5.2(3/2)).
|
|
|
|
if Present (Component_Clause (CE))
|
|
and then Ada_Version >= Ada_2005
|
|
and then Reverse_Bit_Order (Scope (CE))
|
|
then
|
|
Rewrite (N,
|
|
Make_Integer_Literal (Loc,
|
|
Intval => Expr_Value (First_Bit (Component_Clause (CE)))));
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
-- Otherwise (Ada 83/95 or Ada 2005 or later with default bit order),
|
|
-- rewrite with normalized value if we know it statically.
|
|
|
|
elsif Known_Static_Component_Bit_Offset (CE) then
|
|
Rewrite (N,
|
|
Make_Integer_Literal (Loc,
|
|
Component_Bit_Offset (CE) mod System_Storage_Unit));
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
-- Otherwise left to back end, just do universal integer checks
|
|
|
|
else
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
|
end if;
|
|
end First_Bit_Attr;
|
|
|
|
-----------------
|
|
-- Fixed_Value --
|
|
-----------------
|
|
|
|
-- We transform:
|
|
|
|
-- fixtype'Fixed_Value (integer-value)
|
|
|
|
-- into
|
|
|
|
-- fixtype(integer-value)
|
|
|
|
-- We do all the required analysis of the conversion here, because we do
|
|
-- not want this to go through the fixed-point conversion circuits. Note
|
|
-- that the back end always treats fixed-point as equivalent to the
|
|
-- corresponding integer type anyway.
|
|
|
|
when Attribute_Fixed_Value => Fixed_Value :
|
|
begin
|
|
Rewrite (N,
|
|
Make_Type_Conversion (Loc,
|
|
Subtype_Mark => New_Occurrence_Of (Entity (Pref), Loc),
|
|
Expression => Relocate_Node (First (Exprs))));
|
|
Set_Etype (N, Entity (Pref));
|
|
Set_Analyzed (N);
|
|
|
|
-- Note: it might appear that a properly analyzed unchecked conversion
|
|
-- would be just fine here, but that's not the case, since the full
|
|
-- range checks performed by the following call are critical.
|
|
|
|
Apply_Type_Conversion_Checks (N);
|
|
end Fixed_Value;
|
|
|
|
-----------
|
|
-- Floor --
|
|
-----------
|
|
|
|
-- Transforms 'Floor into a call to the floating-point attribute
|
|
-- function Floor in Fat_xxx (where xxx is the root type)
|
|
|
|
when Attribute_Floor =>
|
|
Expand_Fpt_Attribute_R (N);
|
|
|
|
----------
|
|
-- Fore --
|
|
----------
|
|
|
|
-- For the fixed-point type Typ:
|
|
|
|
-- Typ'Fore
|
|
|
|
-- expands into
|
|
|
|
-- Result_Type (System.Fore (Universal_Real (Type'First)),
|
|
-- Universal_Real (Type'Last))
|
|
|
|
-- Note that we know that the type is a non-static subtype, or Fore
|
|
-- would have itself been computed dynamically in Eval_Attribute.
|
|
|
|
when Attribute_Fore => Fore : begin
|
|
Rewrite (N,
|
|
Convert_To (Typ,
|
|
Make_Function_Call (Loc,
|
|
Name => New_Occurrence_Of (RTE (RE_Fore), Loc),
|
|
|
|
Parameter_Associations => New_List (
|
|
Convert_To (Universal_Real,
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc),
|
|
Attribute_Name => Name_First)),
|
|
|
|
Convert_To (Universal_Real,
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc),
|
|
Attribute_Name => Name_Last))))));
|
|
|
|
Analyze_And_Resolve (N, Typ);
|
|
end Fore;
|
|
|
|
--------------
|
|
-- Fraction --
|
|
--------------
|
|
|
|
-- Transforms 'Fraction into a call to the floating-point attribute
|
|
-- function Fraction in Fat_xxx (where xxx is the root type)
|
|
|
|
when Attribute_Fraction =>
|
|
Expand_Fpt_Attribute_R (N);
|
|
|
|
--------------
|
|
-- From_Any --
|
|
--------------
|
|
|
|
when Attribute_From_Any => From_Any : declare
|
|
P_Type : constant Entity_Id := Etype (Pref);
|
|
Decls : constant List_Id := New_List;
|
|
begin
|
|
Rewrite (N,
|
|
Build_From_Any_Call (P_Type,
|
|
Relocate_Node (First (Exprs)),
|
|
Decls));
|
|
Insert_Actions (N, Decls);
|
|
Analyze_And_Resolve (N, P_Type);
|
|
end From_Any;
|
|
|
|
----------------------
|
|
-- Has_Same_Storage --
|
|
----------------------
|
|
|
|
when Attribute_Has_Same_Storage => Has_Same_Storage : declare
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
|
|
X : constant Node_Id := Prefix (N);
|
|
Y : constant Node_Id := First (Expressions (N));
|
|
-- The arguments
|
|
|
|
X_Addr, Y_Addr : Node_Id;
|
|
-- Rhe expressions for their addresses
|
|
|
|
X_Size, Y_Size : Node_Id;
|
|
-- Rhe expressions for their sizes
|
|
|
|
begin
|
|
-- The attribute is expanded as:
|
|
|
|
-- (X'address = Y'address)
|
|
-- and then (X'Size = Y'Size)
|
|
|
|
-- If both arguments have the same Etype the second conjunct can be
|
|
-- omitted.
|
|
|
|
X_Addr :=
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Address,
|
|
Prefix => New_Copy_Tree (X));
|
|
|
|
Y_Addr :=
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Address,
|
|
Prefix => New_Copy_Tree (Y));
|
|
|
|
X_Size :=
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Size,
|
|
Prefix => New_Copy_Tree (X));
|
|
|
|
Y_Size :=
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Size,
|
|
Prefix => New_Copy_Tree (Y));
|
|
|
|
if Etype (X) = Etype (Y) then
|
|
Rewrite (N,
|
|
(Make_Op_Eq (Loc,
|
|
Left_Opnd => X_Addr,
|
|
Right_Opnd => Y_Addr)));
|
|
else
|
|
Rewrite (N,
|
|
Make_Op_And (Loc,
|
|
Left_Opnd =>
|
|
Make_Op_Eq (Loc,
|
|
Left_Opnd => X_Addr,
|
|
Right_Opnd => Y_Addr),
|
|
Right_Opnd =>
|
|
Make_Op_Eq (Loc,
|
|
Left_Opnd => X_Size,
|
|
Right_Opnd => Y_Size)));
|
|
end if;
|
|
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
|
end Has_Same_Storage;
|
|
|
|
--------------
|
|
-- Identity --
|
|
--------------
|
|
|
|
-- For an exception returns a reference to the exception data:
|
|
-- Exception_Id!(Prefix'Reference)
|
|
|
|
-- For a task it returns a reference to the _task_id component of
|
|
-- corresponding record:
|
|
|
|
-- taskV!(Prefix)._Task_Id, converted to the type Task_Id defined
|
|
|
|
-- in Ada.Task_Identification
|
|
|
|
when Attribute_Identity => Identity : declare
|
|
Id_Kind : Entity_Id;
|
|
|
|
begin
|
|
if Ptyp = Standard_Exception_Type then
|
|
Id_Kind := RTE (RE_Exception_Id);
|
|
|
|
if Present (Renamed_Object (Entity (Pref))) then
|
|
Set_Entity (Pref, Renamed_Object (Entity (Pref)));
|
|
end if;
|
|
|
|
Rewrite (N,
|
|
Unchecked_Convert_To (Id_Kind, Make_Reference (Loc, Pref)));
|
|
else
|
|
Id_Kind := RTE (RO_AT_Task_Id);
|
|
|
|
-- If the prefix is a task interface, the Task_Id is obtained
|
|
-- dynamically through a dispatching call, as for other task
|
|
-- attributes applied to interfaces.
|
|
|
|
if Ada_Version >= Ada_2005
|
|
and then Ekind (Ptyp) = E_Class_Wide_Type
|
|
and then Is_Interface (Ptyp)
|
|
and then Is_Task_Interface (Ptyp)
|
|
then
|
|
Rewrite (N,
|
|
Unchecked_Convert_To (Id_Kind,
|
|
Make_Selected_Component (Loc,
|
|
Prefix =>
|
|
New_Copy_Tree (Pref),
|
|
Selector_Name =>
|
|
Make_Identifier (Loc, Name_uDisp_Get_Task_Id))));
|
|
|
|
else
|
|
Rewrite (N,
|
|
Unchecked_Convert_To (Id_Kind, Concurrent_Ref (Pref)));
|
|
end if;
|
|
end if;
|
|
|
|
Analyze_And_Resolve (N, Id_Kind);
|
|
end Identity;
|
|
|
|
-----------
|
|
-- Image --
|
|
-----------
|
|
|
|
-- Image attribute is handled in separate unit Exp_Imgv
|
|
|
|
when Attribute_Image =>
|
|
Exp_Imgv.Expand_Image_Attribute (N);
|
|
|
|
---------
|
|
-- Img --
|
|
---------
|
|
|
|
-- X'Img is expanded to typ'Image (X), where typ is the type of X
|
|
|
|
when Attribute_Img => Img :
|
|
begin
|
|
Rewrite (N,
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc),
|
|
Attribute_Name => Name_Image,
|
|
Expressions => New_List (Relocate_Node (Pref))));
|
|
|
|
Analyze_And_Resolve (N, Standard_String);
|
|
end Img;
|
|
|
|
-----------
|
|
-- Input --
|
|
-----------
|
|
|
|
when Attribute_Input => Input : declare
|
|
P_Type : constant Entity_Id := Entity (Pref);
|
|
B_Type : constant Entity_Id := Base_Type (P_Type);
|
|
U_Type : constant Entity_Id := Underlying_Type (P_Type);
|
|
Strm : constant Node_Id := First (Exprs);
|
|
Fname : Entity_Id;
|
|
Decl : Node_Id;
|
|
Call : Node_Id;
|
|
Prag : Node_Id;
|
|
Arg2 : Node_Id;
|
|
Rfunc : Node_Id;
|
|
|
|
Cntrl : Node_Id := Empty;
|
|
-- Value for controlling argument in call. Always Empty except in
|
|
-- the dispatching (class-wide type) case, where it is a reference
|
|
-- to the dummy object initialized to the right internal tag.
|
|
|
|
procedure Freeze_Stream_Subprogram (F : Entity_Id);
|
|
-- The expansion of the attribute reference may generate a call to
|
|
-- a user-defined stream subprogram that is frozen by the call. This
|
|
-- can lead to access-before-elaboration problem if the reference
|
|
-- appears in an object declaration and the subprogram body has not
|
|
-- been seen. The freezing of the subprogram requires special code
|
|
-- because it appears in an expanded context where expressions do
|
|
-- not freeze their constituents.
|
|
|
|
------------------------------
|
|
-- Freeze_Stream_Subprogram --
|
|
------------------------------
|
|
|
|
procedure Freeze_Stream_Subprogram (F : Entity_Id) is
|
|
Decl : constant Node_Id := Unit_Declaration_Node (F);
|
|
Bod : Node_Id;
|
|
|
|
begin
|
|
-- If this is user-defined subprogram, the corresponding
|
|
-- stream function appears as a renaming-as-body, and the
|
|
-- user subprogram must be retrieved by tree traversal.
|
|
|
|
if Present (Decl)
|
|
and then Nkind (Decl) = N_Subprogram_Declaration
|
|
and then Present (Corresponding_Body (Decl))
|
|
then
|
|
Bod := Corresponding_Body (Decl);
|
|
|
|
if Nkind (Unit_Declaration_Node (Bod)) =
|
|
N_Subprogram_Renaming_Declaration
|
|
then
|
|
Set_Is_Frozen (Entity (Name (Unit_Declaration_Node (Bod))));
|
|
end if;
|
|
end if;
|
|
end Freeze_Stream_Subprogram;
|
|
|
|
-- Start of processing for Input
|
|
|
|
begin
|
|
-- If no underlying type, we have an error that will be diagnosed
|
|
-- elsewhere, so here we just completely ignore the expansion.
|
|
|
|
if No (U_Type) then
|
|
return;
|
|
end if;
|
|
|
|
-- Stream operations can appear in user code even if the restriction
|
|
-- No_Streams is active (for example, when instantiating a predefined
|
|
-- container). In that case rewrite the attribute as a Raise to
|
|
-- prevent any run-time use.
|
|
|
|
if Restriction_Active (No_Streams) then
|
|
Rewrite (N,
|
|
Make_Raise_Program_Error (Sloc (N),
|
|
Reason => PE_Stream_Operation_Not_Allowed));
|
|
Set_Etype (N, B_Type);
|
|
return;
|
|
end if;
|
|
|
|
-- If there is a TSS for Input, just call it
|
|
|
|
Fname := Find_Stream_Subprogram (P_Type, TSS_Stream_Input);
|
|
|
|
if Present (Fname) then
|
|
null;
|
|
|
|
else
|
|
-- If there is a Stream_Convert pragma, use it, we rewrite
|
|
|
|
-- sourcetyp'Input (stream)
|
|
|
|
-- as
|
|
|
|
-- sourcetyp (streamread (strmtyp'Input (stream)));
|
|
|
|
-- where streamread is the given Read function that converts an
|
|
-- argument of type strmtyp to type sourcetyp or a type from which
|
|
-- it is derived (extra conversion required for the derived case).
|
|
|
|
Prag := Get_Stream_Convert_Pragma (P_Type);
|
|
|
|
if Present (Prag) then
|
|
Arg2 := Next (First (Pragma_Argument_Associations (Prag)));
|
|
Rfunc := Entity (Expression (Arg2));
|
|
|
|
Rewrite (N,
|
|
Convert_To (B_Type,
|
|
Make_Function_Call (Loc,
|
|
Name => New_Occurrence_Of (Rfunc, Loc),
|
|
Parameter_Associations => New_List (
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix =>
|
|
New_Occurrence_Of
|
|
(Etype (First_Formal (Rfunc)), Loc),
|
|
Attribute_Name => Name_Input,
|
|
Expressions => Exprs)))));
|
|
|
|
Analyze_And_Resolve (N, B_Type);
|
|
return;
|
|
|
|
-- Elementary types
|
|
|
|
elsif Is_Elementary_Type (U_Type) then
|
|
|
|
-- A special case arises if we have a defined _Read routine,
|
|
-- since in this case we are required to call this routine.
|
|
|
|
if Present (TSS (Base_Type (U_Type), TSS_Stream_Read)) then
|
|
Build_Record_Or_Elementary_Input_Function
|
|
(Loc, U_Type, Decl, Fname);
|
|
Insert_Action (N, Decl);
|
|
|
|
-- For normal cases, we call the I_xxx routine directly
|
|
|
|
else
|
|
Rewrite (N, Build_Elementary_Input_Call (N));
|
|
Analyze_And_Resolve (N, P_Type);
|
|
return;
|
|
end if;
|
|
|
|
-- Array type case
|
|
|
|
elsif Is_Array_Type (U_Type) then
|
|
Build_Array_Input_Function (Loc, U_Type, Decl, Fname);
|
|
Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
|
|
|
|
-- Dispatching case with class-wide type
|
|
|
|
elsif Is_Class_Wide_Type (P_Type) then
|
|
|
|
-- No need to do anything else compiling under restriction
|
|
-- No_Dispatching_Calls. During the semantic analysis we
|
|
-- already notified such violation.
|
|
|
|
if Restriction_Active (No_Dispatching_Calls) then
|
|
return;
|
|
end if;
|
|
|
|
declare
|
|
Rtyp : constant Entity_Id := Root_Type (P_Type);
|
|
Expr : Node_Id;
|
|
|
|
begin
|
|
-- Read the internal tag (RM 13.13.2(34)) and use it to
|
|
-- initialize a dummy tag value:
|
|
|
|
-- Descendant_Tag (String'Input (Strm), P_Type);
|
|
|
|
-- This value is used only to provide a controlling
|
|
-- argument for the eventual _Input call. Descendant_Tag is
|
|
-- called rather than Internal_Tag to ensure that we have a
|
|
-- tag for a type that is descended from the prefix type and
|
|
-- declared at the same accessibility level (the exception
|
|
-- Tag_Error will be raised otherwise). The level check is
|
|
-- required for Ada 2005 because tagged types can be
|
|
-- extended in nested scopes (AI-344).
|
|
|
|
-- Note: we used to generate an explicit declaration of a
|
|
-- constant Ada.Tags.Tag object, and use an occurrence of
|
|
-- this constant in Cntrl, but this caused a secondary stack
|
|
-- leak.
|
|
|
|
Expr :=
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of (RTE (RE_Descendant_Tag), Loc),
|
|
Parameter_Associations => New_List (
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix =>
|
|
New_Occurrence_Of (Standard_String, Loc),
|
|
Attribute_Name => Name_Input,
|
|
Expressions => New_List (
|
|
Relocate_Node (Duplicate_Subexpr (Strm)))),
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (P_Type, Loc),
|
|
Attribute_Name => Name_Tag)));
|
|
Set_Etype (Expr, RTE (RE_Tag));
|
|
|
|
-- Now we need to get the entity for the call, and construct
|
|
-- a function call node, where we preset a reference to Dnn
|
|
-- as the controlling argument (doing an unchecked convert
|
|
-- to the class-wide tagged type to make it look like a real
|
|
-- tagged object).
|
|
|
|
Fname := Find_Prim_Op (Rtyp, TSS_Stream_Input);
|
|
Cntrl := Unchecked_Convert_To (P_Type, Expr);
|
|
Set_Etype (Cntrl, P_Type);
|
|
Set_Parent (Cntrl, N);
|
|
end;
|
|
|
|
-- For tagged types, use the primitive Input function
|
|
|
|
elsif Is_Tagged_Type (U_Type) then
|
|
Fname := Find_Prim_Op (U_Type, TSS_Stream_Input);
|
|
|
|
-- All other record type cases, including protected records. The
|
|
-- latter only arise for expander generated code for handling
|
|
-- shared passive partition access.
|
|
|
|
else
|
|
pragma Assert
|
|
(Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
|
|
|
|
-- Ada 2005 (AI-216): Program_Error is raised executing default
|
|
-- implementation of the Input attribute of an unchecked union
|
|
-- type if the type lacks default discriminant values.
|
|
|
|
if Is_Unchecked_Union (Base_Type (U_Type))
|
|
and then No (Discriminant_Constraint (U_Type))
|
|
then
|
|
Insert_Action (N,
|
|
Make_Raise_Program_Error (Loc,
|
|
Reason => PE_Unchecked_Union_Restriction));
|
|
|
|
return;
|
|
end if;
|
|
|
|
-- Build the type's Input function, passing the subtype rather
|
|
-- than its base type, because checks are needed in the case of
|
|
-- constrained discriminants (see Ada 2012 AI05-0192).
|
|
|
|
Build_Record_Or_Elementary_Input_Function
|
|
(Loc, U_Type, Decl, Fname);
|
|
Insert_Action (N, Decl);
|
|
|
|
if Nkind (Parent (N)) = N_Object_Declaration
|
|
and then Is_Record_Type (U_Type)
|
|
then
|
|
-- The stream function may contain calls to user-defined
|
|
-- Read procedures for individual components.
|
|
|
|
declare
|
|
Comp : Entity_Id;
|
|
Func : Entity_Id;
|
|
|
|
begin
|
|
Comp := First_Component (U_Type);
|
|
while Present (Comp) loop
|
|
Func :=
|
|
Find_Stream_Subprogram
|
|
(Etype (Comp), TSS_Stream_Read);
|
|
|
|
if Present (Func) then
|
|
Freeze_Stream_Subprogram (Func);
|
|
end if;
|
|
|
|
Next_Component (Comp);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
-- If we fall through, Fname is the function to be called. The result
|
|
-- is obtained by calling the appropriate function, then converting
|
|
-- the result. The conversion does a subtype check.
|
|
|
|
Call :=
|
|
Make_Function_Call (Loc,
|
|
Name => New_Occurrence_Of (Fname, Loc),
|
|
Parameter_Associations => New_List (
|
|
Relocate_Node (Strm)));
|
|
|
|
Set_Controlling_Argument (Call, Cntrl);
|
|
Rewrite (N, Unchecked_Convert_To (P_Type, Call));
|
|
Analyze_And_Resolve (N, P_Type);
|
|
|
|
if Nkind (Parent (N)) = N_Object_Declaration then
|
|
Freeze_Stream_Subprogram (Fname);
|
|
end if;
|
|
end Input;
|
|
|
|
-------------------
|
|
-- Integer_Value --
|
|
-------------------
|
|
|
|
-- We transform
|
|
|
|
-- inttype'Fixed_Value (fixed-value)
|
|
|
|
-- into
|
|
|
|
-- inttype(integer-value))
|
|
|
|
-- we do all the required analysis of the conversion here, because we do
|
|
-- not want this to go through the fixed-point conversion circuits. Note
|
|
-- that the back end always treats fixed-point as equivalent to the
|
|
-- corresponding integer type anyway.
|
|
|
|
when Attribute_Integer_Value => Integer_Value :
|
|
begin
|
|
Rewrite (N,
|
|
Make_Type_Conversion (Loc,
|
|
Subtype_Mark => New_Occurrence_Of (Entity (Pref), Loc),
|
|
Expression => Relocate_Node (First (Exprs))));
|
|
Set_Etype (N, Entity (Pref));
|
|
Set_Analyzed (N);
|
|
|
|
-- Note: it might appear that a properly analyzed unchecked conversion
|
|
-- would be just fine here, but that's not the case, since the full
|
|
-- range checks performed by the following call are critical.
|
|
|
|
Apply_Type_Conversion_Checks (N);
|
|
end Integer_Value;
|
|
|
|
-------------------
|
|
-- Invalid_Value --
|
|
-------------------
|
|
|
|
when Attribute_Invalid_Value =>
|
|
Rewrite (N, Get_Simple_Init_Val (Ptyp, N));
|
|
|
|
----------
|
|
-- Last --
|
|
----------
|
|
|
|
when Attribute_Last =>
|
|
|
|
-- If the prefix type is a constrained packed array type which
|
|
-- already has a Packed_Array_Impl_Type representation defined, then
|
|
-- replace this attribute with a direct reference to 'Last of the
|
|
-- appropriate index subtype (since otherwise the back end will try
|
|
-- to give us the value of 'Last for this implementation type).
|
|
|
|
if Is_Constrained_Packed_Array (Ptyp) then
|
|
Rewrite (N,
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Last,
|
|
Prefix => New_Occurrence_Of (Get_Index_Subtype (N), Loc)));
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
-- For access type, apply access check as needed
|
|
|
|
elsif Is_Access_Type (Ptyp) then
|
|
Apply_Access_Check (N);
|
|
|
|
-- For scalar type, if low bound is a reference to an entity, just
|
|
-- replace with a direct reference. Note that we can only have a
|
|
-- reference to a constant entity at this stage, anything else would
|
|
-- have already been rewritten.
|
|
|
|
elsif Is_Scalar_Type (Ptyp) then
|
|
declare
|
|
Hi : constant Node_Id := Type_High_Bound (Ptyp);
|
|
begin
|
|
if Is_Entity_Name (Hi) then
|
|
Rewrite (N, New_Occurrence_Of (Entity (Hi), Loc));
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
--------------
|
|
-- Last_Bit --
|
|
--------------
|
|
|
|
-- We compute this if a component clause was present, otherwise we leave
|
|
-- the computation up to the back end, since we don't know what layout
|
|
-- will be chosen.
|
|
|
|
when Attribute_Last_Bit => Last_Bit_Attr : declare
|
|
CE : constant Entity_Id := Entity (Selector_Name (Pref));
|
|
|
|
begin
|
|
-- In Ada 2005 (or later) if we have the non-default bit order, then
|
|
-- we return the original value as given in the component clause
|
|
-- (RM 2005 13.5.2(3/2)).
|
|
|
|
if Present (Component_Clause (CE))
|
|
and then Ada_Version >= Ada_2005
|
|
and then Reverse_Bit_Order (Scope (CE))
|
|
then
|
|
Rewrite (N,
|
|
Make_Integer_Literal (Loc,
|
|
Intval => Expr_Value (Last_Bit (Component_Clause (CE)))));
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
-- Otherwise (Ada 83/95 or Ada 2005 or later with default bit order),
|
|
-- rewrite with normalized value if we know it statically.
|
|
|
|
elsif Known_Static_Component_Bit_Offset (CE)
|
|
and then Known_Static_Esize (CE)
|
|
then
|
|
Rewrite (N,
|
|
Make_Integer_Literal (Loc,
|
|
Intval => (Component_Bit_Offset (CE) mod System_Storage_Unit)
|
|
+ Esize (CE) - 1));
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
-- Otherwise leave to back end, just apply universal integer checks
|
|
|
|
else
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
|
end if;
|
|
end Last_Bit_Attr;
|
|
|
|
------------------
|
|
-- Leading_Part --
|
|
------------------
|
|
|
|
-- Transforms 'Leading_Part into a call to the floating-point attribute
|
|
-- function Leading_Part in Fat_xxx (where xxx is the root type)
|
|
|
|
-- Note: strictly, we should generate special case code to deal with
|
|
-- absurdly large positive arguments (greater than Integer'Last), which
|
|
-- result in returning the first argument unchanged, but it hardly seems
|
|
-- worth the effort. We raise constraint error for absurdly negative
|
|
-- arguments which is fine.
|
|
|
|
when Attribute_Leading_Part =>
|
|
Expand_Fpt_Attribute_RI (N);
|
|
|
|
------------
|
|
-- Length --
|
|
------------
|
|
|
|
when Attribute_Length => Length : declare
|
|
Ityp : Entity_Id;
|
|
Xnum : Uint;
|
|
|
|
begin
|
|
-- Processing for packed array types
|
|
|
|
if Is_Array_Type (Ptyp) and then Is_Packed (Ptyp) then
|
|
Ityp := Get_Index_Subtype (N);
|
|
|
|
-- If the index type, Ityp, is an enumeration type with holes,
|
|
-- then we calculate X'Length explicitly using
|
|
|
|
-- Typ'Max
|
|
-- (0, Ityp'Pos (X'Last (N)) -
|
|
-- Ityp'Pos (X'First (N)) + 1);
|
|
|
|
-- Since the bounds in the template are the representation values
|
|
-- and the back end would get the wrong value.
|
|
|
|
if Is_Enumeration_Type (Ityp)
|
|
and then Present (Enum_Pos_To_Rep (Base_Type (Ityp)))
|
|
then
|
|
if No (Exprs) then
|
|
Xnum := Uint_1;
|
|
else
|
|
Xnum := Expr_Value (First (Expressions (N)));
|
|
end if;
|
|
|
|
Rewrite (N,
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Typ, Loc),
|
|
Attribute_Name => Name_Max,
|
|
Expressions => New_List
|
|
(Make_Integer_Literal (Loc, 0),
|
|
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd =>
|
|
Make_Op_Subtract (Loc,
|
|
Left_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Ityp, Loc),
|
|
Attribute_Name => Name_Pos,
|
|
|
|
Expressions => New_List (
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => Duplicate_Subexpr (Pref),
|
|
Attribute_Name => Name_Last,
|
|
Expressions => New_List (
|
|
Make_Integer_Literal (Loc, Xnum))))),
|
|
|
|
Right_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Ityp, Loc),
|
|
Attribute_Name => Name_Pos,
|
|
|
|
Expressions => New_List (
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix =>
|
|
Duplicate_Subexpr_No_Checks (Pref),
|
|
Attribute_Name => Name_First,
|
|
Expressions => New_List (
|
|
Make_Integer_Literal (Loc, Xnum)))))),
|
|
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1)))));
|
|
|
|
Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
|
|
return;
|
|
|
|
-- If the prefix type is a constrained packed array type which
|
|
-- already has a Packed_Array_Impl_Type representation defined,
|
|
-- then replace this attribute with a reference to 'Range_Length
|
|
-- of the appropriate index subtype (since otherwise the
|
|
-- back end will try to give us the value of 'Length for
|
|
-- this implementation type).s
|
|
|
|
elsif Is_Constrained (Ptyp) then
|
|
Rewrite (N,
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Range_Length,
|
|
Prefix => New_Occurrence_Of (Ityp, Loc)));
|
|
Analyze_And_Resolve (N, Typ);
|
|
end if;
|
|
|
|
-- Access type case
|
|
|
|
elsif Is_Access_Type (Ptyp) then
|
|
Apply_Access_Check (N);
|
|
|
|
-- If the designated type is a packed array type, then we convert
|
|
-- the reference to:
|
|
|
|
-- typ'Max (0, 1 +
|
|
-- xtyp'Pos (Pref'Last (Expr)) -
|
|
-- xtyp'Pos (Pref'First (Expr)));
|
|
|
|
-- This is a bit complex, but it is the easiest thing to do that
|
|
-- works in all cases including enum types with holes xtyp here
|
|
-- is the appropriate index type.
|
|
|
|
declare
|
|
Dtyp : constant Entity_Id := Designated_Type (Ptyp);
|
|
Xtyp : Entity_Id;
|
|
|
|
begin
|
|
if Is_Array_Type (Dtyp) and then Is_Packed (Dtyp) then
|
|
Xtyp := Get_Index_Subtype (N);
|
|
|
|
Rewrite (N,
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Typ, Loc),
|
|
Attribute_Name => Name_Max,
|
|
Expressions => New_List (
|
|
Make_Integer_Literal (Loc, 0),
|
|
|
|
Make_Op_Add (Loc,
|
|
Make_Integer_Literal (Loc, 1),
|
|
Make_Op_Subtract (Loc,
|
|
Left_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Xtyp, Loc),
|
|
Attribute_Name => Name_Pos,
|
|
Expressions => New_List (
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => Duplicate_Subexpr (Pref),
|
|
Attribute_Name => Name_Last,
|
|
Expressions =>
|
|
New_Copy_List (Exprs)))),
|
|
|
|
Right_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Xtyp, Loc),
|
|
Attribute_Name => Name_Pos,
|
|
Expressions => New_List (
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix =>
|
|
Duplicate_Subexpr_No_Checks (Pref),
|
|
Attribute_Name => Name_First,
|
|
Expressions =>
|
|
New_Copy_List (Exprs)))))))));
|
|
|
|
Analyze_And_Resolve (N, Typ);
|
|
end if;
|
|
end;
|
|
|
|
-- Otherwise leave it to the back end
|
|
|
|
else
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
|
end if;
|
|
end Length;
|
|
|
|
-- Attribute Loop_Entry is replaced with a reference to a constant value
|
|
-- which captures the prefix at the entry point of the related loop. The
|
|
-- loop itself may be transformed into a conditional block.
|
|
|
|
when Attribute_Loop_Entry =>
|
|
Expand_Loop_Entry_Attribute (N);
|
|
|
|
-------------
|
|
-- Machine --
|
|
-------------
|
|
|
|
-- Transforms 'Machine into a call to the floating-point attribute
|
|
-- function Machine in Fat_xxx (where xxx is the root type).
|
|
-- Expansion is avoided for cases the back end can handle directly.
|
|
|
|
when Attribute_Machine =>
|
|
if not Is_Inline_Floating_Point_Attribute (N) then
|
|
Expand_Fpt_Attribute_R (N);
|
|
end if;
|
|
|
|
----------------------
|
|
-- Machine_Rounding --
|
|
----------------------
|
|
|
|
-- Transforms 'Machine_Rounding into a call to the floating-point
|
|
-- attribute function Machine_Rounding in Fat_xxx (where xxx is the root
|
|
-- type). Expansion is avoided for cases the back end can handle
|
|
-- directly.
|
|
|
|
when Attribute_Machine_Rounding =>
|
|
if not Is_Inline_Floating_Point_Attribute (N) then
|
|
Expand_Fpt_Attribute_R (N);
|
|
end if;
|
|
|
|
------------------
|
|
-- Machine_Size --
|
|
------------------
|
|
|
|
-- Machine_Size is equivalent to Object_Size, so transform it into
|
|
-- Object_Size and that way the back end never sees Machine_Size.
|
|
|
|
when Attribute_Machine_Size =>
|
|
Rewrite (N,
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => Prefix (N),
|
|
Attribute_Name => Name_Object_Size));
|
|
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
--------------
|
|
-- Mantissa --
|
|
--------------
|
|
|
|
-- The only case that can get this far is the dynamic case of the old
|
|
-- Ada 83 Mantissa attribute for the fixed-point case. For this case,
|
|
-- we expand:
|
|
|
|
-- typ'Mantissa
|
|
|
|
-- into
|
|
|
|
-- ityp (System.Mantissa.Mantissa_Value
|
|
-- (Integer'Integer_Value (typ'First),
|
|
-- Integer'Integer_Value (typ'Last)));
|
|
|
|
when Attribute_Mantissa => Mantissa : begin
|
|
Rewrite (N,
|
|
Convert_To (Typ,
|
|
Make_Function_Call (Loc,
|
|
Name => New_Occurrence_Of (RTE (RE_Mantissa_Value), Loc),
|
|
|
|
Parameter_Associations => New_List (
|
|
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Standard_Integer, Loc),
|
|
Attribute_Name => Name_Integer_Value,
|
|
Expressions => New_List (
|
|
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc),
|
|
Attribute_Name => Name_First))),
|
|
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Standard_Integer, Loc),
|
|
Attribute_Name => Name_Integer_Value,
|
|
Expressions => New_List (
|
|
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc),
|
|
Attribute_Name => Name_Last)))))));
|
|
|
|
Analyze_And_Resolve (N, Typ);
|
|
end Mantissa;
|
|
|
|
---------
|
|
-- Max --
|
|
---------
|
|
|
|
when Attribute_Max =>
|
|
Expand_Min_Max_Attribute (N);
|
|
|
|
----------------------------------
|
|
-- Max_Size_In_Storage_Elements --
|
|
----------------------------------
|
|
|
|
when Attribute_Max_Size_In_Storage_Elements => declare
|
|
Typ : constant Entity_Id := Etype (N);
|
|
Attr : Node_Id;
|
|
|
|
Conversion_Added : Boolean := False;
|
|
-- A flag which tracks whether the original attribute has been
|
|
-- wrapped inside a type conversion.
|
|
|
|
begin
|
|
-- If the prefix is X'Class, we transform it into a direct reference
|
|
-- to the class-wide type, because the back end must not see a 'Class
|
|
-- reference. See also 'Size.
|
|
|
|
if Is_Entity_Name (Pref)
|
|
and then Is_Class_Wide_Type (Entity (Pref))
|
|
then
|
|
Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
|
|
return;
|
|
end if;
|
|
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
|
|
|
-- The universal integer check may sometimes add a type conversion,
|
|
-- retrieve the original attribute reference from the expression.
|
|
|
|
Attr := N;
|
|
|
|
if Nkind (Attr) = N_Type_Conversion then
|
|
Attr := Expression (Attr);
|
|
Conversion_Added := True;
|
|
end if;
|
|
|
|
pragma Assert (Nkind (Attr) = N_Attribute_Reference);
|
|
|
|
-- Heap-allocated controlled objects contain two extra pointers which
|
|
-- are not part of the actual type. Transform the attribute reference
|
|
-- into a runtime expression to add the size of the hidden header.
|
|
|
|
if Needs_Finalization (Ptyp)
|
|
and then not Header_Size_Added (Attr)
|
|
then
|
|
Set_Header_Size_Added (Attr);
|
|
|
|
-- Generate:
|
|
-- P'Max_Size_In_Storage_Elements +
|
|
-- Universal_Integer
|
|
-- (Header_Size_With_Padding (Ptyp'Alignment))
|
|
|
|
Rewrite (Attr,
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd => Relocate_Node (Attr),
|
|
Right_Opnd =>
|
|
Convert_To (Universal_Integer,
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of
|
|
(RTE (RE_Header_Size_With_Padding), Loc),
|
|
|
|
Parameter_Associations => New_List (
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix =>
|
|
New_Occurrence_Of (Ptyp, Loc),
|
|
Attribute_Name => Name_Alignment))))));
|
|
|
|
-- Add a conversion to the target type
|
|
|
|
if not Conversion_Added then
|
|
Rewrite (Attr,
|
|
Make_Type_Conversion (Loc,
|
|
Subtype_Mark => New_Occurrence_Of (Typ, Loc),
|
|
Expression => Relocate_Node (Attr)));
|
|
end if;
|
|
|
|
Analyze (Attr);
|
|
return;
|
|
end if;
|
|
end;
|
|
|
|
--------------------
|
|
-- Mechanism_Code --
|
|
--------------------
|
|
|
|
when Attribute_Mechanism_Code =>
|
|
|
|
-- We must replace the prefix i the renamed case
|
|
|
|
if Is_Entity_Name (Pref)
|
|
and then Present (Alias (Entity (Pref)))
|
|
then
|
|
Set_Renamed_Subprogram (Pref, Alias (Entity (Pref)));
|
|
end if;
|
|
|
|
---------
|
|
-- Min --
|
|
---------
|
|
|
|
when Attribute_Min =>
|
|
Expand_Min_Max_Attribute (N);
|
|
|
|
---------
|
|
-- Mod --
|
|
---------
|
|
|
|
when Attribute_Mod => Mod_Case : declare
|
|
Arg : constant Node_Id := Relocate_Node (First (Exprs));
|
|
Hi : constant Node_Id := Type_High_Bound (Etype (Arg));
|
|
Modv : constant Uint := Modulus (Btyp);
|
|
|
|
begin
|
|
|
|
-- This is not so simple. The issue is what type to use for the
|
|
-- computation of the modular value.
|
|
|
|
-- The easy case is when the modulus value is within the bounds
|
|
-- of the signed integer type of the argument. In this case we can
|
|
-- just do the computation in that signed integer type, and then
|
|
-- do an ordinary conversion to the target type.
|
|
|
|
if Modv <= Expr_Value (Hi) then
|
|
Rewrite (N,
|
|
Convert_To (Btyp,
|
|
Make_Op_Mod (Loc,
|
|
Left_Opnd => Arg,
|
|
Right_Opnd => Make_Integer_Literal (Loc, Modv))));
|
|
|
|
-- Here we know that the modulus is larger than type'Last of the
|
|
-- integer type. There are two cases to consider:
|
|
|
|
-- a) The integer value is non-negative. In this case, it is
|
|
-- returned as the result (since it is less than the modulus).
|
|
|
|
-- b) The integer value is negative. In this case, we know that the
|
|
-- result is modulus + value, where the value might be as small as
|
|
-- -modulus. The trouble is what type do we use to do the subtract.
|
|
-- No type will do, since modulus can be as big as 2**64, and no
|
|
-- integer type accommodates this value. Let's do bit of algebra
|
|
|
|
-- modulus + value
|
|
-- = modulus - (-value)
|
|
-- = (modulus - 1) - (-value - 1)
|
|
|
|
-- Now modulus - 1 is certainly in range of the modular type.
|
|
-- -value is in the range 1 .. modulus, so -value -1 is in the
|
|
-- range 0 .. modulus-1 which is in range of the modular type.
|
|
-- Furthermore, (-value - 1) can be expressed as -(value + 1)
|
|
-- which we can compute using the integer base type.
|
|
|
|
-- Once this is done we analyze the if expression without range
|
|
-- checks, because we know everything is in range, and we want
|
|
-- to prevent spurious warnings on either branch.
|
|
|
|
else
|
|
Rewrite (N,
|
|
Make_If_Expression (Loc,
|
|
Expressions => New_List (
|
|
Make_Op_Ge (Loc,
|
|
Left_Opnd => Duplicate_Subexpr (Arg),
|
|
Right_Opnd => Make_Integer_Literal (Loc, 0)),
|
|
|
|
Convert_To (Btyp,
|
|
Duplicate_Subexpr_No_Checks (Arg)),
|
|
|
|
Make_Op_Subtract (Loc,
|
|
Left_Opnd =>
|
|
Make_Integer_Literal (Loc,
|
|
Intval => Modv - 1),
|
|
Right_Opnd =>
|
|
Convert_To (Btyp,
|
|
Make_Op_Minus (Loc,
|
|
Right_Opnd =>
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd => Duplicate_Subexpr_No_Checks (Arg),
|
|
Right_Opnd =>
|
|
Make_Integer_Literal (Loc,
|
|
Intval => 1))))))));
|
|
|
|
end if;
|
|
|
|
Analyze_And_Resolve (N, Btyp, Suppress => All_Checks);
|
|
end Mod_Case;
|
|
|
|
-----------
|
|
-- Model --
|
|
-----------
|
|
|
|
-- Transforms 'Model into a call to the floating-point attribute
|
|
-- function Model in Fat_xxx (where xxx is the root type).
|
|
-- Expansion is avoided for cases the back end can handle directly.
|
|
|
|
when Attribute_Model =>
|
|
if not Is_Inline_Floating_Point_Attribute (N) then
|
|
Expand_Fpt_Attribute_R (N);
|
|
end if;
|
|
|
|
-----------------
|
|
-- Object_Size --
|
|
-----------------
|
|
|
|
-- The processing for Object_Size shares the processing for Size
|
|
|
|
---------
|
|
-- Old --
|
|
---------
|
|
|
|
when Attribute_Old => Old : declare
|
|
Typ : constant Entity_Id := Etype (N);
|
|
CW_Temp : Entity_Id;
|
|
CW_Typ : Entity_Id;
|
|
Ins_Nod : Node_Id;
|
|
Subp : Node_Id;
|
|
Temp : Entity_Id;
|
|
|
|
begin
|
|
-- Generating C code we don't need to expand this attribute when
|
|
-- we are analyzing the internally built nested postconditions
|
|
-- procedure since it will be expanded inline (and later it will
|
|
-- be removed by Expand_N_Subprogram_Body). It this expansion is
|
|
-- performed in such case then the compiler generates unreferenced
|
|
-- extra temporaries.
|
|
|
|
if Modify_Tree_For_C
|
|
and then Chars (Current_Scope) = Name_uPostconditions
|
|
then
|
|
return;
|
|
end if;
|
|
|
|
-- Climb the parent chain looking for subprogram _Postconditions
|
|
|
|
Subp := N;
|
|
while Present (Subp) loop
|
|
exit when Nkind (Subp) = N_Subprogram_Body
|
|
and then Chars (Defining_Entity (Subp)) = Name_uPostconditions;
|
|
|
|
-- If assertions are disabled, no need to create the declaration
|
|
-- that preserves the value. The postcondition pragma in which
|
|
-- 'Old appears will be checked or disabled according to the
|
|
-- current policy in effect.
|
|
|
|
if Nkind (Subp) = N_Pragma and then not Is_Checked (Subp) then
|
|
return;
|
|
end if;
|
|
|
|
Subp := Parent (Subp);
|
|
end loop;
|
|
|
|
-- 'Old can only appear in a postcondition, the generated body of
|
|
-- _Postconditions must be in the tree (or inlined if we are
|
|
-- generating C code).
|
|
|
|
pragma Assert
|
|
(Present (Subp)
|
|
or else (Modify_Tree_For_C and then In_Inlined_Body));
|
|
|
|
Temp := Make_Temporary (Loc, 'T', Pref);
|
|
|
|
-- Set the entity kind now in order to mark the temporary as a
|
|
-- handler of attribute 'Old's prefix.
|
|
|
|
Set_Ekind (Temp, E_Constant);
|
|
Set_Stores_Attribute_Old_Prefix (Temp);
|
|
|
|
-- Push the scope of the related subprogram where _Postcondition
|
|
-- resides as this ensures that the object will be analyzed in the
|
|
-- proper context.
|
|
|
|
if Present (Subp) then
|
|
Push_Scope (Scope (Defining_Entity (Subp)));
|
|
|
|
-- No need to push the scope when generating C code since the
|
|
-- _Postcondition procedure has been inlined.
|
|
|
|
else pragma Assert (Modify_Tree_For_C);
|
|
pragma Assert (In_Inlined_Body);
|
|
null;
|
|
end if;
|
|
|
|
-- Locate the insertion place of the internal temporary that saves
|
|
-- the 'Old value.
|
|
|
|
if Present (Subp) then
|
|
Ins_Nod := Subp;
|
|
|
|
-- Generating C, the postcondition procedure has been inlined and the
|
|
-- temporary is added before the first declaration of the enclosing
|
|
-- subprogram.
|
|
|
|
else pragma Assert (Modify_Tree_For_C);
|
|
Ins_Nod := N;
|
|
while Nkind (Ins_Nod) /= N_Subprogram_Body loop
|
|
Ins_Nod := Parent (Ins_Nod);
|
|
end loop;
|
|
|
|
Ins_Nod := First (Declarations (Ins_Nod));
|
|
end if;
|
|
|
|
-- Preserve the tag of the prefix by offering a specific view of the
|
|
-- class-wide version of the prefix.
|
|
|
|
if Is_Tagged_Type (Typ) then
|
|
|
|
-- Generate:
|
|
-- CW_Temp : constant Typ'Class := Typ'Class (Pref);
|
|
|
|
CW_Temp := Make_Temporary (Loc, 'T');
|
|
CW_Typ := Class_Wide_Type (Typ);
|
|
|
|
Insert_Before_And_Analyze (Ins_Nod,
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => CW_Temp,
|
|
Constant_Present => True,
|
|
Object_Definition => New_Occurrence_Of (CW_Typ, Loc),
|
|
Expression =>
|
|
Convert_To (CW_Typ, Relocate_Node (Pref))));
|
|
|
|
-- Generate:
|
|
-- Temp : Typ renames Typ (CW_Temp);
|
|
|
|
Insert_Before_And_Analyze (Ins_Nod,
|
|
Make_Object_Renaming_Declaration (Loc,
|
|
Defining_Identifier => Temp,
|
|
Subtype_Mark => New_Occurrence_Of (Typ, Loc),
|
|
Name =>
|
|
Convert_To (Typ, New_Occurrence_Of (CW_Temp, Loc))));
|
|
|
|
-- Non-tagged case
|
|
|
|
else
|
|
-- Generate:
|
|
-- Temp : constant Typ := Pref;
|
|
|
|
Insert_Before_And_Analyze (Ins_Nod,
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => Temp,
|
|
Constant_Present => True,
|
|
Object_Definition => New_Occurrence_Of (Typ, Loc),
|
|
Expression => Relocate_Node (Pref)));
|
|
end if;
|
|
|
|
if Present (Subp) then
|
|
Pop_Scope;
|
|
end if;
|
|
|
|
-- Ensure that the prefix of attribute 'Old is valid. The check must
|
|
-- be inserted after the expansion of the attribute has taken place
|
|
-- to reflect the new placement of the prefix.
|
|
|
|
if Validity_Checks_On and then Validity_Check_Operands then
|
|
Ensure_Valid (Pref);
|
|
end if;
|
|
|
|
Rewrite (N, New_Occurrence_Of (Temp, Loc));
|
|
end Old;
|
|
|
|
----------------------
|
|
-- Overlaps_Storage --
|
|
----------------------
|
|
|
|
when Attribute_Overlaps_Storage => Overlaps_Storage : declare
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
|
|
X : constant Node_Id := Prefix (N);
|
|
Y : constant Node_Id := First (Expressions (N));
|
|
-- The arguments
|
|
|
|
X_Addr, Y_Addr : Node_Id;
|
|
-- the expressions for their integer addresses
|
|
|
|
X_Size, Y_Size : Node_Id;
|
|
-- the expressions for their sizes
|
|
|
|
Cond : Node_Id;
|
|
|
|
begin
|
|
-- Attribute expands into:
|
|
|
|
-- if X'Address < Y'address then
|
|
-- (X'address + X'Size - 1) >= Y'address
|
|
-- else
|
|
-- (Y'address + Y'size - 1) >= X'Address
|
|
-- end if;
|
|
|
|
-- with the proper address operations. We convert addresses to
|
|
-- integer addresses to use predefined arithmetic. The size is
|
|
-- expressed in storage units. We add copies of X_Addr and Y_Addr
|
|
-- to prevent the appearance of the same node in two places in
|
|
-- the tree.
|
|
|
|
X_Addr :=
|
|
Unchecked_Convert_To (RTE (RE_Integer_Address),
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Address,
|
|
Prefix => New_Copy_Tree (X)));
|
|
|
|
Y_Addr :=
|
|
Unchecked_Convert_To (RTE (RE_Integer_Address),
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Address,
|
|
Prefix => New_Copy_Tree (Y)));
|
|
|
|
X_Size :=
|
|
Make_Op_Divide (Loc,
|
|
Left_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Size,
|
|
Prefix => New_Copy_Tree (X)),
|
|
Right_Opnd =>
|
|
Make_Integer_Literal (Loc, System_Storage_Unit));
|
|
|
|
Y_Size :=
|
|
Make_Op_Divide (Loc,
|
|
Left_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Size,
|
|
Prefix => New_Copy_Tree (Y)),
|
|
Right_Opnd =>
|
|
Make_Integer_Literal (Loc, System_Storage_Unit));
|
|
|
|
Cond :=
|
|
Make_Op_Le (Loc,
|
|
Left_Opnd => X_Addr,
|
|
Right_Opnd => Y_Addr);
|
|
|
|
Rewrite (N,
|
|
Make_If_Expression (Loc, New_List (
|
|
Cond,
|
|
|
|
Make_Op_Ge (Loc,
|
|
Left_Opnd =>
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd => New_Copy_Tree (X_Addr),
|
|
Right_Opnd =>
|
|
Make_Op_Subtract (Loc,
|
|
Left_Opnd => X_Size,
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1))),
|
|
Right_Opnd => Y_Addr),
|
|
|
|
Make_Op_Ge (Loc,
|
|
Left_Opnd =>
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd => New_Copy_Tree (Y_Addr),
|
|
Right_Opnd =>
|
|
Make_Op_Subtract (Loc,
|
|
Left_Opnd => Y_Size,
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1))),
|
|
Right_Opnd => X_Addr))));
|
|
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
|
end Overlaps_Storage;
|
|
|
|
------------
|
|
-- Output --
|
|
------------
|
|
|
|
when Attribute_Output => Output : declare
|
|
P_Type : constant Entity_Id := Entity (Pref);
|
|
U_Type : constant Entity_Id := Underlying_Type (P_Type);
|
|
Pname : Entity_Id;
|
|
Decl : Node_Id;
|
|
Prag : Node_Id;
|
|
Arg3 : Node_Id;
|
|
Wfunc : Node_Id;
|
|
|
|
begin
|
|
-- If no underlying type, we have an error that will be diagnosed
|
|
-- elsewhere, so here we just completely ignore the expansion.
|
|
|
|
if No (U_Type) then
|
|
return;
|
|
end if;
|
|
|
|
-- Stream operations can appear in user code even if the restriction
|
|
-- No_Streams is active (for example, when instantiating a predefined
|
|
-- container). In that case rewrite the attribute as a Raise to
|
|
-- prevent any run-time use.
|
|
|
|
if Restriction_Active (No_Streams) then
|
|
Rewrite (N,
|
|
Make_Raise_Program_Error (Sloc (N),
|
|
Reason => PE_Stream_Operation_Not_Allowed));
|
|
Set_Etype (N, Standard_Void_Type);
|
|
return;
|
|
end if;
|
|
|
|
-- If TSS for Output is present, just call it
|
|
|
|
Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Output);
|
|
|
|
if Present (Pname) then
|
|
null;
|
|
|
|
else
|
|
-- If there is a Stream_Convert pragma, use it, we rewrite
|
|
|
|
-- sourcetyp'Output (stream, Item)
|
|
|
|
-- as
|
|
|
|
-- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
|
|
|
|
-- where strmwrite is the given Write function that converts an
|
|
-- argument of type sourcetyp or a type acctyp, from which it is
|
|
-- derived to type strmtyp. The conversion to acttyp is required
|
|
-- for the derived case.
|
|
|
|
Prag := Get_Stream_Convert_Pragma (P_Type);
|
|
|
|
if Present (Prag) then
|
|
Arg3 :=
|
|
Next (Next (First (Pragma_Argument_Associations (Prag))));
|
|
Wfunc := Entity (Expression (Arg3));
|
|
|
|
Rewrite (N,
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Etype (Wfunc), Loc),
|
|
Attribute_Name => Name_Output,
|
|
Expressions => New_List (
|
|
Relocate_Node (First (Exprs)),
|
|
Make_Function_Call (Loc,
|
|
Name => New_Occurrence_Of (Wfunc, Loc),
|
|
Parameter_Associations => New_List (
|
|
OK_Convert_To (Etype (First_Formal (Wfunc)),
|
|
Relocate_Node (Next (First (Exprs)))))))));
|
|
|
|
Analyze (N);
|
|
return;
|
|
|
|
-- For elementary types, we call the W_xxx routine directly. Note
|
|
-- that the effect of Write and Output is identical for the case
|
|
-- of an elementary type (there are no discriminants or bounds).
|
|
|
|
elsif Is_Elementary_Type (U_Type) then
|
|
|
|
-- A special case arises if we have a defined _Write routine,
|
|
-- since in this case we are required to call this routine.
|
|
|
|
if Present (TSS (Base_Type (U_Type), TSS_Stream_Write)) then
|
|
Build_Record_Or_Elementary_Output_Procedure
|
|
(Loc, U_Type, Decl, Pname);
|
|
Insert_Action (N, Decl);
|
|
|
|
-- For normal cases, we call the W_xxx routine directly
|
|
|
|
else
|
|
Rewrite (N, Build_Elementary_Write_Call (N));
|
|
Analyze (N);
|
|
return;
|
|
end if;
|
|
|
|
-- Array type case
|
|
|
|
elsif Is_Array_Type (U_Type) then
|
|
Build_Array_Output_Procedure (Loc, U_Type, Decl, Pname);
|
|
Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
|
|
|
|
-- Class-wide case, first output external tag, then dispatch
|
|
-- to the appropriate primitive Output function (RM 13.13.2(31)).
|
|
|
|
elsif Is_Class_Wide_Type (P_Type) then
|
|
|
|
-- No need to do anything else compiling under restriction
|
|
-- No_Dispatching_Calls. During the semantic analysis we
|
|
-- already notified such violation.
|
|
|
|
if Restriction_Active (No_Dispatching_Calls) then
|
|
return;
|
|
end if;
|
|
|
|
Tag_Write : declare
|
|
Strm : constant Node_Id := First (Exprs);
|
|
Item : constant Node_Id := Next (Strm);
|
|
|
|
begin
|
|
-- Ada 2005 (AI-344): Check that the accessibility level
|
|
-- of the type of the output object is not deeper than
|
|
-- that of the attribute's prefix type.
|
|
|
|
-- if Get_Access_Level (Item'Tag)
|
|
-- /= Get_Access_Level (P_Type'Tag)
|
|
-- then
|
|
-- raise Tag_Error;
|
|
-- end if;
|
|
|
|
-- String'Output (Strm, External_Tag (Item'Tag));
|
|
|
|
-- We cannot figure out a practical way to implement this
|
|
-- accessibility check on virtual machines, so we omit it.
|
|
|
|
if Ada_Version >= Ada_2005
|
|
and then Tagged_Type_Expansion
|
|
then
|
|
Insert_Action (N,
|
|
Make_Implicit_If_Statement (N,
|
|
Condition =>
|
|
Make_Op_Ne (Loc,
|
|
Left_Opnd =>
|
|
Build_Get_Access_Level (Loc,
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix =>
|
|
Relocate_Node (
|
|
Duplicate_Subexpr (Item,
|
|
Name_Req => True)),
|
|
Attribute_Name => Name_Tag)),
|
|
|
|
Right_Opnd =>
|
|
Make_Integer_Literal (Loc,
|
|
Type_Access_Level (P_Type))),
|
|
|
|
Then_Statements =>
|
|
New_List (Make_Raise_Statement (Loc,
|
|
New_Occurrence_Of (
|
|
RTE (RE_Tag_Error), Loc)))));
|
|
end if;
|
|
|
|
Insert_Action (N,
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Standard_String, Loc),
|
|
Attribute_Name => Name_Output,
|
|
Expressions => New_List (
|
|
Relocate_Node (Duplicate_Subexpr (Strm)),
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of (RTE (RE_External_Tag), Loc),
|
|
Parameter_Associations => New_List (
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix =>
|
|
Relocate_Node
|
|
(Duplicate_Subexpr (Item, Name_Req => True)),
|
|
Attribute_Name => Name_Tag))))));
|
|
end Tag_Write;
|
|
|
|
Pname := Find_Prim_Op (U_Type, TSS_Stream_Output);
|
|
|
|
-- Tagged type case, use the primitive Output function
|
|
|
|
elsif Is_Tagged_Type (U_Type) then
|
|
Pname := Find_Prim_Op (U_Type, TSS_Stream_Output);
|
|
|
|
-- All other record type cases, including protected records.
|
|
-- The latter only arise for expander generated code for
|
|
-- handling shared passive partition access.
|
|
|
|
else
|
|
pragma Assert
|
|
(Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
|
|
|
|
-- Ada 2005 (AI-216): Program_Error is raised when executing
|
|
-- the default implementation of the Output attribute of an
|
|
-- unchecked union type if the type lacks default discriminant
|
|
-- values.
|
|
|
|
if Is_Unchecked_Union (Base_Type (U_Type))
|
|
and then No (Discriminant_Constraint (U_Type))
|
|
then
|
|
Insert_Action (N,
|
|
Make_Raise_Program_Error (Loc,
|
|
Reason => PE_Unchecked_Union_Restriction));
|
|
|
|
return;
|
|
end if;
|
|
|
|
Build_Record_Or_Elementary_Output_Procedure
|
|
(Loc, Base_Type (U_Type), Decl, Pname);
|
|
Insert_Action (N, Decl);
|
|
end if;
|
|
end if;
|
|
|
|
-- If we fall through, Pname is the name of the procedure to call
|
|
|
|
Rewrite_Stream_Proc_Call (Pname);
|
|
end Output;
|
|
|
|
---------
|
|
-- Pos --
|
|
---------
|
|
|
|
-- For enumeration types with a standard representation, Pos is
|
|
-- handled by the back end.
|
|
|
|
-- For enumeration types, with a non-standard representation we generate
|
|
-- a call to the _Rep_To_Pos function created when the type was frozen.
|
|
-- The call has the form
|
|
|
|
-- _rep_to_pos (expr, flag)
|
|
|
|
-- The parameter flag is True if range checks are enabled, causing
|
|
-- Program_Error to be raised if the expression has an invalid
|
|
-- representation, and False if range checks are suppressed.
|
|
|
|
-- For integer types, Pos is equivalent to a simple integer
|
|
-- conversion and we rewrite it as such
|
|
|
|
when Attribute_Pos => Pos :
|
|
declare
|
|
Etyp : Entity_Id := Base_Type (Entity (Pref));
|
|
|
|
begin
|
|
-- Deal with zero/non-zero boolean values
|
|
|
|
if Is_Boolean_Type (Etyp) then
|
|
Adjust_Condition (First (Exprs));
|
|
Etyp := Standard_Boolean;
|
|
Set_Prefix (N, New_Occurrence_Of (Standard_Boolean, Loc));
|
|
end if;
|
|
|
|
-- Case of enumeration type
|
|
|
|
if Is_Enumeration_Type (Etyp) then
|
|
|
|
-- Non-standard enumeration type (generate call)
|
|
|
|
if Present (Enum_Pos_To_Rep (Etyp)) then
|
|
Append_To (Exprs, Rep_To_Pos_Flag (Etyp, Loc));
|
|
Rewrite (N,
|
|
Convert_To (Typ,
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of (TSS (Etyp, TSS_Rep_To_Pos), Loc),
|
|
Parameter_Associations => Exprs)));
|
|
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
-- Standard enumeration type (do universal integer check)
|
|
|
|
else
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
|
end if;
|
|
|
|
-- Deal with integer types (replace by conversion)
|
|
|
|
elsif Is_Integer_Type (Etyp) then
|
|
Rewrite (N, Convert_To (Typ, First (Exprs)));
|
|
Analyze_And_Resolve (N, Typ);
|
|
end if;
|
|
|
|
end Pos;
|
|
|
|
--------------
|
|
-- Position --
|
|
--------------
|
|
|
|
-- We compute this if a component clause was present, otherwise we leave
|
|
-- the computation up to the back end, since we don't know what layout
|
|
-- will be chosen.
|
|
|
|
when Attribute_Position => Position_Attr :
|
|
declare
|
|
CE : constant Entity_Id := Entity (Selector_Name (Pref));
|
|
|
|
begin
|
|
if Present (Component_Clause (CE)) then
|
|
|
|
-- In Ada 2005 (or later) if we have the non-default bit order,
|
|
-- then we return the original value as given in the component
|
|
-- clause (RM 2005 13.5.2(2/2)).
|
|
|
|
if Ada_Version >= Ada_2005
|
|
and then Reverse_Bit_Order (Scope (CE))
|
|
then
|
|
Rewrite (N,
|
|
Make_Integer_Literal (Loc,
|
|
Intval => Expr_Value (Position (Component_Clause (CE)))));
|
|
|
|
-- Otherwise (Ada 83 or 95, or default bit order specified in
|
|
-- later Ada version), return the normalized value.
|
|
|
|
else
|
|
Rewrite (N,
|
|
Make_Integer_Literal (Loc,
|
|
Intval => Component_Bit_Offset (CE) / System_Storage_Unit));
|
|
end if;
|
|
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
-- If back end is doing things, just apply universal integer checks
|
|
|
|
else
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
|
end if;
|
|
end Position_Attr;
|
|
|
|
----------
|
|
-- Pred --
|
|
----------
|
|
|
|
-- 1. Deal with enumeration types with holes.
|
|
-- 2. For floating-point, generate call to attribute function.
|
|
-- 3. For other cases, deal with constraint checking.
|
|
|
|
when Attribute_Pred => Pred :
|
|
declare
|
|
Etyp : constant Entity_Id := Base_Type (Ptyp);
|
|
|
|
begin
|
|
|
|
-- For enumeration types with non-standard representations, we
|
|
-- expand typ'Pred (x) into
|
|
|
|
-- Pos_To_Rep (Rep_To_Pos (x) - 1)
|
|
|
|
-- If the representation is contiguous, we compute instead
|
|
-- Lit1 + Rep_to_Pos (x -1), to catch invalid representations.
|
|
-- The conversion function Enum_Pos_To_Rep is defined on the
|
|
-- base type, not the subtype, so we have to use the base type
|
|
-- explicitly for this and other enumeration attributes.
|
|
|
|
if Is_Enumeration_Type (Ptyp)
|
|
and then Present (Enum_Pos_To_Rep (Etyp))
|
|
then
|
|
if Has_Contiguous_Rep (Etyp) then
|
|
Rewrite (N,
|
|
Unchecked_Convert_To (Ptyp,
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd =>
|
|
Make_Integer_Literal (Loc,
|
|
Enumeration_Rep (First_Literal (Ptyp))),
|
|
Right_Opnd =>
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of
|
|
(TSS (Etyp, TSS_Rep_To_Pos), Loc),
|
|
|
|
Parameter_Associations =>
|
|
New_List (
|
|
Unchecked_Convert_To (Ptyp,
|
|
Make_Op_Subtract (Loc,
|
|
Left_Opnd =>
|
|
Unchecked_Convert_To (Standard_Integer,
|
|
Relocate_Node (First (Exprs))),
|
|
Right_Opnd =>
|
|
Make_Integer_Literal (Loc, 1))),
|
|
Rep_To_Pos_Flag (Ptyp, Loc))))));
|
|
|
|
else
|
|
-- Add Boolean parameter True, to request program errror if
|
|
-- we have a bad representation on our hands. If checks are
|
|
-- suppressed, then add False instead
|
|
|
|
Append_To (Exprs, Rep_To_Pos_Flag (Ptyp, Loc));
|
|
Rewrite (N,
|
|
Make_Indexed_Component (Loc,
|
|
Prefix =>
|
|
New_Occurrence_Of
|
|
(Enum_Pos_To_Rep (Etyp), Loc),
|
|
Expressions => New_List (
|
|
Make_Op_Subtract (Loc,
|
|
Left_Opnd =>
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of
|
|
(TSS (Etyp, TSS_Rep_To_Pos), Loc),
|
|
Parameter_Associations => Exprs),
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1)))));
|
|
end if;
|
|
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
-- For floating-point, we transform 'Pred into a call to the Pred
|
|
-- floating-point attribute function in Fat_xxx (xxx is root type).
|
|
-- Note that this function takes care of the overflow case.
|
|
|
|
elsif Is_Floating_Point_Type (Ptyp) then
|
|
Expand_Fpt_Attribute_R (N);
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
-- For modular types, nothing to do (no overflow, since wraps)
|
|
|
|
elsif Is_Modular_Integer_Type (Ptyp) then
|
|
null;
|
|
|
|
-- For other types, if argument is marked as needing a range check or
|
|
-- overflow checking is enabled, we must generate a check.
|
|
|
|
elsif not Overflow_Checks_Suppressed (Ptyp)
|
|
or else Do_Range_Check (First (Exprs))
|
|
then
|
|
Set_Do_Range_Check (First (Exprs), False);
|
|
Expand_Pred_Succ_Attribute (N);
|
|
end if;
|
|
end Pred;
|
|
|
|
--------------
|
|
-- Priority --
|
|
--------------
|
|
|
|
-- Ada 2005 (AI-327): Dynamic ceiling priorities
|
|
|
|
-- We rewrite X'Priority as the following run-time call:
|
|
|
|
-- Get_Ceiling (X._Object)
|
|
|
|
-- Note that although X'Priority is notionally an object, it is quite
|
|
-- deliberately not defined as an aliased object in the RM. This means
|
|
-- that it works fine to rewrite it as a call, without having to worry
|
|
-- about complications that would other arise from X'Priority'Access,
|
|
-- which is illegal, because of the lack of aliasing.
|
|
|
|
when Attribute_Priority =>
|
|
declare
|
|
Call : Node_Id;
|
|
Conctyp : Entity_Id;
|
|
Object_Parm : Node_Id;
|
|
Subprg : Entity_Id;
|
|
RT_Subprg_Name : Node_Id;
|
|
|
|
begin
|
|
-- Look for the enclosing concurrent type
|
|
|
|
Conctyp := Current_Scope;
|
|
while not Is_Concurrent_Type (Conctyp) loop
|
|
Conctyp := Scope (Conctyp);
|
|
end loop;
|
|
|
|
pragma Assert (Is_Protected_Type (Conctyp));
|
|
|
|
-- Generate the actual of the call
|
|
|
|
Subprg := Current_Scope;
|
|
while not Present (Protected_Body_Subprogram (Subprg)) loop
|
|
Subprg := Scope (Subprg);
|
|
end loop;
|
|
|
|
-- Use of 'Priority inside protected entries and barriers (in
|
|
-- both cases the type of the first formal of their expanded
|
|
-- subprogram is Address)
|
|
|
|
if Etype (First_Entity (Protected_Body_Subprogram (Subprg))) =
|
|
RTE (RE_Address)
|
|
then
|
|
declare
|
|
New_Itype : Entity_Id;
|
|
|
|
begin
|
|
-- In the expansion of protected entries the type of the
|
|
-- first formal of the Protected_Body_Subprogram is an
|
|
-- Address. In order to reference the _object component
|
|
-- we generate:
|
|
|
|
-- type T is access p__ptTV;
|
|
-- freeze T []
|
|
|
|
New_Itype := Create_Itype (E_Access_Type, N);
|
|
Set_Etype (New_Itype, New_Itype);
|
|
Set_Directly_Designated_Type (New_Itype,
|
|
Corresponding_Record_Type (Conctyp));
|
|
Freeze_Itype (New_Itype, N);
|
|
|
|
-- Generate:
|
|
-- T!(O)._object'unchecked_access
|
|
|
|
Object_Parm :=
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix =>
|
|
Make_Selected_Component (Loc,
|
|
Prefix =>
|
|
Unchecked_Convert_To (New_Itype,
|
|
New_Occurrence_Of
|
|
(First_Entity
|
|
(Protected_Body_Subprogram (Subprg)),
|
|
Loc)),
|
|
Selector_Name =>
|
|
Make_Identifier (Loc, Name_uObject)),
|
|
Attribute_Name => Name_Unchecked_Access);
|
|
end;
|
|
|
|
-- Use of 'Priority inside a protected subprogram
|
|
|
|
else
|
|
Object_Parm :=
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix =>
|
|
Make_Selected_Component (Loc,
|
|
Prefix => New_Occurrence_Of
|
|
(First_Entity
|
|
(Protected_Body_Subprogram (Subprg)),
|
|
Loc),
|
|
Selector_Name => Make_Identifier (Loc, Name_uObject)),
|
|
Attribute_Name => Name_Unchecked_Access);
|
|
end if;
|
|
|
|
-- Select the appropriate run-time subprogram
|
|
|
|
if Number_Entries (Conctyp) = 0 then
|
|
RT_Subprg_Name :=
|
|
New_Occurrence_Of (RTE (RE_Get_Ceiling), Loc);
|
|
else
|
|
RT_Subprg_Name :=
|
|
New_Occurrence_Of (RTE (RO_PE_Get_Ceiling), Loc);
|
|
end if;
|
|
|
|
Call :=
|
|
Make_Function_Call (Loc,
|
|
Name => RT_Subprg_Name,
|
|
Parameter_Associations => New_List (Object_Parm));
|
|
|
|
Rewrite (N, Call);
|
|
|
|
-- Avoid the generation of extra checks on the pointer to the
|
|
-- protected object.
|
|
|
|
Analyze_And_Resolve (N, Typ, Suppress => Access_Check);
|
|
end;
|
|
|
|
------------------
|
|
-- Range_Length --
|
|
------------------
|
|
|
|
when Attribute_Range_Length => Range_Length : begin
|
|
|
|
-- The only special processing required is for the case where
|
|
-- Range_Length is applied to an enumeration type with holes.
|
|
-- In this case we transform
|
|
|
|
-- X'Range_Length
|
|
|
|
-- to
|
|
|
|
-- X'Pos (X'Last) - X'Pos (X'First) + 1
|
|
|
|
-- So that the result reflects the proper Pos values instead
|
|
-- of the underlying representations.
|
|
|
|
if Is_Enumeration_Type (Ptyp)
|
|
and then Has_Non_Standard_Rep (Ptyp)
|
|
then
|
|
Rewrite (N,
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd =>
|
|
Make_Op_Subtract (Loc,
|
|
Left_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Pos,
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc),
|
|
Expressions => New_List (
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Last,
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc)))),
|
|
|
|
Right_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Pos,
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc),
|
|
Expressions => New_List (
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_First,
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc))))),
|
|
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1)));
|
|
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
-- For all other cases, the attribute is handled by the back end, but
|
|
-- we need to deal with the case of the range check on a universal
|
|
-- integer.
|
|
|
|
else
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
|
end if;
|
|
end Range_Length;
|
|
|
|
----------
|
|
-- Read --
|
|
----------
|
|
|
|
when Attribute_Read => Read : declare
|
|
P_Type : constant Entity_Id := Entity (Pref);
|
|
B_Type : constant Entity_Id := Base_Type (P_Type);
|
|
U_Type : constant Entity_Id := Underlying_Type (P_Type);
|
|
Pname : Entity_Id;
|
|
Decl : Node_Id;
|
|
Prag : Node_Id;
|
|
Arg2 : Node_Id;
|
|
Rfunc : Node_Id;
|
|
Lhs : Node_Id;
|
|
Rhs : Node_Id;
|
|
|
|
begin
|
|
-- If no underlying type, we have an error that will be diagnosed
|
|
-- elsewhere, so here we just completely ignore the expansion.
|
|
|
|
if No (U_Type) then
|
|
return;
|
|
end if;
|
|
|
|
-- Stream operations can appear in user code even if the restriction
|
|
-- No_Streams is active (for example, when instantiating a predefined
|
|
-- container). In that case rewrite the attribute as a Raise to
|
|
-- prevent any run-time use.
|
|
|
|
if Restriction_Active (No_Streams) then
|
|
Rewrite (N,
|
|
Make_Raise_Program_Error (Sloc (N),
|
|
Reason => PE_Stream_Operation_Not_Allowed));
|
|
Set_Etype (N, B_Type);
|
|
return;
|
|
end if;
|
|
|
|
-- The simple case, if there is a TSS for Read, just call it
|
|
|
|
Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Read);
|
|
|
|
if Present (Pname) then
|
|
null;
|
|
|
|
else
|
|
-- If there is a Stream_Convert pragma, use it, we rewrite
|
|
|
|
-- sourcetyp'Read (stream, Item)
|
|
|
|
-- as
|
|
|
|
-- Item := sourcetyp (strmread (strmtyp'Input (Stream)));
|
|
|
|
-- where strmread is the given Read function that converts an
|
|
-- argument of type strmtyp to type sourcetyp or a type from which
|
|
-- it is derived. The conversion to sourcetyp is required in the
|
|
-- latter case.
|
|
|
|
-- A special case arises if Item is a type conversion in which
|
|
-- case, we have to expand to:
|
|
|
|
-- Itemx := typex (strmread (strmtyp'Input (Stream)));
|
|
|
|
-- where Itemx is the expression of the type conversion (i.e.
|
|
-- the actual object), and typex is the type of Itemx.
|
|
|
|
Prag := Get_Stream_Convert_Pragma (P_Type);
|
|
|
|
if Present (Prag) then
|
|
Arg2 := Next (First (Pragma_Argument_Associations (Prag)));
|
|
Rfunc := Entity (Expression (Arg2));
|
|
Lhs := Relocate_Node (Next (First (Exprs)));
|
|
Rhs :=
|
|
OK_Convert_To (B_Type,
|
|
Make_Function_Call (Loc,
|
|
Name => New_Occurrence_Of (Rfunc, Loc),
|
|
Parameter_Associations => New_List (
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix =>
|
|
New_Occurrence_Of
|
|
(Etype (First_Formal (Rfunc)), Loc),
|
|
Attribute_Name => Name_Input,
|
|
Expressions => New_List (
|
|
Relocate_Node (First (Exprs)))))));
|
|
|
|
if Nkind (Lhs) = N_Type_Conversion then
|
|
Lhs := Expression (Lhs);
|
|
Rhs := Convert_To (Etype (Lhs), Rhs);
|
|
end if;
|
|
|
|
Rewrite (N,
|
|
Make_Assignment_Statement (Loc,
|
|
Name => Lhs,
|
|
Expression => Rhs));
|
|
Set_Assignment_OK (Lhs);
|
|
Analyze (N);
|
|
return;
|
|
|
|
-- For elementary types, we call the I_xxx routine using the first
|
|
-- parameter and then assign the result into the second parameter.
|
|
-- We set Assignment_OK to deal with the conversion case.
|
|
|
|
elsif Is_Elementary_Type (U_Type) then
|
|
declare
|
|
Lhs : Node_Id;
|
|
Rhs : Node_Id;
|
|
|
|
begin
|
|
Lhs := Relocate_Node (Next (First (Exprs)));
|
|
Rhs := Build_Elementary_Input_Call (N);
|
|
|
|
if Nkind (Lhs) = N_Type_Conversion then
|
|
Lhs := Expression (Lhs);
|
|
Rhs := Convert_To (Etype (Lhs), Rhs);
|
|
end if;
|
|
|
|
Set_Assignment_OK (Lhs);
|
|
|
|
Rewrite (N,
|
|
Make_Assignment_Statement (Loc,
|
|
Name => Lhs,
|
|
Expression => Rhs));
|
|
|
|
Analyze (N);
|
|
return;
|
|
end;
|
|
|
|
-- Array type case
|
|
|
|
elsif Is_Array_Type (U_Type) then
|
|
Build_Array_Read_Procedure (N, U_Type, Decl, Pname);
|
|
Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
|
|
|
|
-- Tagged type case, use the primitive Read function. Note that
|
|
-- this will dispatch in the class-wide case which is what we want
|
|
|
|
elsif Is_Tagged_Type (U_Type) then
|
|
Pname := Find_Prim_Op (U_Type, TSS_Stream_Read);
|
|
|
|
-- All other record type cases, including protected records. The
|
|
-- latter only arise for expander generated code for handling
|
|
-- shared passive partition access.
|
|
|
|
else
|
|
pragma Assert
|
|
(Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
|
|
|
|
-- Ada 2005 (AI-216): Program_Error is raised when executing
|
|
-- the default implementation of the Read attribute of an
|
|
-- Unchecked_Union type.
|
|
|
|
if Is_Unchecked_Union (Base_Type (U_Type)) then
|
|
Insert_Action (N,
|
|
Make_Raise_Program_Error (Loc,
|
|
Reason => PE_Unchecked_Union_Restriction));
|
|
end if;
|
|
|
|
if Has_Discriminants (U_Type)
|
|
and then Present
|
|
(Discriminant_Default_Value (First_Discriminant (U_Type)))
|
|
then
|
|
Build_Mutable_Record_Read_Procedure
|
|
(Loc, Full_Base (U_Type), Decl, Pname);
|
|
else
|
|
Build_Record_Read_Procedure
|
|
(Loc, Full_Base (U_Type), Decl, Pname);
|
|
end if;
|
|
|
|
-- Suppress checks, uninitialized or otherwise invalid
|
|
-- data does not cause constraint errors to be raised for
|
|
-- a complete record read.
|
|
|
|
Insert_Action (N, Decl, All_Checks);
|
|
end if;
|
|
end if;
|
|
|
|
Rewrite_Stream_Proc_Call (Pname);
|
|
end Read;
|
|
|
|
---------
|
|
-- Ref --
|
|
---------
|
|
|
|
-- Ref is identical to To_Address, see To_Address for processing
|
|
|
|
---------------
|
|
-- Remainder --
|
|
---------------
|
|
|
|
-- Transforms 'Remainder into a call to the floating-point attribute
|
|
-- function Remainder in Fat_xxx (where xxx is the root type)
|
|
|
|
when Attribute_Remainder =>
|
|
Expand_Fpt_Attribute_RR (N);
|
|
|
|
------------
|
|
-- Result --
|
|
------------
|
|
|
|
-- Transform 'Result into reference to _Result formal. At the point
|
|
-- where a legal 'Result attribute is expanded, we know that we are in
|
|
-- the context of a _Postcondition function with a _Result parameter.
|
|
|
|
when Attribute_Result =>
|
|
Rewrite (N, Make_Identifier (Loc, Chars => Name_uResult));
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
-----------
|
|
-- Round --
|
|
-----------
|
|
|
|
-- The handling of the Round attribute is quite delicate. The processing
|
|
-- in Sem_Attr introduced a conversion to universal real, reflecting the
|
|
-- semantics of Round, but we do not want anything to do with universal
|
|
-- real at runtime, since this corresponds to using floating-point
|
|
-- arithmetic.
|
|
|
|
-- What we have now is that the Etype of the Round attribute correctly
|
|
-- indicates the final result type. The operand of the Round is the
|
|
-- conversion to universal real, described above, and the operand of
|
|
-- this conversion is the actual operand of Round, which may be the
|
|
-- special case of a fixed point multiplication or division (Etype =
|
|
-- universal fixed)
|
|
|
|
-- The exapander will expand first the operand of the conversion, then
|
|
-- the conversion, and finally the round attribute itself, since we
|
|
-- always work inside out. But we cannot simply process naively in this
|
|
-- order. In the semantic world where universal fixed and real really
|
|
-- exist and have infinite precision, there is no problem, but in the
|
|
-- implementation world, where universal real is a floating-point type,
|
|
-- we would get the wrong result.
|
|
|
|
-- So the approach is as follows. First, when expanding a multiply or
|
|
-- divide whose type is universal fixed, we do nothing at all, instead
|
|
-- deferring the operation till later.
|
|
|
|
-- The actual processing is done in Expand_N_Type_Conversion which
|
|
-- handles the special case of Round by looking at its parent to see if
|
|
-- it is a Round attribute, and if it is, handling the conversion (or
|
|
-- its fixed multiply/divide child) in an appropriate manner.
|
|
|
|
-- This means that by the time we get to expanding the Round attribute
|
|
-- itself, the Round is nothing more than a type conversion (and will
|
|
-- often be a null type conversion), so we just replace it with the
|
|
-- appropriate conversion operation.
|
|
|
|
when Attribute_Round =>
|
|
Rewrite (N,
|
|
Convert_To (Etype (N), Relocate_Node (First (Exprs))));
|
|
Analyze_And_Resolve (N);
|
|
|
|
--------------
|
|
-- Rounding --
|
|
--------------
|
|
|
|
-- Transforms 'Rounding into a call to the floating-point attribute
|
|
-- function Rounding in Fat_xxx (where xxx is the root type)
|
|
-- Expansion is avoided for cases the back end can handle directly.
|
|
|
|
when Attribute_Rounding =>
|
|
if not Is_Inline_Floating_Point_Attribute (N) then
|
|
Expand_Fpt_Attribute_R (N);
|
|
end if;
|
|
|
|
-------------
|
|
-- Scaling --
|
|
-------------
|
|
|
|
-- Transforms 'Scaling into a call to the floating-point attribute
|
|
-- function Scaling in Fat_xxx (where xxx is the root type)
|
|
|
|
when Attribute_Scaling =>
|
|
Expand_Fpt_Attribute_RI (N);
|
|
|
|
-------------------------
|
|
-- Simple_Storage_Pool --
|
|
-------------------------
|
|
|
|
when Attribute_Simple_Storage_Pool =>
|
|
Rewrite (N,
|
|
Make_Type_Conversion (Loc,
|
|
Subtype_Mark => New_Occurrence_Of (Etype (N), Loc),
|
|
Expression => New_Occurrence_Of (Entity (N), Loc)));
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
----------
|
|
-- Size --
|
|
----------
|
|
|
|
when Attribute_Size |
|
|
Attribute_Object_Size |
|
|
Attribute_Value_Size |
|
|
Attribute_VADS_Size => Size :
|
|
|
|
declare
|
|
Siz : Uint;
|
|
New_Node : Node_Id;
|
|
|
|
begin
|
|
-- Processing for VADS_Size case. Note that this processing removes
|
|
-- all traces of VADS_Size from the tree, and completes all required
|
|
-- processing for VADS_Size by translating the attribute reference
|
|
-- to an appropriate Size or Object_Size reference.
|
|
|
|
if Id = Attribute_VADS_Size
|
|
or else (Use_VADS_Size and then Id = Attribute_Size)
|
|
then
|
|
-- If the size is specified, then we simply use the specified
|
|
-- size. This applies to both types and objects. The size of an
|
|
-- object can be specified in the following ways:
|
|
|
|
-- An explicit size object is given for an object
|
|
-- A component size is specified for an indexed component
|
|
-- A component clause is specified for a selected component
|
|
-- The object is a component of a packed composite object
|
|
|
|
-- If the size is specified, then VADS_Size of an object
|
|
|
|
if (Is_Entity_Name (Pref)
|
|
and then Present (Size_Clause (Entity (Pref))))
|
|
or else
|
|
(Nkind (Pref) = N_Component_Clause
|
|
and then (Present (Component_Clause
|
|
(Entity (Selector_Name (Pref))))
|
|
or else Is_Packed (Etype (Prefix (Pref)))))
|
|
or else
|
|
(Nkind (Pref) = N_Indexed_Component
|
|
and then (Component_Size (Etype (Prefix (Pref))) /= 0
|
|
or else Is_Packed (Etype (Prefix (Pref)))))
|
|
then
|
|
Set_Attribute_Name (N, Name_Size);
|
|
|
|
-- Otherwise if we have an object rather than a type, then the
|
|
-- VADS_Size attribute applies to the type of the object, rather
|
|
-- than the object itself. This is one of the respects in which
|
|
-- VADS_Size differs from Size.
|
|
|
|
else
|
|
if (not Is_Entity_Name (Pref)
|
|
or else not Is_Type (Entity (Pref)))
|
|
and then (Is_Scalar_Type (Ptyp) or else Is_Constrained (Ptyp))
|
|
then
|
|
Rewrite (Pref, New_Occurrence_Of (Ptyp, Loc));
|
|
end if;
|
|
|
|
-- For a scalar type for which no size was explicitly given,
|
|
-- VADS_Size means Object_Size. This is the other respect in
|
|
-- which VADS_Size differs from Size.
|
|
|
|
if Is_Scalar_Type (Ptyp) and then No (Size_Clause (Ptyp)) then
|
|
Set_Attribute_Name (N, Name_Object_Size);
|
|
|
|
-- In all other cases, Size and VADS_Size are the sane
|
|
|
|
else
|
|
Set_Attribute_Name (N, Name_Size);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
-- If the prefix is X'Class, we transform it into a direct reference
|
|
-- to the class-wide type, because the back end must not see a 'Class
|
|
-- reference.
|
|
|
|
if Is_Entity_Name (Pref)
|
|
and then Is_Class_Wide_Type (Entity (Pref))
|
|
then
|
|
Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
|
|
return;
|
|
|
|
-- For X'Size applied to an object of a class-wide type, transform
|
|
-- X'Size into a call to the primitive operation _Size applied to X.
|
|
|
|
elsif Is_Class_Wide_Type (Ptyp) then
|
|
|
|
-- No need to do anything else compiling under restriction
|
|
-- No_Dispatching_Calls. During the semantic analysis we
|
|
-- already noted this restriction violation.
|
|
|
|
if Restriction_Active (No_Dispatching_Calls) then
|
|
return;
|
|
end if;
|
|
|
|
New_Node :=
|
|
Make_Function_Call (Loc,
|
|
Name => New_Occurrence_Of
|
|
(Find_Prim_Op (Ptyp, Name_uSize), Loc),
|
|
Parameter_Associations => New_List (Pref));
|
|
|
|
if Typ /= Standard_Long_Long_Integer then
|
|
|
|
-- The context is a specific integer type with which the
|
|
-- original attribute was compatible. The function has a
|
|
-- specific type as well, so to preserve the compatibility
|
|
-- we must convert explicitly.
|
|
|
|
New_Node := Convert_To (Typ, New_Node);
|
|
end if;
|
|
|
|
Rewrite (N, New_Node);
|
|
Analyze_And_Resolve (N, Typ);
|
|
return;
|
|
|
|
-- Case of known RM_Size of a type
|
|
|
|
elsif (Id = Attribute_Size or else Id = Attribute_Value_Size)
|
|
and then Is_Entity_Name (Pref)
|
|
and then Is_Type (Entity (Pref))
|
|
and then Known_Static_RM_Size (Entity (Pref))
|
|
then
|
|
Siz := RM_Size (Entity (Pref));
|
|
|
|
-- Case of known Esize of a type
|
|
|
|
elsif Id = Attribute_Object_Size
|
|
and then Is_Entity_Name (Pref)
|
|
and then Is_Type (Entity (Pref))
|
|
and then Known_Static_Esize (Entity (Pref))
|
|
then
|
|
Siz := Esize (Entity (Pref));
|
|
|
|
-- Case of known size of object
|
|
|
|
elsif Id = Attribute_Size
|
|
and then Is_Entity_Name (Pref)
|
|
and then Is_Object (Entity (Pref))
|
|
and then Known_Esize (Entity (Pref))
|
|
and then Known_Static_Esize (Entity (Pref))
|
|
then
|
|
Siz := Esize (Entity (Pref));
|
|
|
|
-- For an array component, we can do Size in the front end
|
|
-- if the component_size of the array is set.
|
|
|
|
elsif Nkind (Pref) = N_Indexed_Component then
|
|
Siz := Component_Size (Etype (Prefix (Pref)));
|
|
|
|
-- For a record component, we can do Size in the front end if there
|
|
-- is a component clause, or if the record is packed and the
|
|
-- component's size is known at compile time.
|
|
|
|
elsif Nkind (Pref) = N_Selected_Component then
|
|
declare
|
|
Rec : constant Entity_Id := Etype (Prefix (Pref));
|
|
Comp : constant Entity_Id := Entity (Selector_Name (Pref));
|
|
|
|
begin
|
|
if Present (Component_Clause (Comp)) then
|
|
Siz := Esize (Comp);
|
|
|
|
elsif Is_Packed (Rec) then
|
|
Siz := RM_Size (Ptyp);
|
|
|
|
else
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
|
return;
|
|
end if;
|
|
end;
|
|
|
|
-- All other cases are handled by the back end
|
|
|
|
else
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
|
|
|
-- If Size is applied to a formal parameter that is of a packed
|
|
-- array subtype, then apply Size to the actual subtype.
|
|
|
|
if Is_Entity_Name (Pref)
|
|
and then Is_Formal (Entity (Pref))
|
|
and then Is_Array_Type (Ptyp)
|
|
and then Is_Packed (Ptyp)
|
|
then
|
|
Rewrite (N,
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix =>
|
|
New_Occurrence_Of (Get_Actual_Subtype (Pref), Loc),
|
|
Attribute_Name => Name_Size));
|
|
Analyze_And_Resolve (N, Typ);
|
|
end if;
|
|
|
|
-- If Size applies to a dereference of an access to unconstrained
|
|
-- packed array, the back end needs to see its unconstrained
|
|
-- nominal type, but also a hint to the actual constrained type.
|
|
|
|
if Nkind (Pref) = N_Explicit_Dereference
|
|
and then Is_Array_Type (Ptyp)
|
|
and then not Is_Constrained (Ptyp)
|
|
and then Is_Packed (Ptyp)
|
|
then
|
|
Set_Actual_Designated_Subtype (Pref,
|
|
Get_Actual_Subtype (Pref));
|
|
end if;
|
|
|
|
return;
|
|
end if;
|
|
|
|
-- Common processing for record and array component case
|
|
|
|
if Siz /= No_Uint and then Siz /= 0 then
|
|
declare
|
|
CS : constant Boolean := Comes_From_Source (N);
|
|
|
|
begin
|
|
Rewrite (N, Make_Integer_Literal (Loc, Siz));
|
|
|
|
-- This integer literal is not a static expression. We do not
|
|
-- call Analyze_And_Resolve here, because this would activate
|
|
-- the circuit for deciding that a static value was out of
|
|
-- range, and we don't want that.
|
|
|
|
-- So just manually set the type, mark the expression as non-
|
|
-- static, and then ensure that the result is checked properly
|
|
-- if the attribute comes from source (if it was internally
|
|
-- generated, we never need a constraint check).
|
|
|
|
Set_Etype (N, Typ);
|
|
Set_Is_Static_Expression (N, False);
|
|
|
|
if CS then
|
|
Apply_Constraint_Check (N, Typ);
|
|
end if;
|
|
end;
|
|
end if;
|
|
end Size;
|
|
|
|
------------------
|
|
-- Storage_Pool --
|
|
------------------
|
|
|
|
when Attribute_Storage_Pool =>
|
|
Rewrite (N,
|
|
Make_Type_Conversion (Loc,
|
|
Subtype_Mark => New_Occurrence_Of (Etype (N), Loc),
|
|
Expression => New_Occurrence_Of (Entity (N), Loc)));
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
------------------
|
|
-- Storage_Size --
|
|
------------------
|
|
|
|
when Attribute_Storage_Size => Storage_Size : declare
|
|
Alloc_Op : Entity_Id := Empty;
|
|
|
|
begin
|
|
|
|
-- Access type case, always go to the root type
|
|
|
|
-- The case of access types results in a value of zero for the case
|
|
-- where no storage size attribute clause has been given. If a
|
|
-- storage size has been given, then the attribute is converted
|
|
-- to a reference to the variable used to hold this value.
|
|
|
|
if Is_Access_Type (Ptyp) then
|
|
if Present (Storage_Size_Variable (Root_Type (Ptyp))) then
|
|
Rewrite (N,
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Typ, Loc),
|
|
Attribute_Name => Name_Max,
|
|
Expressions => New_List (
|
|
Make_Integer_Literal (Loc, 0),
|
|
Convert_To (Typ,
|
|
New_Occurrence_Of
|
|
(Storage_Size_Variable (Root_Type (Ptyp)), Loc)))));
|
|
|
|
elsif Present (Associated_Storage_Pool (Root_Type (Ptyp))) then
|
|
|
|
-- If the access type is associated with a simple storage pool
|
|
-- object, then attempt to locate the optional Storage_Size
|
|
-- function of the simple storage pool type. If not found,
|
|
-- then the result will default to zero.
|
|
|
|
if Present (Get_Rep_Pragma (Root_Type (Ptyp),
|
|
Name_Simple_Storage_Pool_Type))
|
|
then
|
|
declare
|
|
Pool_Type : constant Entity_Id :=
|
|
Base_Type (Etype (Entity (N)));
|
|
|
|
begin
|
|
Alloc_Op := Get_Name_Entity_Id (Name_Storage_Size);
|
|
while Present (Alloc_Op) loop
|
|
if Scope (Alloc_Op) = Scope (Pool_Type)
|
|
and then Present (First_Formal (Alloc_Op))
|
|
and then Etype (First_Formal (Alloc_Op)) = Pool_Type
|
|
then
|
|
exit;
|
|
end if;
|
|
|
|
Alloc_Op := Homonym (Alloc_Op);
|
|
end loop;
|
|
end;
|
|
|
|
-- In the normal Storage_Pool case, retrieve the primitive
|
|
-- function associated with the pool type.
|
|
|
|
else
|
|
Alloc_Op :=
|
|
Find_Prim_Op
|
|
(Etype (Associated_Storage_Pool (Root_Type (Ptyp))),
|
|
Attribute_Name (N));
|
|
end if;
|
|
|
|
-- If Storage_Size wasn't found (can only occur in the simple
|
|
-- storage pool case), then simply use zero for the result.
|
|
|
|
if not Present (Alloc_Op) then
|
|
Rewrite (N, Make_Integer_Literal (Loc, 0));
|
|
|
|
-- Otherwise, rewrite the allocator as a call to pool type's
|
|
-- Storage_Size function.
|
|
|
|
else
|
|
Rewrite (N,
|
|
OK_Convert_To (Typ,
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of (Alloc_Op, Loc),
|
|
|
|
Parameter_Associations => New_List (
|
|
New_Occurrence_Of
|
|
(Associated_Storage_Pool
|
|
(Root_Type (Ptyp)), Loc)))));
|
|
end if;
|
|
|
|
else
|
|
Rewrite (N, Make_Integer_Literal (Loc, 0));
|
|
end if;
|
|
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
-- For tasks, we retrieve the size directly from the TCB. The
|
|
-- size may depend on a discriminant of the type, and therefore
|
|
-- can be a per-object expression, so type-level information is
|
|
-- not sufficient in general. There are four cases to consider:
|
|
|
|
-- a) If the attribute appears within a task body, the designated
|
|
-- TCB is obtained by a call to Self.
|
|
|
|
-- b) If the prefix of the attribute is the name of a task object,
|
|
-- the designated TCB is the one stored in the corresponding record.
|
|
|
|
-- c) If the prefix is a task type, the size is obtained from the
|
|
-- size variable created for each task type
|
|
|
|
-- d) If no Storage_Size was specified for the type, there is no
|
|
-- size variable, and the value is a system-specific default.
|
|
|
|
else
|
|
if In_Open_Scopes (Ptyp) then
|
|
|
|
-- Storage_Size (Self)
|
|
|
|
Rewrite (N,
|
|
Convert_To (Typ,
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of (RTE (RE_Storage_Size), Loc),
|
|
Parameter_Associations =>
|
|
New_List (
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of (RTE (RE_Self), Loc))))));
|
|
|
|
elsif not Is_Entity_Name (Pref)
|
|
or else not Is_Type (Entity (Pref))
|
|
then
|
|
-- Storage_Size (Rec (Obj).Size)
|
|
|
|
Rewrite (N,
|
|
Convert_To (Typ,
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of (RTE (RE_Storage_Size), Loc),
|
|
Parameter_Associations =>
|
|
New_List (
|
|
Make_Selected_Component (Loc,
|
|
Prefix =>
|
|
Unchecked_Convert_To (
|
|
Corresponding_Record_Type (Ptyp),
|
|
New_Copy_Tree (Pref)),
|
|
Selector_Name =>
|
|
Make_Identifier (Loc, Name_uTask_Id))))));
|
|
|
|
elsif Present (Storage_Size_Variable (Ptyp)) then
|
|
|
|
-- Static Storage_Size pragma given for type: retrieve value
|
|
-- from its allocated storage variable.
|
|
|
|
Rewrite (N,
|
|
Convert_To (Typ,
|
|
Make_Function_Call (Loc,
|
|
Name => New_Occurrence_Of (
|
|
RTE (RE_Adjust_Storage_Size), Loc),
|
|
Parameter_Associations =>
|
|
New_List (
|
|
New_Occurrence_Of (
|
|
Storage_Size_Variable (Ptyp), Loc)))));
|
|
else
|
|
-- Get system default
|
|
|
|
Rewrite (N,
|
|
Convert_To (Typ,
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of (
|
|
RTE (RE_Default_Stack_Size), Loc))));
|
|
end if;
|
|
|
|
Analyze_And_Resolve (N, Typ);
|
|
end if;
|
|
end Storage_Size;
|
|
|
|
-----------------
|
|
-- Stream_Size --
|
|
-----------------
|
|
|
|
when Attribute_Stream_Size =>
|
|
Rewrite (N,
|
|
Make_Integer_Literal (Loc, Intval => Get_Stream_Size (Ptyp)));
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
----------
|
|
-- Succ --
|
|
----------
|
|
|
|
-- 1. Deal with enumeration types with holes.
|
|
-- 2. For floating-point, generate call to attribute function.
|
|
-- 3. For other cases, deal with constraint checking.
|
|
|
|
when Attribute_Succ => Succ : declare
|
|
Etyp : constant Entity_Id := Base_Type (Ptyp);
|
|
|
|
begin
|
|
|
|
-- For enumeration types with non-standard representations, we
|
|
-- expand typ'Succ (x) into
|
|
|
|
-- Pos_To_Rep (Rep_To_Pos (x) + 1)
|
|
|
|
-- If the representation is contiguous, we compute instead
|
|
-- Lit1 + Rep_to_Pos (x+1), to catch invalid representations.
|
|
|
|
if Is_Enumeration_Type (Ptyp)
|
|
and then Present (Enum_Pos_To_Rep (Etyp))
|
|
then
|
|
if Has_Contiguous_Rep (Etyp) then
|
|
Rewrite (N,
|
|
Unchecked_Convert_To (Ptyp,
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd =>
|
|
Make_Integer_Literal (Loc,
|
|
Enumeration_Rep (First_Literal (Ptyp))),
|
|
Right_Opnd =>
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of
|
|
(TSS (Etyp, TSS_Rep_To_Pos), Loc),
|
|
|
|
Parameter_Associations =>
|
|
New_List (
|
|
Unchecked_Convert_To (Ptyp,
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd =>
|
|
Unchecked_Convert_To (Standard_Integer,
|
|
Relocate_Node (First (Exprs))),
|
|
Right_Opnd =>
|
|
Make_Integer_Literal (Loc, 1))),
|
|
Rep_To_Pos_Flag (Ptyp, Loc))))));
|
|
else
|
|
-- Add Boolean parameter True, to request program errror if
|
|
-- we have a bad representation on our hands. Add False if
|
|
-- checks are suppressed.
|
|
|
|
Append_To (Exprs, Rep_To_Pos_Flag (Ptyp, Loc));
|
|
Rewrite (N,
|
|
Make_Indexed_Component (Loc,
|
|
Prefix =>
|
|
New_Occurrence_Of
|
|
(Enum_Pos_To_Rep (Etyp), Loc),
|
|
Expressions => New_List (
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd =>
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of
|
|
(TSS (Etyp, TSS_Rep_To_Pos), Loc),
|
|
Parameter_Associations => Exprs),
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1)))));
|
|
end if;
|
|
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
-- For floating-point, we transform 'Succ into a call to the Succ
|
|
-- floating-point attribute function in Fat_xxx (xxx is root type)
|
|
|
|
elsif Is_Floating_Point_Type (Ptyp) then
|
|
Expand_Fpt_Attribute_R (N);
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
-- For modular types, nothing to do (no overflow, since wraps)
|
|
|
|
elsif Is_Modular_Integer_Type (Ptyp) then
|
|
null;
|
|
|
|
-- For other types, if argument is marked as needing a range check or
|
|
-- overflow checking is enabled, we must generate a check.
|
|
|
|
elsif not Overflow_Checks_Suppressed (Ptyp)
|
|
or else Do_Range_Check (First (Exprs))
|
|
then
|
|
Set_Do_Range_Check (First (Exprs), False);
|
|
Expand_Pred_Succ_Attribute (N);
|
|
end if;
|
|
end Succ;
|
|
|
|
---------
|
|
-- Tag --
|
|
---------
|
|
|
|
-- Transforms X'Tag into a direct reference to the tag of X
|
|
|
|
when Attribute_Tag => Tag : declare
|
|
Ttyp : Entity_Id;
|
|
Prefix_Is_Type : Boolean;
|
|
|
|
begin
|
|
if Is_Entity_Name (Pref) and then Is_Type (Entity (Pref)) then
|
|
Ttyp := Entity (Pref);
|
|
Prefix_Is_Type := True;
|
|
else
|
|
Ttyp := Ptyp;
|
|
Prefix_Is_Type := False;
|
|
end if;
|
|
|
|
if Is_Class_Wide_Type (Ttyp) then
|
|
Ttyp := Root_Type (Ttyp);
|
|
end if;
|
|
|
|
Ttyp := Underlying_Type (Ttyp);
|
|
|
|
-- Ada 2005: The type may be a synchronized tagged type, in which
|
|
-- case the tag information is stored in the corresponding record.
|
|
|
|
if Is_Concurrent_Type (Ttyp) then
|
|
Ttyp := Corresponding_Record_Type (Ttyp);
|
|
end if;
|
|
|
|
if Prefix_Is_Type then
|
|
|
|
-- For VMs we leave the type attribute unexpanded because
|
|
-- there's not a dispatching table to reference.
|
|
|
|
if Tagged_Type_Expansion then
|
|
Rewrite (N,
|
|
Unchecked_Convert_To (RTE (RE_Tag),
|
|
New_Occurrence_Of
|
|
(Node (First_Elmt (Access_Disp_Table (Ttyp))), Loc)));
|
|
Analyze_And_Resolve (N, RTE (RE_Tag));
|
|
end if;
|
|
|
|
-- Ada 2005 (AI-251): The use of 'Tag in the sources always
|
|
-- references the primary tag of the actual object. If 'Tag is
|
|
-- applied to class-wide interface objects we generate code that
|
|
-- displaces "this" to reference the base of the object.
|
|
|
|
elsif Comes_From_Source (N)
|
|
and then Is_Class_Wide_Type (Etype (Prefix (N)))
|
|
and then Is_Interface (Etype (Prefix (N)))
|
|
then
|
|
-- Generate:
|
|
-- (To_Tag_Ptr (Prefix'Address)).all
|
|
|
|
-- Note that Prefix'Address is recursively expanded into a call
|
|
-- to Base_Address (Obj.Tag)
|
|
|
|
-- Not needed for VM targets, since all handled by the VM
|
|
|
|
if Tagged_Type_Expansion then
|
|
Rewrite (N,
|
|
Make_Explicit_Dereference (Loc,
|
|
Unchecked_Convert_To (RTE (RE_Tag_Ptr),
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => Relocate_Node (Pref),
|
|
Attribute_Name => Name_Address))));
|
|
Analyze_And_Resolve (N, RTE (RE_Tag));
|
|
end if;
|
|
|
|
else
|
|
Rewrite (N,
|
|
Make_Selected_Component (Loc,
|
|
Prefix => Relocate_Node (Pref),
|
|
Selector_Name =>
|
|
New_Occurrence_Of (First_Tag_Component (Ttyp), Loc)));
|
|
Analyze_And_Resolve (N, RTE (RE_Tag));
|
|
end if;
|
|
end Tag;
|
|
|
|
----------------
|
|
-- Terminated --
|
|
----------------
|
|
|
|
-- Transforms 'Terminated attribute into a call to Terminated function
|
|
|
|
when Attribute_Terminated => Terminated :
|
|
begin
|
|
-- The prefix of Terminated is of a task interface class-wide type.
|
|
-- Generate:
|
|
-- terminated (Task_Id (Pref._disp_get_task_id));
|
|
|
|
if Ada_Version >= Ada_2005
|
|
and then Ekind (Ptyp) = E_Class_Wide_Type
|
|
and then Is_Interface (Ptyp)
|
|
and then Is_Task_Interface (Ptyp)
|
|
then
|
|
Rewrite (N,
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of (RTE (RE_Terminated), Loc),
|
|
Parameter_Associations => New_List (
|
|
Make_Unchecked_Type_Conversion (Loc,
|
|
Subtype_Mark =>
|
|
New_Occurrence_Of (RTE (RO_ST_Task_Id), Loc),
|
|
Expression =>
|
|
Make_Selected_Component (Loc,
|
|
Prefix =>
|
|
New_Copy_Tree (Pref),
|
|
Selector_Name =>
|
|
Make_Identifier (Loc, Name_uDisp_Get_Task_Id))))));
|
|
|
|
elsif Restricted_Profile then
|
|
Rewrite (N,
|
|
Build_Call_With_Task (Pref, RTE (RE_Restricted_Terminated)));
|
|
|
|
else
|
|
Rewrite (N,
|
|
Build_Call_With_Task (Pref, RTE (RE_Terminated)));
|
|
end if;
|
|
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
|
end Terminated;
|
|
|
|
----------------
|
|
-- To_Address --
|
|
----------------
|
|
|
|
-- Transforms System'To_Address (X) and System.Address'Ref (X) into
|
|
-- unchecked conversion from (integral) type of X to type address.
|
|
|
|
when Attribute_To_Address | Attribute_Ref =>
|
|
Rewrite (N,
|
|
Unchecked_Convert_To (RTE (RE_Address),
|
|
Relocate_Node (First (Exprs))));
|
|
Analyze_And_Resolve (N, RTE (RE_Address));
|
|
|
|
------------
|
|
-- To_Any --
|
|
------------
|
|
|
|
when Attribute_To_Any => To_Any : declare
|
|
P_Type : constant Entity_Id := Etype (Pref);
|
|
Decls : constant List_Id := New_List;
|
|
begin
|
|
Rewrite (N,
|
|
Build_To_Any_Call
|
|
(Loc,
|
|
Convert_To (P_Type,
|
|
Relocate_Node (First (Exprs))), Decls));
|
|
Insert_Actions (N, Decls);
|
|
Analyze_And_Resolve (N, RTE (RE_Any));
|
|
end To_Any;
|
|
|
|
----------------
|
|
-- Truncation --
|
|
----------------
|
|
|
|
-- Transforms 'Truncation into a call to the floating-point attribute
|
|
-- function Truncation in Fat_xxx (where xxx is the root type).
|
|
-- Expansion is avoided for cases the back end can handle directly.
|
|
|
|
when Attribute_Truncation =>
|
|
if not Is_Inline_Floating_Point_Attribute (N) then
|
|
Expand_Fpt_Attribute_R (N);
|
|
end if;
|
|
|
|
--------------
|
|
-- TypeCode --
|
|
--------------
|
|
|
|
when Attribute_TypeCode => TypeCode : declare
|
|
P_Type : constant Entity_Id := Etype (Pref);
|
|
Decls : constant List_Id := New_List;
|
|
begin
|
|
Rewrite (N, Build_TypeCode_Call (Loc, P_Type, Decls));
|
|
Insert_Actions (N, Decls);
|
|
Analyze_And_Resolve (N, RTE (RE_TypeCode));
|
|
end TypeCode;
|
|
|
|
-----------------------
|
|
-- Unbiased_Rounding --
|
|
-----------------------
|
|
|
|
-- Transforms 'Unbiased_Rounding into a call to the floating-point
|
|
-- attribute function Unbiased_Rounding in Fat_xxx (where xxx is the
|
|
-- root type). Expansion is avoided for cases the back end can handle
|
|
-- directly.
|
|
|
|
when Attribute_Unbiased_Rounding =>
|
|
if not Is_Inline_Floating_Point_Attribute (N) then
|
|
Expand_Fpt_Attribute_R (N);
|
|
end if;
|
|
|
|
------------
|
|
-- Update --
|
|
------------
|
|
|
|
when Attribute_Update =>
|
|
Expand_Update_Attribute (N);
|
|
|
|
---------------
|
|
-- VADS_Size --
|
|
---------------
|
|
|
|
-- The processing for VADS_Size is shared with Size
|
|
|
|
---------
|
|
-- Val --
|
|
---------
|
|
|
|
-- For enumeration types with a standard representation, and for all
|
|
-- other types, Val is handled by the back end. For enumeration types
|
|
-- with a non-standard representation we use the _Pos_To_Rep array that
|
|
-- was created when the type was frozen.
|
|
|
|
when Attribute_Val => Val : declare
|
|
Etyp : constant Entity_Id := Base_Type (Entity (Pref));
|
|
|
|
begin
|
|
if Is_Enumeration_Type (Etyp)
|
|
and then Present (Enum_Pos_To_Rep (Etyp))
|
|
then
|
|
if Has_Contiguous_Rep (Etyp) then
|
|
declare
|
|
Rep_Node : constant Node_Id :=
|
|
Unchecked_Convert_To (Etyp,
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd =>
|
|
Make_Integer_Literal (Loc,
|
|
Enumeration_Rep (First_Literal (Etyp))),
|
|
Right_Opnd =>
|
|
(Convert_To (Standard_Integer,
|
|
Relocate_Node (First (Exprs))))));
|
|
|
|
begin
|
|
Rewrite (N,
|
|
Unchecked_Convert_To (Etyp,
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd =>
|
|
Make_Integer_Literal (Loc,
|
|
Enumeration_Rep (First_Literal (Etyp))),
|
|
Right_Opnd =>
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of
|
|
(TSS (Etyp, TSS_Rep_To_Pos), Loc),
|
|
Parameter_Associations => New_List (
|
|
Rep_Node,
|
|
Rep_To_Pos_Flag (Etyp, Loc))))));
|
|
end;
|
|
|
|
else
|
|
Rewrite (N,
|
|
Make_Indexed_Component (Loc,
|
|
Prefix => New_Occurrence_Of (Enum_Pos_To_Rep (Etyp), Loc),
|
|
Expressions => New_List (
|
|
Convert_To (Standard_Integer,
|
|
Relocate_Node (First (Exprs))))));
|
|
end if;
|
|
|
|
Analyze_And_Resolve (N, Typ);
|
|
|
|
-- If the argument is marked as requiring a range check then generate
|
|
-- it here.
|
|
|
|
elsif Do_Range_Check (First (Exprs)) then
|
|
Generate_Range_Check (First (Exprs), Etyp, CE_Range_Check_Failed);
|
|
end if;
|
|
end Val;
|
|
|
|
-----------
|
|
-- Valid --
|
|
-----------
|
|
|
|
-- The code for valid is dependent on the particular types involved.
|
|
-- See separate sections below for the generated code in each case.
|
|
|
|
when Attribute_Valid => Valid : declare
|
|
Btyp : Entity_Id := Base_Type (Ptyp);
|
|
Tst : Node_Id;
|
|
|
|
Save_Validity_Checks_On : constant Boolean := Validity_Checks_On;
|
|
-- Save the validity checking mode. We always turn off validity
|
|
-- checking during process of 'Valid since this is one place
|
|
-- where we do not want the implicit validity checks to intefere
|
|
-- with the explicit validity check that the programmer is doing.
|
|
|
|
function Make_Range_Test return Node_Id;
|
|
-- Build the code for a range test of the form
|
|
-- Btyp!(Pref) in Btyp!(Ptyp'First) .. Btyp!(Ptyp'Last)
|
|
|
|
---------------------
|
|
-- Make_Range_Test --
|
|
---------------------
|
|
|
|
function Make_Range_Test return Node_Id is
|
|
Temp : constant Node_Id := Duplicate_Subexpr (Pref);
|
|
|
|
begin
|
|
-- The value whose validity is being checked has been captured in
|
|
-- an object declaration. We certainly don't want this object to
|
|
-- appear valid because the declaration initializes it.
|
|
|
|
if Is_Entity_Name (Temp) then
|
|
Set_Is_Known_Valid (Entity (Temp), False);
|
|
end if;
|
|
|
|
return
|
|
Make_In (Loc,
|
|
Left_Opnd =>
|
|
Unchecked_Convert_To (Btyp, Temp),
|
|
Right_Opnd =>
|
|
Make_Range (Loc,
|
|
Low_Bound =>
|
|
Unchecked_Convert_To (Btyp,
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc),
|
|
Attribute_Name => Name_First)),
|
|
High_Bound =>
|
|
Unchecked_Convert_To (Btyp,
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc),
|
|
Attribute_Name => Name_Last))));
|
|
end Make_Range_Test;
|
|
|
|
-- Start of processing for Attribute_Valid
|
|
|
|
begin
|
|
-- Do not expand sourced code 'Valid reference in CodePeer mode,
|
|
-- will be handled by the back-end directly.
|
|
|
|
if CodePeer_Mode and then Comes_From_Source (N) then
|
|
return;
|
|
end if;
|
|
|
|
-- Turn off validity checks. We do not want any implicit validity
|
|
-- checks to intefere with the explicit check from the attribute
|
|
|
|
Validity_Checks_On := False;
|
|
|
|
-- Retrieve the base type. Handle the case where the base type is a
|
|
-- private enumeration type.
|
|
|
|
if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
|
|
Btyp := Full_View (Btyp);
|
|
end if;
|
|
|
|
-- Floating-point case. This case is handled by the Valid attribute
|
|
-- code in the floating-point attribute run-time library.
|
|
|
|
if Is_Floating_Point_Type (Ptyp) then
|
|
Float_Valid : declare
|
|
Pkg : RE_Id;
|
|
Ftp : Entity_Id;
|
|
|
|
function Get_Fat_Entity (Nam : Name_Id) return Entity_Id;
|
|
-- Return entity for Pkg.Nam
|
|
|
|
--------------------
|
|
-- Get_Fat_Entity --
|
|
--------------------
|
|
|
|
function Get_Fat_Entity (Nam : Name_Id) return Entity_Id is
|
|
Exp_Name : constant Node_Id :=
|
|
Make_Selected_Component (Loc,
|
|
Prefix => New_Occurrence_Of (RTE (Pkg), Loc),
|
|
Selector_Name => Make_Identifier (Loc, Nam));
|
|
begin
|
|
Find_Selected_Component (Exp_Name);
|
|
return Entity (Exp_Name);
|
|
end Get_Fat_Entity;
|
|
|
|
-- Start of processing for Float_Valid
|
|
|
|
begin
|
|
-- The C and AAMP back-ends handle Valid for fpt types
|
|
|
|
if Generate_C_Code or else Float_Rep (Btyp) = AAMP then
|
|
Analyze_And_Resolve (Pref, Ptyp);
|
|
Set_Etype (N, Standard_Boolean);
|
|
Set_Analyzed (N);
|
|
|
|
else
|
|
Find_Fat_Info (Ptyp, Ftp, Pkg);
|
|
|
|
-- If the prefix is a reverse SSO component, or is possibly
|
|
-- unaligned, first create a temporary copy that is in
|
|
-- native SSO, and properly aligned. Make it Volatile to
|
|
-- prevent folding in the back-end. Note that we use an
|
|
-- intermediate constrained string type to initialize the
|
|
-- temporary, as the value at hand might be invalid, and in
|
|
-- that case it cannot be copied using a floating point
|
|
-- register.
|
|
|
|
if In_Reverse_Storage_Order_Object (Pref)
|
|
or else Is_Possibly_Unaligned_Object (Pref)
|
|
then
|
|
declare
|
|
Temp : constant Entity_Id :=
|
|
Make_Temporary (Loc, 'F');
|
|
|
|
Fat_S : constant Entity_Id :=
|
|
Get_Fat_Entity (Name_S);
|
|
-- Constrained string subtype of appropriate size
|
|
|
|
Fat_P : constant Entity_Id :=
|
|
Get_Fat_Entity (Name_P);
|
|
-- Access to Fat_S
|
|
|
|
Decl : constant Node_Id :=
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => Temp,
|
|
Aliased_Present => True,
|
|
Object_Definition =>
|
|
New_Occurrence_Of (Ptyp, Loc));
|
|
|
|
begin
|
|
Set_Aspect_Specifications (Decl, New_List (
|
|
Make_Aspect_Specification (Loc,
|
|
Identifier =>
|
|
Make_Identifier (Loc, Name_Volatile))));
|
|
|
|
Insert_Actions (N,
|
|
New_List (
|
|
Decl,
|
|
|
|
Make_Assignment_Statement (Loc,
|
|
Name =>
|
|
Make_Explicit_Dereference (Loc,
|
|
Prefix =>
|
|
Unchecked_Convert_To (Fat_P,
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix =>
|
|
New_Occurrence_Of (Temp, Loc),
|
|
Attribute_Name =>
|
|
Name_Unrestricted_Access))),
|
|
Expression =>
|
|
Unchecked_Convert_To (Fat_S,
|
|
Relocate_Node (Pref)))),
|
|
|
|
Suppress => All_Checks);
|
|
|
|
Rewrite (Pref, New_Occurrence_Of (Temp, Loc));
|
|
end;
|
|
end if;
|
|
|
|
-- We now have an object of the proper endianness and
|
|
-- alignment, and can construct a Valid attribute.
|
|
|
|
-- We make sure the prefix of this valid attribute is
|
|
-- marked as not coming from source, to avoid losing
|
|
-- warnings from 'Valid looking like a possible update.
|
|
|
|
Set_Comes_From_Source (Pref, False);
|
|
|
|
Expand_Fpt_Attribute
|
|
(N, Pkg, Name_Valid,
|
|
New_List (
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => Unchecked_Convert_To (Ftp, Pref),
|
|
Attribute_Name => Name_Unrestricted_Access)));
|
|
end if;
|
|
|
|
-- One more task, we still need a range check. Required
|
|
-- only if we have a constraint, since the Valid routine
|
|
-- catches infinities properly (infinities are never valid).
|
|
|
|
-- The way we do the range check is simply to create the
|
|
-- expression: Valid (N) and then Base_Type(Pref) in Typ.
|
|
|
|
if not Subtypes_Statically_Match (Ptyp, Btyp) then
|
|
Rewrite (N,
|
|
Make_And_Then (Loc,
|
|
Left_Opnd => Relocate_Node (N),
|
|
Right_Opnd =>
|
|
Make_In (Loc,
|
|
Left_Opnd => Convert_To (Btyp, Pref),
|
|
Right_Opnd => New_Occurrence_Of (Ptyp, Loc))));
|
|
end if;
|
|
end Float_Valid;
|
|
|
|
-- Enumeration type with holes
|
|
|
|
-- For enumeration types with holes, the Pos value constructed by
|
|
-- the Enum_Rep_To_Pos function built in Exp_Ch3 called with a
|
|
-- second argument of False returns minus one for an invalid value,
|
|
-- and the non-negative pos value for a valid value, so the
|
|
-- expansion of X'Valid is simply:
|
|
|
|
-- type(X)'Pos (X) >= 0
|
|
|
|
-- We can't quite generate it that way because of the requirement
|
|
-- for the non-standard second argument of False in the resulting
|
|
-- rep_to_pos call, so we have to explicitly create:
|
|
|
|
-- _rep_to_pos (X, False) >= 0
|
|
|
|
-- If we have an enumeration subtype, we also check that the
|
|
-- value is in range:
|
|
|
|
-- _rep_to_pos (X, False) >= 0
|
|
-- and then
|
|
-- (X >= type(X)'First and then type(X)'Last <= X)
|
|
|
|
elsif Is_Enumeration_Type (Ptyp)
|
|
and then Present (Enum_Pos_To_Rep (Btyp))
|
|
then
|
|
Tst :=
|
|
Make_Op_Ge (Loc,
|
|
Left_Opnd =>
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of (TSS (Btyp, TSS_Rep_To_Pos), Loc),
|
|
Parameter_Associations => New_List (
|
|
Pref,
|
|
New_Occurrence_Of (Standard_False, Loc))),
|
|
Right_Opnd => Make_Integer_Literal (Loc, 0));
|
|
|
|
if Ptyp /= Btyp
|
|
and then
|
|
(Type_Low_Bound (Ptyp) /= Type_Low_Bound (Btyp)
|
|
or else
|
|
Type_High_Bound (Ptyp) /= Type_High_Bound (Btyp))
|
|
then
|
|
-- The call to Make_Range_Test will create declarations
|
|
-- that need a proper insertion point, but Pref is now
|
|
-- attached to a node with no ancestor. Attach to tree
|
|
-- even if it is to be rewritten below.
|
|
|
|
Set_Parent (Tst, Parent (N));
|
|
|
|
Tst :=
|
|
Make_And_Then (Loc,
|
|
Left_Opnd => Make_Range_Test,
|
|
Right_Opnd => Tst);
|
|
end if;
|
|
|
|
Rewrite (N, Tst);
|
|
|
|
-- Fortran convention booleans
|
|
|
|
-- For the very special case of Fortran convention booleans, the
|
|
-- value is always valid, since it is an integer with the semantics
|
|
-- that non-zero is true, and any value is permissible.
|
|
|
|
elsif Is_Boolean_Type (Ptyp)
|
|
and then Convention (Ptyp) = Convention_Fortran
|
|
then
|
|
Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
|
|
|
|
-- For biased representations, we will be doing an unchecked
|
|
-- conversion without unbiasing the result. That means that the range
|
|
-- test has to take this into account, and the proper form of the
|
|
-- test is:
|
|
|
|
-- Btyp!(Pref) < Btyp!(Ptyp'Range_Length)
|
|
|
|
elsif Has_Biased_Representation (Ptyp) then
|
|
Btyp := RTE (RE_Unsigned_32);
|
|
Rewrite (N,
|
|
Make_Op_Lt (Loc,
|
|
Left_Opnd =>
|
|
Unchecked_Convert_To (Btyp, Duplicate_Subexpr (Pref)),
|
|
Right_Opnd =>
|
|
Unchecked_Convert_To (Btyp,
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc),
|
|
Attribute_Name => Name_Range_Length))));
|
|
|
|
-- For all other scalar types, what we want logically is a
|
|
-- range test:
|
|
|
|
-- X in type(X)'First .. type(X)'Last
|
|
|
|
-- But that's precisely what won't work because of possible
|
|
-- unwanted optimization (and indeed the basic motivation for
|
|
-- the Valid attribute is exactly that this test does not work).
|
|
-- What will work is:
|
|
|
|
-- Btyp!(X) >= Btyp!(type(X)'First)
|
|
-- and then
|
|
-- Btyp!(X) <= Btyp!(type(X)'Last)
|
|
|
|
-- where Btyp is an integer type large enough to cover the full
|
|
-- range of possible stored values (i.e. it is chosen on the basis
|
|
-- of the size of the type, not the range of the values). We write
|
|
-- this as two tests, rather than a range check, so that static
|
|
-- evaluation will easily remove either or both of the checks if
|
|
-- they can be -statically determined to be true (this happens
|
|
-- when the type of X is static and the range extends to the full
|
|
-- range of stored values).
|
|
|
|
-- Unsigned types. Note: it is safe to consider only whether the
|
|
-- subtype is unsigned, since we will in that case be doing all
|
|
-- unsigned comparisons based on the subtype range. Since we use the
|
|
-- actual subtype object size, this is appropriate.
|
|
|
|
-- For example, if we have
|
|
|
|
-- subtype x is integer range 1 .. 200;
|
|
-- for x'Object_Size use 8;
|
|
|
|
-- Now the base type is signed, but objects of this type are bits
|
|
-- unsigned, and doing an unsigned test of the range 1 to 200 is
|
|
-- correct, even though a value greater than 127 looks signed to a
|
|
-- signed comparison.
|
|
|
|
elsif Is_Unsigned_Type (Ptyp) then
|
|
if Esize (Ptyp) <= 32 then
|
|
Btyp := RTE (RE_Unsigned_32);
|
|
else
|
|
Btyp := RTE (RE_Unsigned_64);
|
|
end if;
|
|
|
|
Rewrite (N, Make_Range_Test);
|
|
|
|
-- Signed types
|
|
|
|
else
|
|
if Esize (Ptyp) <= Esize (Standard_Integer) then
|
|
Btyp := Standard_Integer;
|
|
else
|
|
Btyp := Universal_Integer;
|
|
end if;
|
|
|
|
Rewrite (N, Make_Range_Test);
|
|
end if;
|
|
|
|
-- If a predicate is present, then we do the predicate test, even if
|
|
-- within the predicate function (infinite recursion is warned about
|
|
-- in Sem_Attr in that case).
|
|
|
|
declare
|
|
Pred_Func : constant Entity_Id := Predicate_Function (Ptyp);
|
|
|
|
begin
|
|
if Present (Pred_Func) then
|
|
Rewrite (N,
|
|
Make_And_Then (Loc,
|
|
Left_Opnd => Relocate_Node (N),
|
|
Right_Opnd => Make_Predicate_Call (Ptyp, Pref)));
|
|
end if;
|
|
end;
|
|
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
|
Validity_Checks_On := Save_Validity_Checks_On;
|
|
end Valid;
|
|
|
|
-------------------
|
|
-- Valid_Scalars --
|
|
-------------------
|
|
|
|
when Attribute_Valid_Scalars => Valid_Scalars : declare
|
|
Ftyp : Entity_Id;
|
|
|
|
begin
|
|
if Present (Underlying_Type (Ptyp)) then
|
|
Ftyp := Underlying_Type (Ptyp);
|
|
else
|
|
Ftyp := Ptyp;
|
|
end if;
|
|
|
|
-- Replace by True if no scalar parts
|
|
|
|
if not Scalar_Part_Present (Ftyp) then
|
|
Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
|
|
|
|
-- For scalar types, Valid_Scalars is the same as Valid
|
|
|
|
elsif Is_Scalar_Type (Ftyp) then
|
|
Rewrite (N,
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Valid,
|
|
Prefix => Pref));
|
|
|
|
-- For array types, we construct a function that determines if there
|
|
-- are any non-valid scalar subcomponents, and call the function.
|
|
-- We only do this for arrays whose component type needs checking
|
|
|
|
elsif Is_Array_Type (Ftyp)
|
|
and then Scalar_Part_Present (Component_Type (Ftyp))
|
|
then
|
|
Rewrite (N,
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of (Build_Array_VS_Func (Ftyp, N), Loc),
|
|
Parameter_Associations => New_List (Pref)));
|
|
|
|
-- For record types, we construct a function that determines if there
|
|
-- are any non-valid scalar subcomponents, and call the function.
|
|
|
|
elsif Is_Record_Type (Ftyp)
|
|
and then Nkind (Type_Definition (Declaration_Node (Ftyp))) =
|
|
N_Record_Definition
|
|
then
|
|
Rewrite (N,
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of (Build_Record_VS_Func (Ftyp, N), Loc),
|
|
Parameter_Associations => New_List (Pref)));
|
|
|
|
-- Other record types or types with discriminants
|
|
|
|
elsif Is_Record_Type (Ftyp) or else Has_Discriminants (Ptyp) then
|
|
|
|
-- Build expression with list of equality tests
|
|
|
|
declare
|
|
C : Entity_Id;
|
|
X : Node_Id;
|
|
A : Name_Id;
|
|
|
|
begin
|
|
X := New_Occurrence_Of (Standard_True, Loc);
|
|
C := First_Component_Or_Discriminant (Ptyp);
|
|
while Present (C) loop
|
|
if not Scalar_Part_Present (Etype (C)) then
|
|
goto Continue;
|
|
elsif Is_Scalar_Type (Etype (C)) then
|
|
A := Name_Valid;
|
|
else
|
|
A := Name_Valid_Scalars;
|
|
end if;
|
|
|
|
X :=
|
|
Make_And_Then (Loc,
|
|
Left_Opnd => X,
|
|
Right_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => A,
|
|
Prefix =>
|
|
Make_Selected_Component (Loc,
|
|
Prefix =>
|
|
Duplicate_Subexpr (Pref, Name_Req => True),
|
|
Selector_Name =>
|
|
New_Occurrence_Of (C, Loc))));
|
|
<<Continue>>
|
|
Next_Component_Or_Discriminant (C);
|
|
end loop;
|
|
|
|
Rewrite (N, X);
|
|
end;
|
|
|
|
-- For all other types, result is True
|
|
|
|
else
|
|
Rewrite (N, New_Occurrence_Of (Standard_Boolean, Loc));
|
|
end if;
|
|
|
|
-- Result is always boolean, but never static
|
|
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
|
Set_Is_Static_Expression (N, False);
|
|
end Valid_Scalars;
|
|
|
|
-----------
|
|
-- Value --
|
|
-----------
|
|
|
|
-- Value attribute is handled in separate unit Exp_Imgv
|
|
|
|
when Attribute_Value =>
|
|
Exp_Imgv.Expand_Value_Attribute (N);
|
|
|
|
-----------------
|
|
-- Value_Size --
|
|
-----------------
|
|
|
|
-- The processing for Value_Size shares the processing for Size
|
|
|
|
-------------
|
|
-- Version --
|
|
-------------
|
|
|
|
-- The processing for Version shares the processing for Body_Version
|
|
|
|
----------------
|
|
-- Wide_Image --
|
|
----------------
|
|
|
|
-- Wide_Image attribute is handled in separate unit Exp_Imgv
|
|
|
|
when Attribute_Wide_Image =>
|
|
Exp_Imgv.Expand_Wide_Image_Attribute (N);
|
|
|
|
---------------------
|
|
-- Wide_Wide_Image --
|
|
---------------------
|
|
|
|
-- Wide_Wide_Image attribute is handled in separate unit Exp_Imgv
|
|
|
|
when Attribute_Wide_Wide_Image =>
|
|
Exp_Imgv.Expand_Wide_Wide_Image_Attribute (N);
|
|
|
|
----------------
|
|
-- Wide_Value --
|
|
----------------
|
|
|
|
-- We expand typ'Wide_Value (X) into
|
|
|
|
-- typ'Value
|
|
-- (Wide_String_To_String (X, Wide_Character_Encoding_Method))
|
|
|
|
-- Wide_String_To_String is a runtime function that converts its wide
|
|
-- string argument to String, converting any non-translatable characters
|
|
-- into appropriate escape sequences. This preserves the required
|
|
-- semantics of Wide_Value in all cases, and results in a very simple
|
|
-- implementation approach.
|
|
|
|
-- Note: for this approach to be fully standard compliant for the cases
|
|
-- where typ is Wide_Character and Wide_Wide_Character, the encoding
|
|
-- method must cover the entire character range (e.g. UTF-8). But that
|
|
-- is a reasonable requirement when dealing with encoded character
|
|
-- sequences. Presumably if one of the restrictive encoding mechanisms
|
|
-- is in use such as Shift-JIS, then characters that cannot be
|
|
-- represented using this encoding will not appear in any case.
|
|
|
|
when Attribute_Wide_Value => Wide_Value :
|
|
begin
|
|
Rewrite (N,
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => Pref,
|
|
Attribute_Name => Name_Value,
|
|
|
|
Expressions => New_List (
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of (RTE (RE_Wide_String_To_String), Loc),
|
|
|
|
Parameter_Associations => New_List (
|
|
Relocate_Node (First (Exprs)),
|
|
Make_Integer_Literal (Loc,
|
|
Intval => Int (Wide_Character_Encoding_Method)))))));
|
|
|
|
Analyze_And_Resolve (N, Typ);
|
|
end Wide_Value;
|
|
|
|
---------------------
|
|
-- Wide_Wide_Value --
|
|
---------------------
|
|
|
|
-- We expand typ'Wide_Value_Value (X) into
|
|
|
|
-- typ'Value
|
|
-- (Wide_Wide_String_To_String (X, Wide_Character_Encoding_Method))
|
|
|
|
-- Wide_Wide_String_To_String is a runtime function that converts its
|
|
-- wide string argument to String, converting any non-translatable
|
|
-- characters into appropriate escape sequences. This preserves the
|
|
-- required semantics of Wide_Wide_Value in all cases, and results in a
|
|
-- very simple implementation approach.
|
|
|
|
-- It's not quite right where typ = Wide_Wide_Character, because the
|
|
-- encoding method may not cover the whole character type ???
|
|
|
|
when Attribute_Wide_Wide_Value => Wide_Wide_Value :
|
|
begin
|
|
Rewrite (N,
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => Pref,
|
|
Attribute_Name => Name_Value,
|
|
|
|
Expressions => New_List (
|
|
Make_Function_Call (Loc,
|
|
Name =>
|
|
New_Occurrence_Of
|
|
(RTE (RE_Wide_Wide_String_To_String), Loc),
|
|
|
|
Parameter_Associations => New_List (
|
|
Relocate_Node (First (Exprs)),
|
|
Make_Integer_Literal (Loc,
|
|
Intval => Int (Wide_Character_Encoding_Method)))))));
|
|
|
|
Analyze_And_Resolve (N, Typ);
|
|
end Wide_Wide_Value;
|
|
|
|
---------------------
|
|
-- Wide_Wide_Width --
|
|
---------------------
|
|
|
|
-- Wide_Wide_Width attribute is handled in separate unit Exp_Imgv
|
|
|
|
when Attribute_Wide_Wide_Width =>
|
|
Exp_Imgv.Expand_Width_Attribute (N, Wide_Wide);
|
|
|
|
----------------
|
|
-- Wide_Width --
|
|
----------------
|
|
|
|
-- Wide_Width attribute is handled in separate unit Exp_Imgv
|
|
|
|
when Attribute_Wide_Width =>
|
|
Exp_Imgv.Expand_Width_Attribute (N, Wide);
|
|
|
|
-----------
|
|
-- Width --
|
|
-----------
|
|
|
|
-- Width attribute is handled in separate unit Exp_Imgv
|
|
|
|
when Attribute_Width =>
|
|
Exp_Imgv.Expand_Width_Attribute (N, Normal);
|
|
|
|
-----------
|
|
-- Write --
|
|
-----------
|
|
|
|
when Attribute_Write => Write : declare
|
|
P_Type : constant Entity_Id := Entity (Pref);
|
|
U_Type : constant Entity_Id := Underlying_Type (P_Type);
|
|
Pname : Entity_Id;
|
|
Decl : Node_Id;
|
|
Prag : Node_Id;
|
|
Arg3 : Node_Id;
|
|
Wfunc : Node_Id;
|
|
|
|
begin
|
|
-- If no underlying type, we have an error that will be diagnosed
|
|
-- elsewhere, so here we just completely ignore the expansion.
|
|
|
|
if No (U_Type) then
|
|
return;
|
|
end if;
|
|
|
|
-- Stream operations can appear in user code even if the restriction
|
|
-- No_Streams is active (for example, when instantiating a predefined
|
|
-- container). In that case rewrite the attribute as a Raise to
|
|
-- prevent any run-time use.
|
|
|
|
if Restriction_Active (No_Streams) then
|
|
Rewrite (N,
|
|
Make_Raise_Program_Error (Sloc (N),
|
|
Reason => PE_Stream_Operation_Not_Allowed));
|
|
Set_Etype (N, U_Type);
|
|
return;
|
|
end if;
|
|
|
|
-- The simple case, if there is a TSS for Write, just call it
|
|
|
|
Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Write);
|
|
|
|
if Present (Pname) then
|
|
null;
|
|
|
|
else
|
|
-- If there is a Stream_Convert pragma, use it, we rewrite
|
|
|
|
-- sourcetyp'Output (stream, Item)
|
|
|
|
-- as
|
|
|
|
-- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
|
|
|
|
-- where strmwrite is the given Write function that converts an
|
|
-- argument of type sourcetyp or a type acctyp, from which it is
|
|
-- derived to type strmtyp. The conversion to acttyp is required
|
|
-- for the derived case.
|
|
|
|
Prag := Get_Stream_Convert_Pragma (P_Type);
|
|
|
|
if Present (Prag) then
|
|
Arg3 :=
|
|
Next (Next (First (Pragma_Argument_Associations (Prag))));
|
|
Wfunc := Entity (Expression (Arg3));
|
|
|
|
Rewrite (N,
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (Etype (Wfunc), Loc),
|
|
Attribute_Name => Name_Output,
|
|
Expressions => New_List (
|
|
Relocate_Node (First (Exprs)),
|
|
Make_Function_Call (Loc,
|
|
Name => New_Occurrence_Of (Wfunc, Loc),
|
|
Parameter_Associations => New_List (
|
|
OK_Convert_To (Etype (First_Formal (Wfunc)),
|
|
Relocate_Node (Next (First (Exprs)))))))));
|
|
|
|
Analyze (N);
|
|
return;
|
|
|
|
-- For elementary types, we call the W_xxx routine directly
|
|
|
|
elsif Is_Elementary_Type (U_Type) then
|
|
Rewrite (N, Build_Elementary_Write_Call (N));
|
|
Analyze (N);
|
|
return;
|
|
|
|
-- Array type case
|
|
|
|
elsif Is_Array_Type (U_Type) then
|
|
Build_Array_Write_Procedure (N, U_Type, Decl, Pname);
|
|
Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
|
|
|
|
-- Tagged type case, use the primitive Write function. Note that
|
|
-- this will dispatch in the class-wide case which is what we want
|
|
|
|
elsif Is_Tagged_Type (U_Type) then
|
|
Pname := Find_Prim_Op (U_Type, TSS_Stream_Write);
|
|
|
|
-- All other record type cases, including protected records.
|
|
-- The latter only arise for expander generated code for
|
|
-- handling shared passive partition access.
|
|
|
|
else
|
|
pragma Assert
|
|
(Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
|
|
|
|
-- Ada 2005 (AI-216): Program_Error is raised when executing
|
|
-- the default implementation of the Write attribute of an
|
|
-- Unchecked_Union type. However, if the 'Write reference is
|
|
-- within the generated Output stream procedure, Write outputs
|
|
-- the components, and the default values of the discriminant
|
|
-- are streamed by the Output procedure itself.
|
|
|
|
if Is_Unchecked_Union (Base_Type (U_Type))
|
|
and not Is_TSS (Current_Scope, TSS_Stream_Output)
|
|
then
|
|
Insert_Action (N,
|
|
Make_Raise_Program_Error (Loc,
|
|
Reason => PE_Unchecked_Union_Restriction));
|
|
end if;
|
|
|
|
if Has_Discriminants (U_Type)
|
|
and then Present
|
|
(Discriminant_Default_Value (First_Discriminant (U_Type)))
|
|
then
|
|
Build_Mutable_Record_Write_Procedure
|
|
(Loc, Full_Base (U_Type), Decl, Pname);
|
|
else
|
|
Build_Record_Write_Procedure
|
|
(Loc, Full_Base (U_Type), Decl, Pname);
|
|
end if;
|
|
|
|
Insert_Action (N, Decl);
|
|
end if;
|
|
end if;
|
|
|
|
-- If we fall through, Pname is the procedure to be called
|
|
|
|
Rewrite_Stream_Proc_Call (Pname);
|
|
end Write;
|
|
|
|
-- Component_Size is handled by the back end, unless the component size
|
|
-- is known at compile time, which is always true in the packed array
|
|
-- case. It is important that the packed array case is handled in the
|
|
-- front end (see Eval_Attribute) since the back end would otherwise get
|
|
-- confused by the equivalent packed array type.
|
|
|
|
when Attribute_Component_Size =>
|
|
null;
|
|
|
|
-- The following attributes are handled by the back end (except that
|
|
-- static cases have already been evaluated during semantic processing,
|
|
-- but in any case the back end should not count on this).
|
|
|
|
-- The back end also handles the non-class-wide cases of Size
|
|
|
|
when Attribute_Bit_Order |
|
|
Attribute_Code_Address |
|
|
Attribute_Definite |
|
|
Attribute_Deref |
|
|
Attribute_Null_Parameter |
|
|
Attribute_Passed_By_Reference |
|
|
Attribute_Pool_Address |
|
|
Attribute_Scalar_Storage_Order =>
|
|
null;
|
|
|
|
-- The following attributes are also handled by the back end, but return
|
|
-- a universal integer result, so may need a conversion for checking
|
|
-- that the result is in range.
|
|
|
|
when Attribute_Aft |
|
|
Attribute_Max_Alignment_For_Allocation =>
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
|
|
|
-- The following attributes should not appear at this stage, since they
|
|
-- have already been handled by the analyzer (and properly rewritten
|
|
-- with corresponding values or entities to represent the right values)
|
|
|
|
when Attribute_Abort_Signal |
|
|
Attribute_Address_Size |
|
|
Attribute_Atomic_Always_Lock_Free |
|
|
Attribute_Base |
|
|
Attribute_Class |
|
|
Attribute_Compiler_Version |
|
|
Attribute_Default_Bit_Order |
|
|
Attribute_Default_Scalar_Storage_Order |
|
|
Attribute_Delta |
|
|
Attribute_Denorm |
|
|
Attribute_Digits |
|
|
Attribute_Emax |
|
|
Attribute_Enabled |
|
|
Attribute_Epsilon |
|
|
Attribute_Fast_Math |
|
|
Attribute_First_Valid |
|
|
Attribute_Has_Access_Values |
|
|
Attribute_Has_Discriminants |
|
|
Attribute_Has_Tagged_Values |
|
|
Attribute_Large |
|
|
Attribute_Last_Valid |
|
|
Attribute_Library_Level |
|
|
Attribute_Lock_Free |
|
|
Attribute_Machine_Emax |
|
|
Attribute_Machine_Emin |
|
|
Attribute_Machine_Mantissa |
|
|
Attribute_Machine_Overflows |
|
|
Attribute_Machine_Radix |
|
|
Attribute_Machine_Rounds |
|
|
Attribute_Maximum_Alignment |
|
|
Attribute_Model_Emin |
|
|
Attribute_Model_Epsilon |
|
|
Attribute_Model_Mantissa |
|
|
Attribute_Model_Small |
|
|
Attribute_Modulus |
|
|
Attribute_Partition_ID |
|
|
Attribute_Range |
|
|
Attribute_Restriction_Set |
|
|
Attribute_Safe_Emax |
|
|
Attribute_Safe_First |
|
|
Attribute_Safe_Large |
|
|
Attribute_Safe_Last |
|
|
Attribute_Safe_Small |
|
|
Attribute_Scale |
|
|
Attribute_Signed_Zeros |
|
|
Attribute_Small |
|
|
Attribute_Storage_Unit |
|
|
Attribute_Stub_Type |
|
|
Attribute_System_Allocator_Alignment |
|
|
Attribute_Target_Name |
|
|
Attribute_Type_Class |
|
|
Attribute_Type_Key |
|
|
Attribute_Unconstrained_Array |
|
|
Attribute_Universal_Literal_String |
|
|
Attribute_Wchar_T_Size |
|
|
Attribute_Word_Size =>
|
|
raise Program_Error;
|
|
|
|
-- The Asm_Input and Asm_Output attributes are not expanded at this
|
|
-- stage, but will be eliminated in the expansion of the Asm call, see
|
|
-- Exp_Intr for details. So the back end will never see these either.
|
|
|
|
when Attribute_Asm_Input |
|
|
Attribute_Asm_Output =>
|
|
null;
|
|
end case;
|
|
|
|
-- Note: as mentioned earlier, individual sections of the above case
|
|
-- statement assume there is no code after the case statement, and are
|
|
-- legitimately allowed to execute return statements if they have nothing
|
|
-- more to do, so DO NOT add code at this point.
|
|
|
|
exception
|
|
when RE_Not_Available =>
|
|
return;
|
|
end Expand_N_Attribute_Reference;
|
|
|
|
--------------------------------
|
|
-- Expand_Pred_Succ_Attribute --
|
|
--------------------------------
|
|
|
|
-- For typ'Pred (exp), we generate the check
|
|
|
|
-- [constraint_error when exp = typ'Base'First]
|
|
|
|
-- Similarly, for typ'Succ (exp), we generate the check
|
|
|
|
-- [constraint_error when exp = typ'Base'Last]
|
|
|
|
-- These checks are not generated for modular types, since the proper
|
|
-- semantics for Succ and Pred on modular types is to wrap, not raise CE.
|
|
-- We also suppress these checks if we are the right side of an assignment
|
|
-- statement or the expression of an object declaration, where the flag
|
|
-- Suppress_Assignment_Checks is set for the assignment/declaration.
|
|
|
|
procedure Expand_Pred_Succ_Attribute (N : Node_Id) is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
P : constant Node_Id := Parent (N);
|
|
Cnam : Name_Id;
|
|
|
|
begin
|
|
if Attribute_Name (N) = Name_Pred then
|
|
Cnam := Name_First;
|
|
else
|
|
Cnam := Name_Last;
|
|
end if;
|
|
|
|
if not Nkind_In (P, N_Assignment_Statement, N_Object_Declaration)
|
|
or else not Suppress_Assignment_Checks (P)
|
|
then
|
|
Insert_Action (N,
|
|
Make_Raise_Constraint_Error (Loc,
|
|
Condition =>
|
|
Make_Op_Eq (Loc,
|
|
Left_Opnd =>
|
|
Duplicate_Subexpr_Move_Checks (First (Expressions (N))),
|
|
Right_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix =>
|
|
New_Occurrence_Of (Base_Type (Etype (Prefix (N))), Loc),
|
|
Attribute_Name => Cnam)),
|
|
Reason => CE_Overflow_Check_Failed));
|
|
end if;
|
|
end Expand_Pred_Succ_Attribute;
|
|
|
|
-----------------------------
|
|
-- Expand_Update_Attribute --
|
|
-----------------------------
|
|
|
|
procedure Expand_Update_Attribute (N : Node_Id) is
|
|
procedure Process_Component_Or_Element_Update
|
|
(Temp : Entity_Id;
|
|
Comp : Node_Id;
|
|
Expr : Node_Id;
|
|
Typ : Entity_Id);
|
|
-- Generate the statements necessary to update a single component or an
|
|
-- element of the prefix. The code is inserted before the attribute N.
|
|
-- Temp denotes the entity of the anonymous object created to reflect
|
|
-- the changes in values. Comp is the component/index expression to be
|
|
-- updated. Expr is an expression yielding the new value of Comp. Typ
|
|
-- is the type of the prefix of attribute Update.
|
|
|
|
procedure Process_Range_Update
|
|
(Temp : Entity_Id;
|
|
Comp : Node_Id;
|
|
Expr : Node_Id;
|
|
Typ : Entity_Id);
|
|
-- Generate the statements necessary to update a slice of the prefix.
|
|
-- The code is inserted before the attribute N. Temp denotes the entity
|
|
-- of the anonymous object created to reflect the changes in values.
|
|
-- Comp is range of the slice to be updated. Expr is an expression
|
|
-- yielding the new value of Comp. Typ is the type of the prefix of
|
|
-- attribute Update.
|
|
|
|
-----------------------------------------
|
|
-- Process_Component_Or_Element_Update --
|
|
-----------------------------------------
|
|
|
|
procedure Process_Component_Or_Element_Update
|
|
(Temp : Entity_Id;
|
|
Comp : Node_Id;
|
|
Expr : Node_Id;
|
|
Typ : Entity_Id)
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (Comp);
|
|
Exprs : List_Id;
|
|
LHS : Node_Id;
|
|
|
|
begin
|
|
-- An array element may be modified by the following relations
|
|
-- depending on the number of dimensions:
|
|
|
|
-- 1 => Expr -- one dimensional update
|
|
-- (1, ..., N) => Expr -- multi dimensional update
|
|
|
|
-- The above forms are converted in assignment statements where the
|
|
-- left hand side is an indexed component:
|
|
|
|
-- Temp (1) := Expr; -- one dimensional update
|
|
-- Temp (1, ..., N) := Expr; -- multi dimensional update
|
|
|
|
if Is_Array_Type (Typ) then
|
|
|
|
-- The index expressions of a multi dimensional array update
|
|
-- appear as an aggregate.
|
|
|
|
if Nkind (Comp) = N_Aggregate then
|
|
Exprs := New_Copy_List_Tree (Expressions (Comp));
|
|
else
|
|
Exprs := New_List (Relocate_Node (Comp));
|
|
end if;
|
|
|
|
LHS :=
|
|
Make_Indexed_Component (Loc,
|
|
Prefix => New_Occurrence_Of (Temp, Loc),
|
|
Expressions => Exprs);
|
|
|
|
-- A record component update appears in the following form:
|
|
|
|
-- Comp => Expr
|
|
|
|
-- The above relation is transformed into an assignment statement
|
|
-- where the left hand side is a selected component:
|
|
|
|
-- Temp.Comp := Expr;
|
|
|
|
else pragma Assert (Is_Record_Type (Typ));
|
|
LHS :=
|
|
Make_Selected_Component (Loc,
|
|
Prefix => New_Occurrence_Of (Temp, Loc),
|
|
Selector_Name => Relocate_Node (Comp));
|
|
end if;
|
|
|
|
Insert_Action (N,
|
|
Make_Assignment_Statement (Loc,
|
|
Name => LHS,
|
|
Expression => Relocate_Node (Expr)));
|
|
end Process_Component_Or_Element_Update;
|
|
|
|
--------------------------
|
|
-- Process_Range_Update --
|
|
--------------------------
|
|
|
|
procedure Process_Range_Update
|
|
(Temp : Entity_Id;
|
|
Comp : Node_Id;
|
|
Expr : Node_Id;
|
|
Typ : Entity_Id)
|
|
is
|
|
Index_Typ : constant Entity_Id := Etype (First_Index (Typ));
|
|
Loc : constant Source_Ptr := Sloc (Comp);
|
|
Index : Entity_Id;
|
|
|
|
begin
|
|
-- A range update appears as
|
|
|
|
-- (Low .. High => Expr)
|
|
|
|
-- The above construct is transformed into a loop that iterates over
|
|
-- the given range and modifies the corresponding array values to the
|
|
-- value of Expr:
|
|
|
|
-- for Index in Low .. High loop
|
|
-- Temp (<Index_Typ> (Index)) := Expr;
|
|
-- end loop;
|
|
|
|
Index := Make_Temporary (Loc, 'I');
|
|
|
|
Insert_Action (N,
|
|
Make_Loop_Statement (Loc,
|
|
Iteration_Scheme =>
|
|
Make_Iteration_Scheme (Loc,
|
|
Loop_Parameter_Specification =>
|
|
Make_Loop_Parameter_Specification (Loc,
|
|
Defining_Identifier => Index,
|
|
Discrete_Subtype_Definition => Relocate_Node (Comp))),
|
|
|
|
Statements => New_List (
|
|
Make_Assignment_Statement (Loc,
|
|
Name =>
|
|
Make_Indexed_Component (Loc,
|
|
Prefix => New_Occurrence_Of (Temp, Loc),
|
|
Expressions => New_List (
|
|
Convert_To (Index_Typ,
|
|
New_Occurrence_Of (Index, Loc)))),
|
|
Expression => Relocate_Node (Expr))),
|
|
|
|
End_Label => Empty));
|
|
end Process_Range_Update;
|
|
|
|
-- Local variables
|
|
|
|
Aggr : constant Node_Id := First (Expressions (N));
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Pref : constant Node_Id := Prefix (N);
|
|
Typ : constant Entity_Id := Etype (Pref);
|
|
Assoc : Node_Id;
|
|
Comp : Node_Id;
|
|
CW_Temp : Entity_Id;
|
|
CW_Typ : Entity_Id;
|
|
Expr : Node_Id;
|
|
Temp : Entity_Id;
|
|
|
|
-- Start of processing for Expand_Update_Attribute
|
|
|
|
begin
|
|
-- Create the anonymous object to store the value of the prefix and
|
|
-- capture subsequent changes in value.
|
|
|
|
Temp := Make_Temporary (Loc, 'T', Pref);
|
|
|
|
-- Preserve the tag of the prefix by offering a specific view of the
|
|
-- class-wide version of the prefix.
|
|
|
|
if Is_Tagged_Type (Typ) then
|
|
|
|
-- Generate:
|
|
-- CW_Temp : Typ'Class := Typ'Class (Pref);
|
|
|
|
CW_Temp := Make_Temporary (Loc, 'T');
|
|
CW_Typ := Class_Wide_Type (Typ);
|
|
|
|
Insert_Action (N,
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => CW_Temp,
|
|
Object_Definition => New_Occurrence_Of (CW_Typ, Loc),
|
|
Expression =>
|
|
Convert_To (CW_Typ, Relocate_Node (Pref))));
|
|
|
|
-- Generate:
|
|
-- Temp : Typ renames Typ (CW_Temp);
|
|
|
|
Insert_Action (N,
|
|
Make_Object_Renaming_Declaration (Loc,
|
|
Defining_Identifier => Temp,
|
|
Subtype_Mark => New_Occurrence_Of (Typ, Loc),
|
|
Name =>
|
|
Convert_To (Typ, New_Occurrence_Of (CW_Temp, Loc))));
|
|
|
|
-- Non-tagged case
|
|
|
|
else
|
|
-- Generate:
|
|
-- Temp : Typ := Pref;
|
|
|
|
Insert_Action (N,
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => Temp,
|
|
Object_Definition => New_Occurrence_Of (Typ, Loc),
|
|
Expression => Relocate_Node (Pref)));
|
|
end if;
|
|
|
|
-- Process the update aggregate
|
|
|
|
Assoc := First (Component_Associations (Aggr));
|
|
while Present (Assoc) loop
|
|
Comp := First (Choices (Assoc));
|
|
Expr := Expression (Assoc);
|
|
while Present (Comp) loop
|
|
if Nkind (Comp) = N_Range then
|
|
Process_Range_Update (Temp, Comp, Expr, Typ);
|
|
else
|
|
Process_Component_Or_Element_Update (Temp, Comp, Expr, Typ);
|
|
end if;
|
|
|
|
Next (Comp);
|
|
end loop;
|
|
|
|
Next (Assoc);
|
|
end loop;
|
|
|
|
-- The attribute is replaced by a reference to the anonymous object
|
|
|
|
Rewrite (N, New_Occurrence_Of (Temp, Loc));
|
|
Analyze (N);
|
|
end Expand_Update_Attribute;
|
|
|
|
-------------------
|
|
-- Find_Fat_Info --
|
|
-------------------
|
|
|
|
procedure Find_Fat_Info
|
|
(T : Entity_Id;
|
|
Fat_Type : out Entity_Id;
|
|
Fat_Pkg : out RE_Id)
|
|
is
|
|
Rtyp : constant Entity_Id := Root_Type (T);
|
|
|
|
begin
|
|
-- All we do is use the root type (historically this dealt with
|
|
-- VAX-float .. to be cleaned up further later ???)
|
|
|
|
Fat_Type := Rtyp;
|
|
|
|
if Fat_Type = Standard_Short_Float then
|
|
Fat_Pkg := RE_Attr_Short_Float;
|
|
|
|
elsif Fat_Type = Standard_Float then
|
|
Fat_Pkg := RE_Attr_Float;
|
|
|
|
elsif Fat_Type = Standard_Long_Float then
|
|
Fat_Pkg := RE_Attr_Long_Float;
|
|
|
|
elsif Fat_Type = Standard_Long_Long_Float then
|
|
Fat_Pkg := RE_Attr_Long_Long_Float;
|
|
|
|
-- Universal real (which is its own root type) is treated as being
|
|
-- equivalent to Standard.Long_Long_Float, since it is defined to
|
|
-- have the same precision as the longest Float type.
|
|
|
|
elsif Fat_Type = Universal_Real then
|
|
Fat_Type := Standard_Long_Long_Float;
|
|
Fat_Pkg := RE_Attr_Long_Long_Float;
|
|
|
|
else
|
|
raise Program_Error;
|
|
end if;
|
|
end Find_Fat_Info;
|
|
|
|
----------------------------
|
|
-- Find_Stream_Subprogram --
|
|
----------------------------
|
|
|
|
function Find_Stream_Subprogram
|
|
(Typ : Entity_Id;
|
|
Nam : TSS_Name_Type) return Entity_Id
|
|
is
|
|
Base_Typ : constant Entity_Id := Base_Type (Typ);
|
|
Ent : constant Entity_Id := TSS (Typ, Nam);
|
|
|
|
function Is_Available (Entity : RE_Id) return Boolean;
|
|
pragma Inline (Is_Available);
|
|
-- Function to check whether the specified run-time call is available
|
|
-- in the run time used. In the case of a configurable run time, it
|
|
-- is normal that some subprograms are not there.
|
|
--
|
|
-- I don't understand this routine at all, why is this not just a
|
|
-- call to RTE_Available? And if for some reason we need a different
|
|
-- routine with different semantics, why is not in Rtsfind ???
|
|
|
|
------------------
|
|
-- Is_Available --
|
|
------------------
|
|
|
|
function Is_Available (Entity : RE_Id) return Boolean is
|
|
begin
|
|
-- Assume that the unit will always be available when using a
|
|
-- "normal" (not configurable) run time.
|
|
|
|
return not Configurable_Run_Time_Mode or else RTE_Available (Entity);
|
|
end Is_Available;
|
|
|
|
-- Start of processing for Find_Stream_Subprogram
|
|
|
|
begin
|
|
if Present (Ent) then
|
|
return Ent;
|
|
end if;
|
|
|
|
-- Stream attributes for strings are expanded into library calls. The
|
|
-- following checks are disabled when the run-time is not available or
|
|
-- when compiling predefined types due to bootstrap issues. As a result,
|
|
-- the compiler will generate in-place stream routines for string types
|
|
-- that appear in GNAT's library, but will generate calls via rtsfind
|
|
-- to library routines for user code.
|
|
|
|
-- Note: In the case of using a configurable run time, it is very likely
|
|
-- that stream routines for string types are not present (they require
|
|
-- file system support). In this case, the specific stream routines for
|
|
-- strings are not used, relying on the regular stream mechanism
|
|
-- instead. That is why we include the test Is_Available when dealing
|
|
-- with these cases.
|
|
|
|
if not Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit)) then
|
|
-- Storage_Array as defined in package System.Storage_Elements
|
|
|
|
if Is_RTE (Base_Typ, RE_Storage_Array) then
|
|
|
|
-- Case of No_Stream_Optimizations restriction active
|
|
|
|
if Restriction_Active (No_Stream_Optimizations) then
|
|
if Nam = TSS_Stream_Input
|
|
and then Is_Available (RE_Storage_Array_Input)
|
|
then
|
|
return RTE (RE_Storage_Array_Input);
|
|
|
|
elsif Nam = TSS_Stream_Output
|
|
and then Is_Available (RE_Storage_Array_Output)
|
|
then
|
|
return RTE (RE_Storage_Array_Output);
|
|
|
|
elsif Nam = TSS_Stream_Read
|
|
and then Is_Available (RE_Storage_Array_Read)
|
|
then
|
|
return RTE (RE_Storage_Array_Read);
|
|
|
|
elsif Nam = TSS_Stream_Write
|
|
and then Is_Available (RE_Storage_Array_Write)
|
|
then
|
|
return RTE (RE_Storage_Array_Write);
|
|
|
|
elsif Nam /= TSS_Stream_Input and then
|
|
Nam /= TSS_Stream_Output and then
|
|
Nam /= TSS_Stream_Read and then
|
|
Nam /= TSS_Stream_Write
|
|
then
|
|
raise Program_Error;
|
|
end if;
|
|
|
|
-- Restriction No_Stream_Optimizations is not set, so we can go
|
|
-- ahead and optimize using the block IO forms of the routines.
|
|
|
|
else
|
|
if Nam = TSS_Stream_Input
|
|
and then Is_Available (RE_Storage_Array_Input_Blk_IO)
|
|
then
|
|
return RTE (RE_Storage_Array_Input_Blk_IO);
|
|
|
|
elsif Nam = TSS_Stream_Output
|
|
and then Is_Available (RE_Storage_Array_Output_Blk_IO)
|
|
then
|
|
return RTE (RE_Storage_Array_Output_Blk_IO);
|
|
|
|
elsif Nam = TSS_Stream_Read
|
|
and then Is_Available (RE_Storage_Array_Read_Blk_IO)
|
|
then
|
|
return RTE (RE_Storage_Array_Read_Blk_IO);
|
|
|
|
elsif Nam = TSS_Stream_Write
|
|
and then Is_Available (RE_Storage_Array_Write_Blk_IO)
|
|
then
|
|
return RTE (RE_Storage_Array_Write_Blk_IO);
|
|
|
|
elsif Nam /= TSS_Stream_Input and then
|
|
Nam /= TSS_Stream_Output and then
|
|
Nam /= TSS_Stream_Read and then
|
|
Nam /= TSS_Stream_Write
|
|
then
|
|
raise Program_Error;
|
|
end if;
|
|
end if;
|
|
|
|
-- Stream_Element_Array as defined in package Ada.Streams
|
|
|
|
elsif Is_RTE (Base_Typ, RE_Stream_Element_Array) then
|
|
|
|
-- Case of No_Stream_Optimizations restriction active
|
|
|
|
if Restriction_Active (No_Stream_Optimizations) then
|
|
if Nam = TSS_Stream_Input
|
|
and then Is_Available (RE_Stream_Element_Array_Input)
|
|
then
|
|
return RTE (RE_Stream_Element_Array_Input);
|
|
|
|
elsif Nam = TSS_Stream_Output
|
|
and then Is_Available (RE_Stream_Element_Array_Output)
|
|
then
|
|
return RTE (RE_Stream_Element_Array_Output);
|
|
|
|
elsif Nam = TSS_Stream_Read
|
|
and then Is_Available (RE_Stream_Element_Array_Read)
|
|
then
|
|
return RTE (RE_Stream_Element_Array_Read);
|
|
|
|
elsif Nam = TSS_Stream_Write
|
|
and then Is_Available (RE_Stream_Element_Array_Write)
|
|
then
|
|
return RTE (RE_Stream_Element_Array_Write);
|
|
|
|
elsif Nam /= TSS_Stream_Input and then
|
|
Nam /= TSS_Stream_Output and then
|
|
Nam /= TSS_Stream_Read and then
|
|
Nam /= TSS_Stream_Write
|
|
then
|
|
raise Program_Error;
|
|
end if;
|
|
|
|
-- Restriction No_Stream_Optimizations is not set, so we can go
|
|
-- ahead and optimize using the block IO forms of the routines.
|
|
|
|
else
|
|
if Nam = TSS_Stream_Input
|
|
and then Is_Available (RE_Stream_Element_Array_Input_Blk_IO)
|
|
then
|
|
return RTE (RE_Stream_Element_Array_Input_Blk_IO);
|
|
|
|
elsif Nam = TSS_Stream_Output
|
|
and then Is_Available (RE_Stream_Element_Array_Output_Blk_IO)
|
|
then
|
|
return RTE (RE_Stream_Element_Array_Output_Blk_IO);
|
|
|
|
elsif Nam = TSS_Stream_Read
|
|
and then Is_Available (RE_Stream_Element_Array_Read_Blk_IO)
|
|
then
|
|
return RTE (RE_Stream_Element_Array_Read_Blk_IO);
|
|
|
|
elsif Nam = TSS_Stream_Write
|
|
and then Is_Available (RE_Stream_Element_Array_Write_Blk_IO)
|
|
then
|
|
return RTE (RE_Stream_Element_Array_Write_Blk_IO);
|
|
|
|
elsif Nam /= TSS_Stream_Input and then
|
|
Nam /= TSS_Stream_Output and then
|
|
Nam /= TSS_Stream_Read and then
|
|
Nam /= TSS_Stream_Write
|
|
then
|
|
raise Program_Error;
|
|
end if;
|
|
end if;
|
|
|
|
-- String as defined in package Ada
|
|
|
|
elsif Base_Typ = Standard_String then
|
|
|
|
-- Case of No_Stream_Optimizations restriction active
|
|
|
|
if Restriction_Active (No_Stream_Optimizations) then
|
|
if Nam = TSS_Stream_Input
|
|
and then Is_Available (RE_String_Input)
|
|
then
|
|
return RTE (RE_String_Input);
|
|
|
|
elsif Nam = TSS_Stream_Output
|
|
and then Is_Available (RE_String_Output)
|
|
then
|
|
return RTE (RE_String_Output);
|
|
|
|
elsif Nam = TSS_Stream_Read
|
|
and then Is_Available (RE_String_Read)
|
|
then
|
|
return RTE (RE_String_Read);
|
|
|
|
elsif Nam = TSS_Stream_Write
|
|
and then Is_Available (RE_String_Write)
|
|
then
|
|
return RTE (RE_String_Write);
|
|
|
|
elsif Nam /= TSS_Stream_Input and then
|
|
Nam /= TSS_Stream_Output and then
|
|
Nam /= TSS_Stream_Read and then
|
|
Nam /= TSS_Stream_Write
|
|
then
|
|
raise Program_Error;
|
|
end if;
|
|
|
|
-- Restriction No_Stream_Optimizations is not set, so we can go
|
|
-- ahead and optimize using the block IO forms of the routines.
|
|
|
|
else
|
|
if Nam = TSS_Stream_Input
|
|
and then Is_Available (RE_String_Input_Blk_IO)
|
|
then
|
|
return RTE (RE_String_Input_Blk_IO);
|
|
|
|
elsif Nam = TSS_Stream_Output
|
|
and then Is_Available (RE_String_Output_Blk_IO)
|
|
then
|
|
return RTE (RE_String_Output_Blk_IO);
|
|
|
|
elsif Nam = TSS_Stream_Read
|
|
and then Is_Available (RE_String_Read_Blk_IO)
|
|
then
|
|
return RTE (RE_String_Read_Blk_IO);
|
|
|
|
elsif Nam = TSS_Stream_Write
|
|
and then Is_Available (RE_String_Write_Blk_IO)
|
|
then
|
|
return RTE (RE_String_Write_Blk_IO);
|
|
|
|
elsif Nam /= TSS_Stream_Input and then
|
|
Nam /= TSS_Stream_Output and then
|
|
Nam /= TSS_Stream_Read and then
|
|
Nam /= TSS_Stream_Write
|
|
then
|
|
raise Program_Error;
|
|
end if;
|
|
end if;
|
|
|
|
-- Wide_String as defined in package Ada
|
|
|
|
elsif Base_Typ = Standard_Wide_String then
|
|
|
|
-- Case of No_Stream_Optimizations restriction active
|
|
|
|
if Restriction_Active (No_Stream_Optimizations) then
|
|
if Nam = TSS_Stream_Input
|
|
and then Is_Available (RE_Wide_String_Input)
|
|
then
|
|
return RTE (RE_Wide_String_Input);
|
|
|
|
elsif Nam = TSS_Stream_Output
|
|
and then Is_Available (RE_Wide_String_Output)
|
|
then
|
|
return RTE (RE_Wide_String_Output);
|
|
|
|
elsif Nam = TSS_Stream_Read
|
|
and then Is_Available (RE_Wide_String_Read)
|
|
then
|
|
return RTE (RE_Wide_String_Read);
|
|
|
|
elsif Nam = TSS_Stream_Write
|
|
and then Is_Available (RE_Wide_String_Write)
|
|
then
|
|
return RTE (RE_Wide_String_Write);
|
|
|
|
elsif Nam /= TSS_Stream_Input and then
|
|
Nam /= TSS_Stream_Output and then
|
|
Nam /= TSS_Stream_Read and then
|
|
Nam /= TSS_Stream_Write
|
|
then
|
|
raise Program_Error;
|
|
end if;
|
|
|
|
-- Restriction No_Stream_Optimizations is not set, so we can go
|
|
-- ahead and optimize using the block IO forms of the routines.
|
|
|
|
else
|
|
if Nam = TSS_Stream_Input
|
|
and then Is_Available (RE_Wide_String_Input_Blk_IO)
|
|
then
|
|
return RTE (RE_Wide_String_Input_Blk_IO);
|
|
|
|
elsif Nam = TSS_Stream_Output
|
|
and then Is_Available (RE_Wide_String_Output_Blk_IO)
|
|
then
|
|
return RTE (RE_Wide_String_Output_Blk_IO);
|
|
|
|
elsif Nam = TSS_Stream_Read
|
|
and then Is_Available (RE_Wide_String_Read_Blk_IO)
|
|
then
|
|
return RTE (RE_Wide_String_Read_Blk_IO);
|
|
|
|
elsif Nam = TSS_Stream_Write
|
|
and then Is_Available (RE_Wide_String_Write_Blk_IO)
|
|
then
|
|
return RTE (RE_Wide_String_Write_Blk_IO);
|
|
|
|
elsif Nam /= TSS_Stream_Input and then
|
|
Nam /= TSS_Stream_Output and then
|
|
Nam /= TSS_Stream_Read and then
|
|
Nam /= TSS_Stream_Write
|
|
then
|
|
raise Program_Error;
|
|
end if;
|
|
end if;
|
|
|
|
-- Wide_Wide_String as defined in package Ada
|
|
|
|
elsif Base_Typ = Standard_Wide_Wide_String then
|
|
|
|
-- Case of No_Stream_Optimizations restriction active
|
|
|
|
if Restriction_Active (No_Stream_Optimizations) then
|
|
if Nam = TSS_Stream_Input
|
|
and then Is_Available (RE_Wide_Wide_String_Input)
|
|
then
|
|
return RTE (RE_Wide_Wide_String_Input);
|
|
|
|
elsif Nam = TSS_Stream_Output
|
|
and then Is_Available (RE_Wide_Wide_String_Output)
|
|
then
|
|
return RTE (RE_Wide_Wide_String_Output);
|
|
|
|
elsif Nam = TSS_Stream_Read
|
|
and then Is_Available (RE_Wide_Wide_String_Read)
|
|
then
|
|
return RTE (RE_Wide_Wide_String_Read);
|
|
|
|
elsif Nam = TSS_Stream_Write
|
|
and then Is_Available (RE_Wide_Wide_String_Write)
|
|
then
|
|
return RTE (RE_Wide_Wide_String_Write);
|
|
|
|
elsif Nam /= TSS_Stream_Input and then
|
|
Nam /= TSS_Stream_Output and then
|
|
Nam /= TSS_Stream_Read and then
|
|
Nam /= TSS_Stream_Write
|
|
then
|
|
raise Program_Error;
|
|
end if;
|
|
|
|
-- Restriction No_Stream_Optimizations is not set, so we can go
|
|
-- ahead and optimize using the block IO forms of the routines.
|
|
|
|
else
|
|
if Nam = TSS_Stream_Input
|
|
and then Is_Available (RE_Wide_Wide_String_Input_Blk_IO)
|
|
then
|
|
return RTE (RE_Wide_Wide_String_Input_Blk_IO);
|
|
|
|
elsif Nam = TSS_Stream_Output
|
|
and then Is_Available (RE_Wide_Wide_String_Output_Blk_IO)
|
|
then
|
|
return RTE (RE_Wide_Wide_String_Output_Blk_IO);
|
|
|
|
elsif Nam = TSS_Stream_Read
|
|
and then Is_Available (RE_Wide_Wide_String_Read_Blk_IO)
|
|
then
|
|
return RTE (RE_Wide_Wide_String_Read_Blk_IO);
|
|
|
|
elsif Nam = TSS_Stream_Write
|
|
and then Is_Available (RE_Wide_Wide_String_Write_Blk_IO)
|
|
then
|
|
return RTE (RE_Wide_Wide_String_Write_Blk_IO);
|
|
|
|
elsif Nam /= TSS_Stream_Input and then
|
|
Nam /= TSS_Stream_Output and then
|
|
Nam /= TSS_Stream_Read and then
|
|
Nam /= TSS_Stream_Write
|
|
then
|
|
raise Program_Error;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
if Is_Tagged_Type (Typ) and then Is_Derived_Type (Typ) then
|
|
return Find_Prim_Op (Typ, Nam);
|
|
else
|
|
return Find_Inherited_TSS (Typ, Nam);
|
|
end if;
|
|
end Find_Stream_Subprogram;
|
|
|
|
---------------
|
|
-- Full_Base --
|
|
---------------
|
|
|
|
function Full_Base (T : Entity_Id) return Entity_Id is
|
|
BT : Entity_Id;
|
|
|
|
begin
|
|
BT := Base_Type (T);
|
|
|
|
if Is_Private_Type (BT)
|
|
and then Present (Full_View (BT))
|
|
then
|
|
BT := Full_View (BT);
|
|
end if;
|
|
|
|
return BT;
|
|
end Full_Base;
|
|
|
|
-----------------------
|
|
-- Get_Index_Subtype --
|
|
-----------------------
|
|
|
|
function Get_Index_Subtype (N : Node_Id) return Node_Id is
|
|
P_Type : Entity_Id := Etype (Prefix (N));
|
|
Indx : Node_Id;
|
|
J : Int;
|
|
|
|
begin
|
|
if Is_Access_Type (P_Type) then
|
|
P_Type := Designated_Type (P_Type);
|
|
end if;
|
|
|
|
if No (Expressions (N)) then
|
|
J := 1;
|
|
else
|
|
J := UI_To_Int (Expr_Value (First (Expressions (N))));
|
|
end if;
|
|
|
|
Indx := First_Index (P_Type);
|
|
while J > 1 loop
|
|
Next_Index (Indx);
|
|
J := J - 1;
|
|
end loop;
|
|
|
|
return Etype (Indx);
|
|
end Get_Index_Subtype;
|
|
|
|
-------------------------------
|
|
-- Get_Stream_Convert_Pragma --
|
|
-------------------------------
|
|
|
|
function Get_Stream_Convert_Pragma (T : Entity_Id) return Node_Id is
|
|
Typ : Entity_Id;
|
|
N : Node_Id;
|
|
|
|
begin
|
|
-- Note: we cannot use Get_Rep_Pragma here because of the peculiarity
|
|
-- that a stream convert pragma for a tagged type is not inherited from
|
|
-- its parent. Probably what is wrong here is that it is basically
|
|
-- incorrect to consider a stream convert pragma to be a representation
|
|
-- pragma at all ???
|
|
|
|
N := First_Rep_Item (Implementation_Base_Type (T));
|
|
while Present (N) loop
|
|
if Nkind (N) = N_Pragma
|
|
and then Pragma_Name (N) = Name_Stream_Convert
|
|
then
|
|
-- For tagged types this pragma is not inherited, so we
|
|
-- must verify that it is defined for the given type and
|
|
-- not an ancestor.
|
|
|
|
Typ :=
|
|
Entity (Expression (First (Pragma_Argument_Associations (N))));
|
|
|
|
if not Is_Tagged_Type (T)
|
|
or else T = Typ
|
|
or else (Is_Private_Type (Typ) and then T = Full_View (Typ))
|
|
then
|
|
return N;
|
|
end if;
|
|
end if;
|
|
|
|
Next_Rep_Item (N);
|
|
end loop;
|
|
|
|
return Empty;
|
|
end Get_Stream_Convert_Pragma;
|
|
|
|
---------------------------------
|
|
-- Is_Constrained_Packed_Array --
|
|
---------------------------------
|
|
|
|
function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean is
|
|
Arr : Entity_Id := Typ;
|
|
|
|
begin
|
|
if Is_Access_Type (Arr) then
|
|
Arr := Designated_Type (Arr);
|
|
end if;
|
|
|
|
return Is_Array_Type (Arr)
|
|
and then Is_Constrained (Arr)
|
|
and then Present (Packed_Array_Impl_Type (Arr));
|
|
end Is_Constrained_Packed_Array;
|
|
|
|
----------------------------------------
|
|
-- Is_Inline_Floating_Point_Attribute --
|
|
----------------------------------------
|
|
|
|
function Is_Inline_Floating_Point_Attribute (N : Node_Id) return Boolean is
|
|
Id : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (N));
|
|
|
|
function Is_GCC_Target return Boolean;
|
|
-- Return True if we are using a GCC target/back-end
|
|
-- ??? Note: the implementation is kludgy/fragile
|
|
|
|
-------------------
|
|
-- Is_GCC_Target --
|
|
-------------------
|
|
|
|
function Is_GCC_Target return Boolean is
|
|
begin
|
|
return not CodePeer_Mode
|
|
and then not AAMP_On_Target
|
|
and then not Generate_C_Code;
|
|
end Is_GCC_Target;
|
|
|
|
-- Start of processing for Is_Inline_Floating_Point_Attribute
|
|
|
|
begin
|
|
-- Machine and Model can be expanded by the GCC and AAMP back ends only
|
|
|
|
if Id = Attribute_Machine or else Id = Attribute_Model then
|
|
return Is_GCC_Target or else AAMP_On_Target;
|
|
|
|
-- Remaining cases handled by all back ends are Rounding and Truncation
|
|
-- when appearing as the operand of a conversion to some integer type.
|
|
|
|
elsif Nkind (Parent (N)) /= N_Type_Conversion
|
|
or else not Is_Integer_Type (Etype (Parent (N)))
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
-- Here we are in the integer conversion context
|
|
|
|
-- Very probably we should also recognize the cases of Machine_Rounding
|
|
-- and unbiased rounding in this conversion context, but the back end is
|
|
-- not yet prepared to handle these cases ???
|
|
|
|
return Id = Attribute_Rounding or else Id = Attribute_Truncation;
|
|
end Is_Inline_Floating_Point_Attribute;
|
|
|
|
end Exp_Attr;
|