rust: add dynamic ID pool abstraction for bitmap

This is a port of the Binder data structure introduced in commit
15d9da3f81 ("binder: use bitmap for faster descriptor lookup") to
Rust.

Like drivers/android/dbitmap.h, the ID pool abstraction lets
clients acquire and release IDs. The implementation uses a bitmap to
know what IDs are in use, and gives clients fine-grained control over
the time of allocation. This fine-grained control is needed in the
Android Binder. We provide an example that release a spinlock for
allocation and unit tests (rustdoc examples).

The implementation does not permit shrinking below capacity below
BITS_PER_LONG.

Suggested-by: Alice Ryhl <aliceryhl@google.com>
Suggested-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Signed-off-by: Burak Emir <bqe@google.com>
Signed-off-by: Yury Norov (NVIDIA) <yury.norov@gmail.com>
This commit is contained in:
Burak Emir 2025-09-08 07:21:55 +00:00 committed by Yury Norov (NVIDIA)
parent 38cc91db2e
commit 2cdae413cd
3 changed files with 228 additions and 0 deletions

View File

@ -4309,6 +4309,7 @@ R: Yury Norov <yury.norov@gmail.com>
S: Maintained
F: lib/find_bit_benchmark_rust.rs
F: rust/kernel/bitmap.rs
F: rust/kernel/id_pool.rs
BITOPS API
M: Yury Norov <yury.norov@gmail.com>

226
rust/kernel/id_pool.rs Normal file
View File

@ -0,0 +1,226 @@
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2025 Google LLC.
//! Rust API for an ID pool backed by a [`BitmapVec`].
use crate::alloc::{AllocError, Flags};
use crate::bitmap::BitmapVec;
const BITS_PER_LONG: usize = bindings::BITS_PER_LONG as usize;
/// Represents a dynamic ID pool backed by a [`BitmapVec`].
///
/// Clients acquire and release IDs from unset bits in a bitmap.
///
/// The capacity of the ID pool may be adjusted by users as
/// needed. The API supports the scenario where users need precise control
/// over the time of allocation of a new backing bitmap, which may require
/// release of spinlock.
/// Due to concurrent updates, all operations are re-verified to determine
/// if the grow or shrink is sill valid.
///
/// # Examples
///
/// Basic usage
///
/// ```
/// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
/// use kernel::id_pool::IdPool;
///
/// let mut pool = IdPool::new(64, GFP_KERNEL)?;
/// for i in 0..64 {
/// assert_eq!(i, pool.acquire_next_id(i).ok_or(ENOSPC)?);
/// }
///
/// pool.release_id(23);
/// assert_eq!(23, pool.acquire_next_id(0).ok_or(ENOSPC)?);
///
/// assert_eq!(None, pool.acquire_next_id(0)); // time to realloc.
/// let resizer = pool.grow_request().ok_or(ENOSPC)?.realloc(GFP_KERNEL)?;
/// pool.grow(resizer);
///
/// assert_eq!(pool.acquire_next_id(0), Some(64));
/// # Ok::<(), Error>(())
/// ```
///
/// Releasing spinlock to grow the pool
///
/// ```no_run
/// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
/// use kernel::sync::{new_spinlock, SpinLock};
/// use kernel::id_pool::IdPool;
///
/// fn get_id_maybe_realloc(guarded_pool: &SpinLock<IdPool>) -> Result<usize, AllocError> {
/// let mut pool = guarded_pool.lock();
/// loop {
/// match pool.acquire_next_id(0) {
/// Some(index) => return Ok(index),
/// None => {
/// let alloc_request = pool.grow_request();
/// drop(pool);
/// let resizer = alloc_request.ok_or(AllocError)?.realloc(GFP_KERNEL)?;
/// pool = guarded_pool.lock();
/// pool.grow(resizer)
/// }
/// }
/// }
/// }
/// ```
pub struct IdPool {
map: BitmapVec,
}
/// Indicates that an [`IdPool`] should change to a new target size.
pub struct ReallocRequest {
num_ids: usize,
}
/// Contains a [`BitmapVec`] of a size suitable for reallocating [`IdPool`].
pub struct PoolResizer {
new: BitmapVec,
}
impl ReallocRequest {
/// Allocates a new backing [`BitmapVec`] for [`IdPool`].
///
/// This method only prepares reallocation and does not complete it.
/// Reallocation will complete after passing the [`PoolResizer`] to the
/// [`IdPool::grow`] or [`IdPool::shrink`] operation, which will check
/// that reallocation still makes sense.
pub fn realloc(&self, flags: Flags) -> Result<PoolResizer, AllocError> {
let new = BitmapVec::new(self.num_ids, flags)?;
Ok(PoolResizer { new })
}
}
impl IdPool {
/// Constructs a new [`IdPool`].
///
/// A capacity below [`BITS_PER_LONG`] is adjusted to
/// [`BITS_PER_LONG`].
///
/// [`BITS_PER_LONG`]: srctree/include/asm-generic/bitsperlong.h
#[inline]
pub fn new(num_ids: usize, flags: Flags) -> Result<Self, AllocError> {
let num_ids = core::cmp::max(num_ids, BITS_PER_LONG);
let map = BitmapVec::new(num_ids, flags)?;
Ok(Self { map })
}
/// Returns how many IDs this pool can currently have.
#[inline]
pub fn capacity(&self) -> usize {
self.map.len()
}
/// Returns a [`ReallocRequest`] if the [`IdPool`] can be shrunk, [`None`] otherwise.
///
/// The capacity of an [`IdPool`] cannot be shrunk below [`BITS_PER_LONG`].
///
/// [`BITS_PER_LONG`]: srctree/include/asm-generic/bitsperlong.h
///
/// # Examples
///
/// ```
/// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
/// use kernel::id_pool::{ReallocRequest, IdPool};
///
/// let mut pool = IdPool::new(1024, GFP_KERNEL)?;
/// let alloc_request = pool.shrink_request().ok_or(AllocError)?;
/// let resizer = alloc_request.realloc(GFP_KERNEL)?;
/// pool.shrink(resizer);
/// assert_eq!(pool.capacity(), kernel::bindings::BITS_PER_LONG as usize);
/// # Ok::<(), AllocError>(())
/// ```
#[inline]
pub fn shrink_request(&self) -> Option<ReallocRequest> {
let cap = self.capacity();
// Shrinking below [`BITS_PER_LONG`] is never possible.
if cap <= BITS_PER_LONG {
return None;
}
// Determine if the bitmap can shrink based on the position of
// its last set bit. If the bit is within the first quarter of
// the bitmap then shrinking is possible. In this case, the
// bitmap should shrink to half its current size.
let Some(bit) = self.map.last_bit() else {
return Some(ReallocRequest {
num_ids: BITS_PER_LONG,
});
};
if bit >= (cap / 4) {
return None;
}
let num_ids = usize::max(BITS_PER_LONG, cap / 2);
Some(ReallocRequest { num_ids })
}
/// Shrinks pool by using a new [`BitmapVec`], if still possible.
#[inline]
pub fn shrink(&mut self, mut resizer: PoolResizer) {
// Between request to shrink that led to allocation of `resizer` and now,
// bits may have changed.
// Verify that shrinking is still possible. In case shrinking to
// the size of `resizer` is no longer possible, do nothing,
// drop `resizer` and move on.
let Some(updated) = self.shrink_request() else {
return;
};
if updated.num_ids > resizer.new.len() {
return;
}
resizer.new.copy_and_extend(&self.map);
self.map = resizer.new;
}
/// Returns a [`ReallocRequest`] for growing this [`IdPool`], if possible.
///
/// The capacity of an [`IdPool`] cannot be grown above [`i32::MAX`].
#[inline]
pub fn grow_request(&self) -> Option<ReallocRequest> {
let num_ids = self.capacity() * 2;
if num_ids > i32::MAX.try_into().unwrap() {
return None;
}
Some(ReallocRequest { num_ids })
}
/// Grows pool by using a new [`BitmapVec`], if still necessary.
///
/// The `resizer` arguments has to be obtained by calling [`Self::grow_request`]
/// on this object and performing a [`ReallocRequest::realloc`].
#[inline]
pub fn grow(&mut self, mut resizer: PoolResizer) {
// Between request to grow that led to allocation of `resizer` and now,
// another thread may have already grown the capacity.
// In this case, do nothing, drop `resizer` and move on.
if resizer.new.len() <= self.capacity() {
return;
}
resizer.new.copy_and_extend(&self.map);
self.map = resizer.new;
}
/// Acquires a new ID by finding and setting the next zero bit in the
/// bitmap.
///
/// Upon success, returns its index. Otherwise, returns [`None`]
/// to indicate that a [`Self::grow_request`] is needed.
#[inline]
pub fn acquire_next_id(&mut self, offset: usize) -> Option<usize> {
let next_zero_bit = self.map.next_zero_bit(offset);
if let Some(nr) = next_zero_bit {
self.map.set_bit(nr);
}
next_zero_bit
}
/// Releases an ID.
#[inline]
pub fn release_id(&mut self, id: usize) {
self.map.clear_bit(id);
}
}

View File

@ -90,6 +90,7 @@ pub mod faux;
pub mod firmware;
pub mod fmt;
pub mod fs;
pub mod id_pool;
pub mod init;
pub mod io;
pub mod ioctl;