mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			993 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			Java
		
	
	
	
			
		
		
	
	
			993 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			Java
		
	
	
	
/* GeneralPath.java -- represents a shape built from subpaths
 | 
						|
   Copyright (C) 2002, 2003, 2004, 2006 Free Software Foundation
 | 
						|
 | 
						|
This file is part of GNU Classpath.
 | 
						|
 | 
						|
GNU Classpath is free software; you can redistribute it and/or modify
 | 
						|
it under the terms of the GNU General Public License as published by
 | 
						|
the Free Software Foundation; either version 2, or (at your option)
 | 
						|
any later version.
 | 
						|
 | 
						|
GNU Classpath is distributed in the hope that it will be useful, but
 | 
						|
WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
General Public License for more details.
 | 
						|
 | 
						|
You should have received a copy of the GNU General Public License
 | 
						|
along with GNU Classpath; see the file COPYING.  If not, write to the
 | 
						|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 | 
						|
02110-1301 USA.
 | 
						|
 | 
						|
Linking this library statically or dynamically with other modules is
 | 
						|
making a combined work based on this library.  Thus, the terms and
 | 
						|
conditions of the GNU General Public License cover the whole
 | 
						|
combination.
 | 
						|
 | 
						|
As a special exception, the copyright holders of this library give you
 | 
						|
permission to link this library with independent modules to produce an
 | 
						|
executable, regardless of the license terms of these independent
 | 
						|
modules, and to copy and distribute the resulting executable under
 | 
						|
terms of your choice, provided that you also meet, for each linked
 | 
						|
independent module, the terms and conditions of the license of that
 | 
						|
module.  An independent module is a module which is not derived from
 | 
						|
or based on this library.  If you modify this library, you may extend
 | 
						|
this exception to your version of the library, but you are not
 | 
						|
obligated to do so.  If you do not wish to do so, delete this
 | 
						|
exception statement from your version. */
 | 
						|
 | 
						|
 | 
						|
package java.awt.geom;
 | 
						|
 | 
						|
import java.awt.Rectangle;
 | 
						|
import java.awt.Shape;
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * A general geometric path, consisting of any number of subpaths
 | 
						|
 * constructed out of straight lines and cubic or quadratic Bezier
 | 
						|
 * curves.
 | 
						|
 *
 | 
						|
 * <p>The inside of the curve is defined for drawing purposes by a winding
 | 
						|
 * rule. Either the WIND_EVEN_ODD or WIND_NON_ZERO winding rule can be chosen.
 | 
						|
 *
 | 
						|
 * <p><img src="doc-files/GeneralPath-1.png" width="300" height="210"
 | 
						|
 * alt="A drawing of a GeneralPath" />
 | 
						|
 * <p>The EVEN_ODD winding rule defines a point as inside a path if:
 | 
						|
 * A ray from the point towards infinity in an arbitrary direction
 | 
						|
 * intersects the path an odd number of times. Points <b>A</b> and
 | 
						|
 * <b>C</b> in the image are considered to be outside the path.
 | 
						|
 * (both intersect twice)
 | 
						|
 * Point <b>B</b> intersects once, and is inside.
 | 
						|
 *
 | 
						|
 * <p>The NON_ZERO winding rule defines a point as inside a path if:
 | 
						|
 * The path intersects the ray in an equal number of opposite directions.
 | 
						|
 * Point <b>A</b> in the image is outside (one intersection in the
 | 
						|
 * ’up’
 | 
						|
 * direction, one in the ’down’ direction) Point <b>B</b> in
 | 
						|
 * the image is inside (one intersection ’down’)
 | 
						|
 * Point <b>C</b> in the image is inside (two intersections in the
 | 
						|
 * ’down’ direction)
 | 
						|
 *
 | 
						|
 * @see Line2D
 | 
						|
 * @see CubicCurve2D
 | 
						|
 * @see QuadCurve2D
 | 
						|
 *
 | 
						|
 * @author Sascha Brawer (brawer@dandelis.ch)
 | 
						|
 * @author Sven de Marothy (sven@physto.se)
 | 
						|
 *
 | 
						|
 * @since 1.2
 | 
						|
 */
 | 
						|
public final class GeneralPath implements Shape, Cloneable
 | 
						|
{
 | 
						|
  /** Same constant as {@link PathIterator#WIND_EVEN_ODD}. */
 | 
						|
  public static final int WIND_EVEN_ODD = PathIterator.WIND_EVEN_ODD;
 | 
						|
 | 
						|
  /** Same constant as {@link PathIterator#WIND_NON_ZERO}. */
 | 
						|
  public static final int WIND_NON_ZERO = PathIterator.WIND_NON_ZERO;
 | 
						|
 | 
						|
  /** Initial size if not specified. */
 | 
						|
  private static final int INIT_SIZE = 10;
 | 
						|
 | 
						|
  /** A big number, but not so big it can't survive a few float operations */
 | 
						|
  private static final double BIG_VALUE = Double.MAX_VALUE / 10.0;
 | 
						|
 | 
						|
  /** The winding rule.
 | 
						|
   * This is package-private to avoid an accessor method.
 | 
						|
   */
 | 
						|
  int rule;
 | 
						|
 | 
						|
  /**
 | 
						|
   * The path type in points. Note that xpoints[index] and ypoints[index] maps
 | 
						|
   * to types[index]; the control points of quad and cubic paths map as
 | 
						|
   * well but are ignored.
 | 
						|
   * This is package-private to avoid an accessor method.
 | 
						|
   */
 | 
						|
  byte[] types;
 | 
						|
 | 
						|
  /**
 | 
						|
   * The list of all points seen. Since you can only append floats, it makes
 | 
						|
   * sense for these to be float[]. I have no idea why Sun didn't choose to
 | 
						|
   * allow a general path of double precision points.
 | 
						|
   * Note: Storing x and y coords seperately makes for a slower transforms,
 | 
						|
   * But it speeds up and simplifies box-intersection checking a lot.
 | 
						|
   * These are package-private to avoid accessor methods.
 | 
						|
   */
 | 
						|
  float[] xpoints;
 | 
						|
  float[] ypoints;
 | 
						|
 | 
						|
  /** The index of the most recent moveto point, or null. */
 | 
						|
  private int subpath = -1;
 | 
						|
 | 
						|
  /** The next available index into points.
 | 
						|
   * This is package-private to avoid an accessor method.
 | 
						|
   */
 | 
						|
  int index;
 | 
						|
 | 
						|
  /**
 | 
						|
   * Constructs a GeneralPath with the default (NON_ZERO)
 | 
						|
   * winding rule and initial capacity (20).
 | 
						|
   */
 | 
						|
  public GeneralPath()
 | 
						|
  {
 | 
						|
    this(WIND_NON_ZERO, INIT_SIZE);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Constructs a GeneralPath with a specific winding rule
 | 
						|
   * and the default initial capacity (20).
 | 
						|
   * @param rule the winding rule ({@link #WIND_NON_ZERO} or
 | 
						|
   *     {@link #WIND_EVEN_ODD})
 | 
						|
   *
 | 
						|
   * @throws IllegalArgumentException if <code>rule</code> is not one of the
 | 
						|
   *     listed values.
 | 
						|
   */
 | 
						|
  public GeneralPath(int rule)
 | 
						|
  {
 | 
						|
    this(rule, INIT_SIZE);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Constructs a GeneralPath with a specific winding rule
 | 
						|
   * and the initial capacity. The initial capacity should be
 | 
						|
   * the approximate number of path segments to be used.
 | 
						|
   * @param rule the winding rule ({@link #WIND_NON_ZERO} or
 | 
						|
   *     {@link #WIND_EVEN_ODD})
 | 
						|
   * @param capacity the inital capacity, in path segments
 | 
						|
   *
 | 
						|
   * @throws IllegalArgumentException if <code>rule</code> is not one of the
 | 
						|
   *     listed values.
 | 
						|
   */
 | 
						|
  public GeneralPath(int rule, int capacity)
 | 
						|
  {
 | 
						|
    if (rule != WIND_EVEN_ODD && rule != WIND_NON_ZERO)
 | 
						|
      throw new IllegalArgumentException();
 | 
						|
    this.rule = rule;
 | 
						|
    if (capacity < INIT_SIZE)
 | 
						|
      capacity = INIT_SIZE;
 | 
						|
    types = new byte[capacity];
 | 
						|
    xpoints = new float[capacity];
 | 
						|
    ypoints = new float[capacity];
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Constructs a GeneralPath from an arbitrary shape object.
 | 
						|
   * The Shapes PathIterator path and winding rule will be used.
 | 
						|
   *
 | 
						|
   * @param s the shape (<code>null</code> not permitted).
 | 
						|
   *
 | 
						|
   * @throws NullPointerException if <code>shape</code> is <code>null</code>.
 | 
						|
   */
 | 
						|
  public GeneralPath(Shape s)
 | 
						|
  {
 | 
						|
    types = new byte[INIT_SIZE];
 | 
						|
    xpoints = new float[INIT_SIZE];
 | 
						|
    ypoints = new float[INIT_SIZE];
 | 
						|
    PathIterator pi = s.getPathIterator(null);
 | 
						|
    setWindingRule(pi.getWindingRule());
 | 
						|
    append(pi, false);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Adds a new point to a path.
 | 
						|
   *
 | 
						|
   * @param x  the x-coordinate.
 | 
						|
   * @param y  the y-coordinate.
 | 
						|
   */
 | 
						|
  public void moveTo(float x, float y)
 | 
						|
  {
 | 
						|
    subpath = index;
 | 
						|
    ensureSize(index + 1);
 | 
						|
    types[index] = PathIterator.SEG_MOVETO;
 | 
						|
    xpoints[index] = x;
 | 
						|
    ypoints[index++] = y;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Appends a straight line to the current path.
 | 
						|
   * @param x x coordinate of the line endpoint.
 | 
						|
   * @param y y coordinate of the line endpoint.
 | 
						|
   */
 | 
						|
  public void lineTo(float x, float y)
 | 
						|
  {
 | 
						|
    ensureSize(index + 1);
 | 
						|
    types[index] = PathIterator.SEG_LINETO;
 | 
						|
    xpoints[index] = x;
 | 
						|
    ypoints[index++] = y;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Appends a quadratic Bezier curve to the current path.
 | 
						|
   * @param x1 x coordinate of the control point
 | 
						|
   * @param y1 y coordinate of the control point
 | 
						|
   * @param x2 x coordinate of the curve endpoint.
 | 
						|
   * @param y2 y coordinate of the curve endpoint.
 | 
						|
   */
 | 
						|
  public void quadTo(float x1, float y1, float x2, float y2)
 | 
						|
  {
 | 
						|
    ensureSize(index + 2);
 | 
						|
    types[index] = PathIterator.SEG_QUADTO;
 | 
						|
    xpoints[index] = x1;
 | 
						|
    ypoints[index++] = y1;
 | 
						|
    xpoints[index] = x2;
 | 
						|
    ypoints[index++] = y2;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Appends a cubic Bezier curve to the current path.
 | 
						|
   * @param x1 x coordinate of the first control point
 | 
						|
   * @param y1 y coordinate of the first control point
 | 
						|
   * @param x2 x coordinate of the second control point
 | 
						|
   * @param y2 y coordinate of the second control point
 | 
						|
   * @param x3 x coordinate of the curve endpoint.
 | 
						|
   * @param y3 y coordinate of the curve endpoint.
 | 
						|
   */
 | 
						|
  public void curveTo(float x1, float y1, float x2, float y2, float x3,
 | 
						|
                      float y3)
 | 
						|
  {
 | 
						|
    ensureSize(index + 3);
 | 
						|
    types[index] = PathIterator.SEG_CUBICTO;
 | 
						|
    xpoints[index] = x1;
 | 
						|
    ypoints[index++] = y1;
 | 
						|
    xpoints[index] = x2;
 | 
						|
    ypoints[index++] = y2;
 | 
						|
    xpoints[index] = x3;
 | 
						|
    ypoints[index++] = y3;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Closes the current subpath by drawing a line
 | 
						|
   * back to the point of the last moveTo, unless the path is already closed.
 | 
						|
   */
 | 
						|
  public void closePath()
 | 
						|
  {
 | 
						|
    if (index >= 1 && types[index - 1] == PathIterator.SEG_CLOSE)
 | 
						|
      return;
 | 
						|
    ensureSize(index + 1);
 | 
						|
    types[index] = PathIterator.SEG_CLOSE;
 | 
						|
    xpoints[index] = xpoints[subpath];
 | 
						|
    ypoints[index++] = ypoints[subpath];
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Appends the segments of a Shape to the path. If <code>connect</code> is
 | 
						|
   * true, the new path segments are connected to the existing one with a line.
 | 
						|
   * The winding rule of the Shape is ignored.
 | 
						|
   *
 | 
						|
   * @param s  the shape (<code>null</code> not permitted).
 | 
						|
   * @param connect  whether to connect the new shape to the existing path.
 | 
						|
   *
 | 
						|
   * @throws NullPointerException if <code>s</code> is <code>null</code>.
 | 
						|
   */
 | 
						|
  public void append(Shape s, boolean connect)
 | 
						|
  {
 | 
						|
    append(s.getPathIterator(null), connect);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Appends the segments of a PathIterator to this GeneralPath.
 | 
						|
   * Optionally, the initial {@link PathIterator#SEG_MOVETO} segment
 | 
						|
   * of the appended path is changed into a {@link
 | 
						|
   * PathIterator#SEG_LINETO} segment.
 | 
						|
   *
 | 
						|
   * @param iter the PathIterator specifying which segments shall be
 | 
						|
   *     appended (<code>null</code> not permitted).
 | 
						|
   *
 | 
						|
   * @param connect <code>true</code> for substituting the initial
 | 
						|
   * {@link PathIterator#SEG_MOVETO} segment by a {@link
 | 
						|
   * PathIterator#SEG_LINETO}, or <code>false</code> for not
 | 
						|
   * performing any substitution. If this GeneralPath is currently
 | 
						|
   * empty, <code>connect</code> is assumed to be <code>false</code>,
 | 
						|
   * thus leaving the initial {@link PathIterator#SEG_MOVETO}
 | 
						|
   * unchanged.
 | 
						|
   */
 | 
						|
  public void append(PathIterator iter, boolean connect)
 | 
						|
  {
 | 
						|
    // A bad implementation of this method had caused Classpath bug #6076.
 | 
						|
    float[] f = new float[6];
 | 
						|
    while (! iter.isDone())
 | 
						|
      {
 | 
						|
        switch (iter.currentSegment(f))
 | 
						|
          {
 | 
						|
          case PathIterator.SEG_MOVETO:
 | 
						|
            if (! connect || (index == 0))
 | 
						|
              {
 | 
						|
                moveTo(f[0], f[1]);
 | 
						|
                break;
 | 
						|
              }
 | 
						|
            if ((index >= 1) && (types[index - 1] == PathIterator.SEG_CLOSE)
 | 
						|
                && (f[0] == xpoints[index - 1])
 | 
						|
                && (f[1] == ypoints[index - 1]))
 | 
						|
              break;
 | 
						|
 | 
						|
          // Fall through.
 | 
						|
          case PathIterator.SEG_LINETO:
 | 
						|
            lineTo(f[0], f[1]);
 | 
						|
            break;
 | 
						|
          case PathIterator.SEG_QUADTO:
 | 
						|
            quadTo(f[0], f[1], f[2], f[3]);
 | 
						|
            break;
 | 
						|
          case PathIterator.SEG_CUBICTO:
 | 
						|
            curveTo(f[0], f[1], f[2], f[3], f[4], f[5]);
 | 
						|
            break;
 | 
						|
          case PathIterator.SEG_CLOSE:
 | 
						|
            closePath();
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
        connect = false;
 | 
						|
        iter.next();
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the path’s current winding rule.
 | 
						|
   *
 | 
						|
   * @return {@link #WIND_EVEN_ODD} or {@link #WIND_NON_ZERO}.
 | 
						|
   */
 | 
						|
  public int getWindingRule()
 | 
						|
  {
 | 
						|
    return rule;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Sets the path’s winding rule, which controls which areas are
 | 
						|
   * considered ’inside’ or ’outside’ the path
 | 
						|
   * on drawing. Valid rules are WIND_EVEN_ODD for an even-odd winding rule,
 | 
						|
   * or WIND_NON_ZERO for a non-zero winding rule.
 | 
						|
   *
 | 
						|
   * @param rule  the rule ({@link #WIND_EVEN_ODD} or {@link #WIND_NON_ZERO}).
 | 
						|
   */
 | 
						|
  public void setWindingRule(int rule)
 | 
						|
  {
 | 
						|
    if (rule != WIND_EVEN_ODD && rule != WIND_NON_ZERO)
 | 
						|
      throw new IllegalArgumentException();
 | 
						|
    this.rule = rule;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the current appending point of the path.
 | 
						|
   *
 | 
						|
   * @return The point.
 | 
						|
   */
 | 
						|
  public Point2D getCurrentPoint()
 | 
						|
  {
 | 
						|
    if (subpath < 0)
 | 
						|
      return null;
 | 
						|
    return new Point2D.Float(xpoints[index - 1], ypoints[index - 1]);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Resets the path. All points and segments are destroyed.
 | 
						|
   */
 | 
						|
  public void reset()
 | 
						|
  {
 | 
						|
    subpath = -1;
 | 
						|
    index = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Applies a transform to the path.
 | 
						|
   *
 | 
						|
   * @param xform  the transform (<code>null</code> not permitted).
 | 
						|
   */
 | 
						|
  public void transform(AffineTransform xform)
 | 
						|
  {
 | 
						|
    double nx;
 | 
						|
    double ny;
 | 
						|
    double[] m = new double[6];
 | 
						|
    xform.getMatrix(m);
 | 
						|
    for (int i = 0; i < index; i++)
 | 
						|
      {
 | 
						|
        nx = m[0] * xpoints[i] + m[2] * ypoints[i] + m[4];
 | 
						|
        ny = m[1] * xpoints[i] + m[3] * ypoints[i] + m[5];
 | 
						|
        xpoints[i] = (float) nx;
 | 
						|
        ypoints[i] = (float) ny;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Creates a transformed version of the path.
 | 
						|
   * @param xform the transform to apply
 | 
						|
   * @return a new transformed GeneralPath
 | 
						|
   */
 | 
						|
  public Shape createTransformedShape(AffineTransform xform)
 | 
						|
  {
 | 
						|
    GeneralPath p = new GeneralPath(this);
 | 
						|
    p.transform(xform);
 | 
						|
    return p;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the path’s bounding box.
 | 
						|
   */
 | 
						|
  public Rectangle getBounds()
 | 
						|
  {
 | 
						|
    return getBounds2D().getBounds();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the path’s bounding box, in <code>float</code> precision
 | 
						|
   */
 | 
						|
  public Rectangle2D getBounds2D()
 | 
						|
  {
 | 
						|
    float x1;
 | 
						|
    float y1;
 | 
						|
    float x2;
 | 
						|
    float y2;
 | 
						|
 | 
						|
    if (index > 0)
 | 
						|
      {
 | 
						|
        x1 = x2 = xpoints[0];
 | 
						|
        y1 = y2 = ypoints[0];
 | 
						|
      }
 | 
						|
    else
 | 
						|
      x1 = x2 = y1 = y2 = 0.0f;
 | 
						|
 | 
						|
    for (int i = 0; i < index; i++)
 | 
						|
      {
 | 
						|
        x1 = Math.min(xpoints[i], x1);
 | 
						|
        y1 = Math.min(ypoints[i], y1);
 | 
						|
        x2 = Math.max(xpoints[i], x2);
 | 
						|
        y2 = Math.max(ypoints[i], y2);
 | 
						|
      }
 | 
						|
    return (new Rectangle2D.Float(x1, y1, x2 - x1, y2 - y1));
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Evaluates if a point is within the GeneralPath,
 | 
						|
   * The NON_ZERO winding rule is used, regardless of the
 | 
						|
   * set winding rule.
 | 
						|
   * @param x x coordinate of the point to evaluate
 | 
						|
   * @param y y coordinate of the point to evaluate
 | 
						|
   * @return true if the point is within the path, false otherwise
 | 
						|
   */
 | 
						|
  public boolean contains(double x, double y)
 | 
						|
  {
 | 
						|
    return (getWindingNumber(x, y) != 0);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Evaluates if a Point2D is within the GeneralPath,
 | 
						|
   * The NON_ZERO winding rule is used, regardless of the
 | 
						|
   * set winding rule.
 | 
						|
   * @param p The Point2D to evaluate
 | 
						|
   * @return true if the point is within the path, false otherwise
 | 
						|
   */
 | 
						|
  public boolean contains(Point2D p)
 | 
						|
  {
 | 
						|
    return contains(p.getX(), p.getY());
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Evaluates if a rectangle is completely contained within the path.
 | 
						|
   * This method will return false in the cases when the box
 | 
						|
   * intersects an inner segment of the path.
 | 
						|
   * (i.e.: The method is accurate for the EVEN_ODD winding rule)
 | 
						|
   */
 | 
						|
  public boolean contains(double x, double y, double w, double h)
 | 
						|
  {
 | 
						|
    if (! getBounds2D().intersects(x, y, w, h))
 | 
						|
      return false;
 | 
						|
 | 
						|
    /* Does any edge intersect? */
 | 
						|
    if (getAxisIntersections(x, y, false, w) != 0 /* top */
 | 
						|
        || getAxisIntersections(x, y + h, false, w) != 0 /* bottom */
 | 
						|
        || getAxisIntersections(x + w, y, true, h) != 0 /* right */
 | 
						|
        || getAxisIntersections(x, y, true, h) != 0) /* left */
 | 
						|
      return false;
 | 
						|
 | 
						|
    /* No intersections, is any point inside? */
 | 
						|
    if (getWindingNumber(x, y) != 0)
 | 
						|
      return true;
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Evaluates if a rectangle is completely contained within the path.
 | 
						|
   * This method will return false in the cases when the box
 | 
						|
   * intersects an inner segment of the path.
 | 
						|
   * (i.e.: The method is accurate for the EVEN_ODD winding rule)
 | 
						|
   * @param r the rectangle
 | 
						|
   * @return <code>true</code> if the rectangle is completely contained
 | 
						|
   * within the path, <code>false</code> otherwise
 | 
						|
   */
 | 
						|
  public boolean contains(Rectangle2D r)
 | 
						|
  {
 | 
						|
    return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Evaluates if a rectangle intersects the path.
 | 
						|
   * @param x x coordinate of the rectangle
 | 
						|
   * @param y y coordinate of the rectangle
 | 
						|
   * @param w width of the rectangle
 | 
						|
   * @param h height of the rectangle
 | 
						|
   * @return <code>true</code> if the rectangle intersects the path,
 | 
						|
   * <code>false</code> otherwise
 | 
						|
   */
 | 
						|
  public boolean intersects(double x, double y, double w, double h)
 | 
						|
  {
 | 
						|
    /* Does any edge intersect? */
 | 
						|
    if (getAxisIntersections(x, y, false, w) != 0 /* top */
 | 
						|
        || getAxisIntersections(x, y + h, false, w) != 0 /* bottom */
 | 
						|
        || getAxisIntersections(x + w, y, true, h) != 0 /* right */
 | 
						|
        || getAxisIntersections(x, y, true, h) != 0) /* left */
 | 
						|
      return true;
 | 
						|
 | 
						|
    /* No intersections, is any point inside? */
 | 
						|
    if (getWindingNumber(x, y) != 0)
 | 
						|
      return true;
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Evaluates if a Rectangle2D intersects the path.
 | 
						|
   * @param r The rectangle
 | 
						|
   * @return <code>true</code> if the rectangle intersects the path,
 | 
						|
   * <code>false</code> otherwise
 | 
						|
   */
 | 
						|
  public boolean intersects(Rectangle2D r)
 | 
						|
  {
 | 
						|
    return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * A PathIterator that iterates over the segments of a GeneralPath.
 | 
						|
   *
 | 
						|
   * @author Sascha Brawer (brawer@dandelis.ch)
 | 
						|
   */
 | 
						|
  private static class GeneralPathIterator implements PathIterator
 | 
						|
  {
 | 
						|
    /**
 | 
						|
     * The number of coordinate values for each segment type.
 | 
						|
     */
 | 
						|
    private static final int[] NUM_COORDS = {
 | 
						|
                                            /* 0: SEG_MOVETO */ 1,
 | 
						|
                                            /* 1: SEG_LINETO */ 1,
 | 
						|
                                            /* 2: SEG_QUADTO */ 2,
 | 
						|
                                            /* 3: SEG_CUBICTO */ 3,
 | 
						|
                                            /* 4: SEG_CLOSE */ 0};
 | 
						|
 | 
						|
    /**
 | 
						|
     * The GeneralPath whose segments are being iterated.
 | 
						|
     * This is package-private to avoid an accessor method.
 | 
						|
     */
 | 
						|
    final GeneralPath path;
 | 
						|
 | 
						|
    /**
 | 
						|
     * The affine transformation used to transform coordinates.
 | 
						|
     */
 | 
						|
    private final AffineTransform transform;
 | 
						|
 | 
						|
    /**
 | 
						|
     * The current position of the iterator.
 | 
						|
     */
 | 
						|
    private int pos;
 | 
						|
 | 
						|
    /**
 | 
						|
     * Constructs a new iterator for enumerating the segments of a
 | 
						|
     * GeneralPath.
 | 
						|
     *
 | 
						|
     * @param path the path to enumerate
 | 
						|
     * @param transform an affine transformation for projecting the returned
 | 
						|
     * points, or <code>null</code> to return the original points
 | 
						|
     * without any mapping.
 | 
						|
     */
 | 
						|
    GeneralPathIterator(GeneralPath path, AffineTransform transform)
 | 
						|
    {
 | 
						|
      this.path = path;
 | 
						|
      this.transform = transform;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Returns the current winding rule of the GeneralPath.
 | 
						|
     */
 | 
						|
    public int getWindingRule()
 | 
						|
    {
 | 
						|
      return path.rule;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Determines whether the iterator has reached the last segment in
 | 
						|
     * the path.
 | 
						|
     */
 | 
						|
    public boolean isDone()
 | 
						|
    {
 | 
						|
      return pos >= path.index;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Advances the iterator position by one segment.
 | 
						|
     */
 | 
						|
    public void next()
 | 
						|
    {
 | 
						|
      int seg;
 | 
						|
 | 
						|
      /*
 | 
						|
       * Increment pos by the number of coordinate pairs.
 | 
						|
       */
 | 
						|
      seg = path.types[pos];
 | 
						|
      if (seg == SEG_CLOSE)
 | 
						|
        pos++;
 | 
						|
      else
 | 
						|
        pos += NUM_COORDS[seg];
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Returns the current segment in float coordinates.
 | 
						|
     */
 | 
						|
    public int currentSegment(float[] coords)
 | 
						|
    {
 | 
						|
      int seg;
 | 
						|
      int numCoords;
 | 
						|
 | 
						|
      seg = path.types[pos];
 | 
						|
      numCoords = NUM_COORDS[seg];
 | 
						|
      if (numCoords > 0)
 | 
						|
        {
 | 
						|
          for (int i = 0; i < numCoords; i++)
 | 
						|
            {
 | 
						|
              coords[i << 1] = path.xpoints[pos + i];
 | 
						|
              coords[(i << 1) + 1] = path.ypoints[pos + i];
 | 
						|
            }
 | 
						|
 | 
						|
          if (transform != null)
 | 
						|
            transform.transform( /* src */
 | 
						|
            coords, /* srcOffset */
 | 
						|
            0, /* dest */ coords, /* destOffset */
 | 
						|
            0, /* numPoints */ numCoords);
 | 
						|
        }
 | 
						|
      return seg;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Returns the current segment in double coordinates.
 | 
						|
     */
 | 
						|
    public int currentSegment(double[] coords)
 | 
						|
    {
 | 
						|
      int seg;
 | 
						|
      int numCoords;
 | 
						|
 | 
						|
      seg = path.types[pos];
 | 
						|
      numCoords = NUM_COORDS[seg];
 | 
						|
      if (numCoords > 0)
 | 
						|
        {
 | 
						|
          for (int i = 0; i < numCoords; i++)
 | 
						|
            {
 | 
						|
              coords[i << 1] = (double) path.xpoints[pos + i];
 | 
						|
              coords[(i << 1) + 1] = (double) path.ypoints[pos + i];
 | 
						|
            }
 | 
						|
          if (transform != null)
 | 
						|
            transform.transform( /* src */
 | 
						|
            coords, /* srcOffset */
 | 
						|
            0, /* dest */ coords, /* destOffset */
 | 
						|
            0, /* numPoints */ numCoords);
 | 
						|
        }
 | 
						|
      return seg;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Creates a PathIterator for iterating along the segments of the path.
 | 
						|
   *
 | 
						|
   * @param at an affine transformation for projecting the returned
 | 
						|
   * points, or <code>null</code> to let the created iterator return
 | 
						|
   * the original points without any mapping.
 | 
						|
   */
 | 
						|
  public PathIterator getPathIterator(AffineTransform at)
 | 
						|
  {
 | 
						|
    return new GeneralPathIterator(this, at);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Creates a new FlatteningPathIterator for the path
 | 
						|
   */
 | 
						|
  public PathIterator getPathIterator(AffineTransform at, double flatness)
 | 
						|
  {
 | 
						|
    return new FlatteningPathIterator(getPathIterator(at), flatness);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Creates a new shape of the same run-time type with the same contents
 | 
						|
   * as this one.
 | 
						|
   *
 | 
						|
   * @return the clone
 | 
						|
   *
 | 
						|
   * @exception OutOfMemoryError If there is not enough memory available.
 | 
						|
   *
 | 
						|
   * @since 1.2
 | 
						|
   */
 | 
						|
  public Object clone()
 | 
						|
  {
 | 
						|
    // This class is final; no need to use super.clone().
 | 
						|
    return new GeneralPath(this);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Helper method - ensure the size of the data arrays,
 | 
						|
   * otherwise, reallocate new ones twice the size
 | 
						|
   *
 | 
						|
   * @param size  the minimum array size.
 | 
						|
   */
 | 
						|
  private void ensureSize(int size)
 | 
						|
  {
 | 
						|
    if (subpath < 0)
 | 
						|
      throw new IllegalPathStateException("need initial moveto");
 | 
						|
    if (size <= xpoints.length)
 | 
						|
      return;
 | 
						|
    byte[] b = new byte[types.length << 1];
 | 
						|
    System.arraycopy(types, 0, b, 0, index);
 | 
						|
    types = b;
 | 
						|
    float[] f = new float[xpoints.length << 1];
 | 
						|
    System.arraycopy(xpoints, 0, f, 0, index);
 | 
						|
    xpoints = f;
 | 
						|
    f = new float[ypoints.length << 1];
 | 
						|
    System.arraycopy(ypoints, 0, f, 0, index);
 | 
						|
    ypoints = f;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Helper method - Get the total number of intersections from (x,y) along
 | 
						|
   * a given axis, within a given distance.
 | 
						|
   */
 | 
						|
  private int getAxisIntersections(double x, double y, boolean useYaxis,
 | 
						|
                                   double distance)
 | 
						|
  {
 | 
						|
    return (evaluateCrossings(x, y, false, useYaxis, distance));
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Helper method - returns the winding number of a point.
 | 
						|
   */
 | 
						|
  private int getWindingNumber(double x, double y)
 | 
						|
  {
 | 
						|
    /* Evaluate the crossings from x,y to infinity on the y axis (arbitrary
 | 
						|
       choice). Note that we don't actually use Double.INFINITY, since that's
 | 
						|
       slower, and may cause problems. */
 | 
						|
    return (evaluateCrossings(x, y, true, true, BIG_VALUE));
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Helper method - evaluates the number of intersections on an axis from
 | 
						|
   * the point (x,y) to the point (x,y+distance) or (x+distance,y).
 | 
						|
   * @param x x coordinate.
 | 
						|
   * @param y y coordinate.
 | 
						|
   * @param neg True if opposite-directed intersections should cancel,
 | 
						|
   * false to sum all intersections.
 | 
						|
   * @param useYaxis Use the Y axis, false uses the X axis.
 | 
						|
   * @param distance Interval from (x,y) on the selected axis to find
 | 
						|
   * intersections.
 | 
						|
   */
 | 
						|
  private int evaluateCrossings(double x, double y, boolean neg,
 | 
						|
                                boolean useYaxis, double distance)
 | 
						|
  {
 | 
						|
    float cx = 0.0f;
 | 
						|
    float cy = 0.0f;
 | 
						|
    float firstx = 0.0f;
 | 
						|
    float firsty = 0.0f;
 | 
						|
 | 
						|
    int negative = (neg) ? -1 : 1;
 | 
						|
    double x0;
 | 
						|
    double x1;
 | 
						|
    double x2;
 | 
						|
    double x3;
 | 
						|
    double y0;
 | 
						|
    double y1;
 | 
						|
    double y2;
 | 
						|
    double y3;
 | 
						|
    double[] r = new double[4];
 | 
						|
    int nRoots;
 | 
						|
    double epsilon = 0.0;
 | 
						|
    int pos = 0;
 | 
						|
    int windingNumber = 0;
 | 
						|
    boolean pathStarted = false;
 | 
						|
 | 
						|
    if (index == 0)
 | 
						|
      return (0);
 | 
						|
    if (useYaxis)
 | 
						|
      {
 | 
						|
        float[] swap1;
 | 
						|
        swap1 = ypoints;
 | 
						|
        ypoints = xpoints;
 | 
						|
        xpoints = swap1;
 | 
						|
        double swap2;
 | 
						|
        swap2 = y;
 | 
						|
        y = x;
 | 
						|
        x = swap2;
 | 
						|
      }
 | 
						|
 | 
						|
    /* Get a value which is hopefully small but not insignificant relative
 | 
						|
     the path. */
 | 
						|
    epsilon = ypoints[0] * 1E-7;
 | 
						|
 | 
						|
    if(epsilon == 0)
 | 
						|
      epsilon = 1E-7;
 | 
						|
 | 
						|
    pos = 0;
 | 
						|
    while (pos < index)
 | 
						|
      {
 | 
						|
        switch (types[pos])
 | 
						|
          {
 | 
						|
          case PathIterator.SEG_MOVETO:
 | 
						|
            if (pathStarted) // close old path
 | 
						|
              {
 | 
						|
                x0 = cx;
 | 
						|
                y0 = cy;
 | 
						|
                x1 = firstx;
 | 
						|
                y1 = firsty;
 | 
						|
 | 
						|
                if (y0 == 0.0)
 | 
						|
                  y0 -= epsilon;
 | 
						|
                if (y1 == 0.0)
 | 
						|
                  y1 -= epsilon;
 | 
						|
                if (Line2D.linesIntersect(x0, y0, x1, y1,
 | 
						|
                                          epsilon, 0.0, distance, 0.0))
 | 
						|
                  windingNumber += (y1 < y0) ? 1 : negative;
 | 
						|
 | 
						|
                cx = firstx;
 | 
						|
                cy = firsty;
 | 
						|
              }
 | 
						|
            cx = firstx = xpoints[pos] - (float) x;
 | 
						|
            cy = firsty = ypoints[pos++] - (float) y;
 | 
						|
            pathStarted = true;
 | 
						|
            break;
 | 
						|
          case PathIterator.SEG_CLOSE:
 | 
						|
            x0 = cx;
 | 
						|
            y0 = cy;
 | 
						|
            x1 = firstx;
 | 
						|
            y1 = firsty;
 | 
						|
 | 
						|
            if (y0 == 0.0)
 | 
						|
              y0 -= epsilon;
 | 
						|
            if (y1 == 0.0)
 | 
						|
              y1 -= epsilon;
 | 
						|
            if (Line2D.linesIntersect(x0, y0, x1, y1,
 | 
						|
                                      epsilon, 0.0, distance, 0.0))
 | 
						|
              windingNumber += (y1 < y0) ? 1 : negative;
 | 
						|
 | 
						|
            cx = firstx;
 | 
						|
            cy = firsty;
 | 
						|
            pos++;
 | 
						|
            pathStarted = false;
 | 
						|
            break;
 | 
						|
          case PathIterator.SEG_LINETO:
 | 
						|
            x0 = cx;
 | 
						|
            y0 = cy;
 | 
						|
            x1 = xpoints[pos] - (float) x;
 | 
						|
            y1 = ypoints[pos++] - (float) y;
 | 
						|
 | 
						|
            if (y0 == 0.0)
 | 
						|
              y0 -= epsilon;
 | 
						|
            if (y1 == 0.0)
 | 
						|
              y1 -= epsilon;
 | 
						|
            if (Line2D.linesIntersect(x0, y0, x1, y1,
 | 
						|
                                      epsilon, 0.0, distance, 0.0))
 | 
						|
              windingNumber += (y1 < y0) ? 1 : negative;
 | 
						|
 | 
						|
            cx = xpoints[pos - 1] - (float) x;
 | 
						|
            cy = ypoints[pos - 1] - (float) y;
 | 
						|
            break;
 | 
						|
          case PathIterator.SEG_QUADTO:
 | 
						|
            x0 = cx;
 | 
						|
            y0 = cy;
 | 
						|
            x1 = xpoints[pos] - x;
 | 
						|
            y1 = ypoints[pos++] - y;
 | 
						|
            x2 = xpoints[pos] - x;
 | 
						|
            y2 = ypoints[pos++] - y;
 | 
						|
 | 
						|
            /* check if curve may intersect X+ axis. */
 | 
						|
            if ((x0 > 0.0 || x1 > 0.0 || x2 > 0.0)
 | 
						|
                && (y0 * y1 <= 0 || y1 * y2 <= 0))
 | 
						|
              {
 | 
						|
                if (y0 == 0.0)
 | 
						|
                  y0 -= epsilon;
 | 
						|
                if (y2 == 0.0)
 | 
						|
                  y2 -= epsilon;
 | 
						|
 | 
						|
                r[0] = y0;
 | 
						|
                r[1] = 2 * (y1 - y0);
 | 
						|
                r[2] = (y2 - 2 * y1 + y0);
 | 
						|
 | 
						|
                /* degenerate roots (=tangent points) do not
 | 
						|
                   contribute to the winding number. */
 | 
						|
                if ((nRoots = QuadCurve2D.solveQuadratic(r)) == 2)
 | 
						|
                  for (int i = 0; i < nRoots; i++)
 | 
						|
                    {
 | 
						|
                      float t = (float) r[i];
 | 
						|
                      if (t > 0.0f && t < 1.0f)
 | 
						|
                        {
 | 
						|
                          double crossing = t * t * (x2 - 2 * x1 + x0)
 | 
						|
                                            + 2 * t * (x1 - x0) + x0;
 | 
						|
                          if (crossing >= 0.0 && crossing <= distance)
 | 
						|
                            windingNumber += (2 * t * (y2 - 2 * y1 + y0)
 | 
						|
                                           + 2 * (y1 - y0) < 0) ? 1 : negative;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
              }
 | 
						|
 | 
						|
            cx = xpoints[pos - 1] - (float) x;
 | 
						|
            cy = ypoints[pos - 1] - (float) y;
 | 
						|
            break;
 | 
						|
          case PathIterator.SEG_CUBICTO:
 | 
						|
            x0 = cx;
 | 
						|
            y0 = cy;
 | 
						|
            x1 = xpoints[pos] - x;
 | 
						|
            y1 = ypoints[pos++] - y;
 | 
						|
            x2 = xpoints[pos] - x;
 | 
						|
            y2 = ypoints[pos++] - y;
 | 
						|
            x3 = xpoints[pos] - x;
 | 
						|
            y3 = ypoints[pos++] - y;
 | 
						|
 | 
						|
            /* check if curve may intersect X+ axis. */
 | 
						|
            if ((x0 > 0.0 || x1 > 0.0 || x2 > 0.0 || x3 > 0.0)
 | 
						|
                && (y0 * y1 <= 0 || y1 * y2 <= 0 || y2 * y3 <= 0))
 | 
						|
              {
 | 
						|
                if (y0 == 0.0)
 | 
						|
                  y0 -= epsilon;
 | 
						|
                if (y3 == 0.0)
 | 
						|
                  y3 -= epsilon;
 | 
						|
 | 
						|
                r[0] = y0;
 | 
						|
                r[1] = 3 * (y1 - y0);
 | 
						|
                r[2] = 3 * (y2 + y0 - 2 * y1);
 | 
						|
                r[3] = y3 - 3 * y2 + 3 * y1 - y0;
 | 
						|
 | 
						|
                if ((nRoots = CubicCurve2D.solveCubic(r)) != 0)
 | 
						|
                  for (int i = 0; i < nRoots; i++)
 | 
						|
                    {
 | 
						|
                      float t = (float) r[i];
 | 
						|
                      if (t > 0.0 && t < 1.0)
 | 
						|
                        {
 | 
						|
                          double crossing = -(t * t * t) * (x0 - 3 * x1
 | 
						|
                                            + 3 * x2 - x3)
 | 
						|
                                            + 3 * t * t * (x0 - 2 * x1 + x2)
 | 
						|
                                            + 3 * t * (x1 - x0) + x0;
 | 
						|
                          if (crossing >= 0 && crossing <= distance)
 | 
						|
                            windingNumber += (3 * t * t * (y3 + 3 * y1
 | 
						|
                                             - 3 * y2 - y0)
 | 
						|
                                             + 6 * t * (y0 - 2 * y1 + y2)
 | 
						|
                                           + 3 * (y1 - y0) < 0) ? 1 : negative;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
              }
 | 
						|
 | 
						|
            cx = xpoints[pos - 1] - (float) x;
 | 
						|
            cy = ypoints[pos - 1] - (float) y;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
      }
 | 
						|
 | 
						|
    // swap coordinates back
 | 
						|
    if (useYaxis)
 | 
						|
      {
 | 
						|
        float[] swap;
 | 
						|
        swap = ypoints;
 | 
						|
        ypoints = xpoints;
 | 
						|
        xpoints = swap;
 | 
						|
      }
 | 
						|
    return (windingNumber);
 | 
						|
  }
 | 
						|
} // class GeneralPath
 |