slab: Introduce kmalloc_nolock() and kfree_nolock().

kmalloc_nolock() relies on ability of local_trylock_t to detect
the situation when per-cpu kmem_cache is locked.

In !PREEMPT_RT local_(try)lock_irqsave(&s->cpu_slab->lock, flags)
disables IRQs and marks s->cpu_slab->lock as acquired.
local_lock_is_locked(&s->cpu_slab->lock) returns true when
slab is in the middle of manipulating per-cpu cache
of that specific kmem_cache.

kmalloc_nolock() can be called from any context and can re-enter
into ___slab_alloc():
  kmalloc() -> ___slab_alloc(cache_A) -> irqsave -> NMI -> bpf ->
    kmalloc_nolock() -> ___slab_alloc(cache_B)
or
  kmalloc() -> ___slab_alloc(cache_A) -> irqsave -> tracepoint/kprobe -> bpf ->
    kmalloc_nolock() -> ___slab_alloc(cache_B)

Hence the caller of ___slab_alloc() checks if &s->cpu_slab->lock
can be acquired without a deadlock before invoking the function.
If that specific per-cpu kmem_cache is busy the kmalloc_nolock()
retries in a different kmalloc bucket. The second attempt will
likely succeed, since this cpu locked different kmem_cache.

Similarly, in PREEMPT_RT local_lock_is_locked() returns true when
per-cpu rt_spin_lock is locked by current _task_. In this case
re-entrance into the same kmalloc bucket is unsafe, and
kmalloc_nolock() tries a different bucket that is most likely is
not locked by the current task. Though it may be locked by a
different task it's safe to rt_spin_lock() and sleep on it.

Similar to alloc_pages_nolock() the kmalloc_nolock() returns NULL
immediately if called from hard irq or NMI in PREEMPT_RT.

kfree_nolock() defers freeing to irq_work when local_lock_is_locked()
and (in_nmi() or in PREEMPT_RT).

SLUB_TINY config doesn't use local_lock_is_locked() and relies on
spin_trylock_irqsave(&n->list_lock) to allocate,
while kfree_nolock() always defers to irq_work.

Note, kfree_nolock() must be called _only_ for objects allocated
with kmalloc_nolock(). Debug checks (like kmemleak and kfence)
were skipped on allocation, hence obj = kmalloc(); kfree_nolock(obj);
will miss kmemleak/kfence book keeping and will cause false positives.
large_kmalloc is not supported by either kmalloc_nolock()
or kfree_nolock().

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Harry Yoo <harry.yoo@oracle.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
This commit is contained in:
Alexei Starovoitov 2025-09-08 18:00:07 -07:00 committed by Vlastimil Babka
parent 7612833192
commit af92793e52
8 changed files with 483 additions and 55 deletions

View File

@ -200,7 +200,7 @@ static __always_inline bool kasan_slab_pre_free(struct kmem_cache *s,
}
bool __kasan_slab_free(struct kmem_cache *s, void *object, bool init,
bool still_accessible);
bool still_accessible, bool no_quarantine);
/**
* kasan_slab_free - Poison, initialize, and quarantine a slab object.
* @object: Object to be freed.
@ -226,11 +226,13 @@ bool __kasan_slab_free(struct kmem_cache *s, void *object, bool init,
* @Return true if KASAN took ownership of the object; false otherwise.
*/
static __always_inline bool kasan_slab_free(struct kmem_cache *s,
void *object, bool init,
bool still_accessible)
void *object, bool init,
bool still_accessible,
bool no_quarantine)
{
if (kasan_enabled())
return __kasan_slab_free(s, object, init, still_accessible);
return __kasan_slab_free(s, object, init, still_accessible,
no_quarantine);
return false;
}
@ -427,7 +429,8 @@ static inline bool kasan_slab_pre_free(struct kmem_cache *s, void *object)
}
static inline bool kasan_slab_free(struct kmem_cache *s, void *object,
bool init, bool still_accessible)
bool init, bool still_accessible,
bool no_quarantine)
{
return false;
}

View File

@ -358,6 +358,8 @@ enum objext_flags {
* MEMCG_DATA_OBJEXTS.
*/
OBJEXTS_ALLOC_FAIL = __OBJEXTS_ALLOC_FAIL,
/* slabobj_ext vector allocated with kmalloc_nolock() */
OBJEXTS_NOSPIN_ALLOC = __FIRST_OBJEXT_FLAG,
/* the next bit after the last actual flag */
__NR_OBJEXTS_FLAGS = (__FIRST_OBJEXT_FLAG << 1),
};

View File

@ -501,6 +501,7 @@ void * __must_check krealloc_noprof(const void *objp, size_t new_size,
#define krealloc(...) alloc_hooks(krealloc_noprof(__VA_ARGS__))
void kfree(const void *objp);
void kfree_nolock(const void *objp);
void kfree_sensitive(const void *objp);
size_t __ksize(const void *objp);
@ -957,6 +958,9 @@ static __always_inline __alloc_size(1) void *kmalloc_noprof(size_t size, gfp_t f
}
#define kmalloc(...) alloc_hooks(kmalloc_noprof(__VA_ARGS__))
void *kmalloc_nolock_noprof(size_t size, gfp_t gfp_flags, int node);
#define kmalloc_nolock(...) alloc_hooks(kmalloc_nolock_noprof(__VA_ARGS__))
#define kmem_buckets_alloc(_b, _size, _flags) \
alloc_hooks(__kmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))

View File

@ -194,6 +194,7 @@ menu "Slab allocator options"
config SLUB
def_bool y
select IRQ_WORK
config KVFREE_RCU_BATCHED
def_bool y

View File

@ -252,7 +252,7 @@ bool __kasan_slab_pre_free(struct kmem_cache *cache, void *object,
}
bool __kasan_slab_free(struct kmem_cache *cache, void *object, bool init,
bool still_accessible)
bool still_accessible, bool no_quarantine)
{
if (!kasan_arch_is_ready() || is_kfence_address(object))
return false;
@ -274,6 +274,9 @@ bool __kasan_slab_free(struct kmem_cache *cache, void *object, bool init,
poison_slab_object(cache, object, init);
if (no_quarantine)
return false;
/*
* If the object is put into quarantine, do not let slab put the object
* onto the freelist for now. The object's metadata is kept until the

View File

@ -57,6 +57,10 @@ struct slab {
struct {
union {
struct list_head slab_list;
struct { /* For deferred deactivate_slab() */
struct llist_node llnode;
void *flush_freelist;
};
#ifdef CONFIG_SLUB_CPU_PARTIAL
struct {
struct slab *next;
@ -662,6 +666,8 @@ void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
void __check_heap_object(const void *ptr, unsigned long n,
const struct slab *slab, bool to_user);
void defer_free_barrier(void);
static inline bool slub_debug_orig_size(struct kmem_cache *s)
{
return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&

View File

@ -510,6 +510,9 @@ void kmem_cache_destroy(struct kmem_cache *s)
rcu_barrier();
}
/* Wait for deferred work from kmalloc/kfree_nolock() */
defer_free_barrier();
cpus_read_lock();
mutex_lock(&slab_mutex);

504
mm/slub.c
View File

@ -44,7 +44,8 @@
#include <kunit/test.h>
#include <kunit/test-bug.h>
#include <linux/sort.h>
#include <linux/irq_work.h>
#include <linux/kprobes.h>
#include <linux/debugfs.h>
#include <trace/events/kmem.h>
@ -426,7 +427,7 @@ struct kmem_cache_cpu {
#ifdef CONFIG_SLUB_CPU_PARTIAL
struct slab *partial; /* Partially allocated slabs */
#endif
local_lock_t lock; /* Protects the fields above */
local_trylock_t lock; /* Protects the fields above */
#ifdef CONFIG_SLUB_STATS
unsigned int stat[NR_SLUB_STAT_ITEMS];
#endif
@ -2079,6 +2080,7 @@ static inline void init_slab_obj_exts(struct slab *slab)
int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
gfp_t gfp, bool new_slab)
{
bool allow_spin = gfpflags_allow_spinning(gfp);
unsigned int objects = objs_per_slab(s, slab);
unsigned long new_exts;
unsigned long old_exts;
@ -2087,8 +2089,22 @@ int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
gfp &= ~OBJCGS_CLEAR_MASK;
/* Prevent recursive extension vector allocation */
gfp |= __GFP_NO_OBJ_EXT;
vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
slab_nid(slab));
/*
* Note that allow_spin may be false during early boot and its
* restricted GFP_BOOT_MASK. Due to kmalloc_nolock() only supporting
* architectures with cmpxchg16b, early obj_exts will be missing for
* very early allocations on those.
*/
if (unlikely(!allow_spin)) {
size_t sz = objects * sizeof(struct slabobj_ext);
vec = kmalloc_nolock(sz, __GFP_ZERO | __GFP_NO_OBJ_EXT,
slab_nid(slab));
} else {
vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
slab_nid(slab));
}
if (!vec) {
/* Mark vectors which failed to allocate */
if (new_slab)
@ -2098,6 +2114,8 @@ int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
}
new_exts = (unsigned long)vec;
if (unlikely(!allow_spin))
new_exts |= OBJEXTS_NOSPIN_ALLOC;
#ifdef CONFIG_MEMCG
new_exts |= MEMCG_DATA_OBJEXTS;
#endif
@ -2118,7 +2136,10 @@ int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
* objcg vector should be reused.
*/
mark_objexts_empty(vec);
kfree(vec);
if (unlikely(!allow_spin))
kfree_nolock(vec);
else
kfree(vec);
return 0;
}
@ -2142,7 +2163,10 @@ static inline void free_slab_obj_exts(struct slab *slab)
* the extension for obj_exts is expected to be NULL.
*/
mark_objexts_empty(obj_exts);
kfree(obj_exts);
if (unlikely(READ_ONCE(slab->obj_exts) & OBJEXTS_NOSPIN_ALLOC))
kfree_nolock(obj_exts);
else
kfree(obj_exts);
slab->obj_exts = 0;
}
@ -2476,7 +2500,7 @@ bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
}
/* KASAN might put x into memory quarantine, delaying its reuse. */
return !kasan_slab_free(s, x, init, still_accessible);
return !kasan_slab_free(s, x, init, still_accessible, false);
}
static __fastpath_inline
@ -2981,13 +3005,17 @@ static void barn_shrink(struct kmem_cache *s, struct node_barn *barn)
* Slab allocation and freeing
*/
static inline struct slab *alloc_slab_page(gfp_t flags, int node,
struct kmem_cache_order_objects oo)
struct kmem_cache_order_objects oo,
bool allow_spin)
{
struct folio *folio;
struct slab *slab;
unsigned int order = oo_order(oo);
if (node == NUMA_NO_NODE)
if (unlikely(!allow_spin))
folio = (struct folio *)alloc_frozen_pages_nolock(0/* __GFP_COMP is implied */,
node, order);
else if (node == NUMA_NO_NODE)
folio = (struct folio *)alloc_frozen_pages(flags, order);
else
folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL);
@ -3137,6 +3165,7 @@ static __always_inline void unaccount_slab(struct slab *slab, int order,
static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
bool allow_spin = gfpflags_allow_spinning(flags);
struct slab *slab;
struct kmem_cache_order_objects oo = s->oo;
gfp_t alloc_gfp;
@ -3156,7 +3185,11 @@ static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
slab = alloc_slab_page(alloc_gfp, node, oo);
/*
* __GFP_RECLAIM could be cleared on the first allocation attempt,
* so pass allow_spin flag directly.
*/
slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
if (unlikely(!slab)) {
oo = s->min;
alloc_gfp = flags;
@ -3164,7 +3197,7 @@ static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
* Allocation may have failed due to fragmentation.
* Try a lower order alloc if possible
*/
slab = alloc_slab_page(alloc_gfp, node, oo);
slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
if (unlikely(!slab))
return NULL;
stat(s, ORDER_FALLBACK);
@ -3333,33 +3366,47 @@ static void *alloc_single_from_partial(struct kmem_cache *s,
return object;
}
static void defer_deactivate_slab(struct slab *slab, void *flush_freelist);
/*
* Called only for kmem_cache_debug() caches to allocate from a freshly
* allocated slab. Allocate a single object instead of whole freelist
* and put the slab to the partial (or full) list.
*/
static void *alloc_single_from_new_slab(struct kmem_cache *s,
struct slab *slab, int orig_size)
static void *alloc_single_from_new_slab(struct kmem_cache *s, struct slab *slab,
int orig_size, gfp_t gfpflags)
{
bool allow_spin = gfpflags_allow_spinning(gfpflags);
int nid = slab_nid(slab);
struct kmem_cache_node *n = get_node(s, nid);
unsigned long flags;
void *object;
if (!allow_spin && !spin_trylock_irqsave(&n->list_lock, flags)) {
/* Unlucky, discard newly allocated slab */
slab->frozen = 1;
defer_deactivate_slab(slab, NULL);
return NULL;
}
object = slab->freelist;
slab->freelist = get_freepointer(s, object);
slab->inuse = 1;
if (!alloc_debug_processing(s, slab, object, orig_size))
if (!alloc_debug_processing(s, slab, object, orig_size)) {
/*
* It's not really expected that this would fail on a
* freshly allocated slab, but a concurrent memory
* corruption in theory could cause that.
* Leak memory of allocated slab.
*/
if (!allow_spin)
spin_unlock_irqrestore(&n->list_lock, flags);
return NULL;
}
spin_lock_irqsave(&n->list_lock, flags);
if (allow_spin)
spin_lock_irqsave(&n->list_lock, flags);
if (slab->inuse == slab->objects)
add_full(s, n, slab);
@ -3400,7 +3447,10 @@ static struct slab *get_partial_node(struct kmem_cache *s,
if (!n || !n->nr_partial)
return NULL;
spin_lock_irqsave(&n->list_lock, flags);
if (gfpflags_allow_spinning(pc->flags))
spin_lock_irqsave(&n->list_lock, flags);
else if (!spin_trylock_irqsave(&n->list_lock, flags))
return NULL;
list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
if (!pfmemalloc_match(slab, pc->flags))
continue;
@ -3606,7 +3656,7 @@ static void init_kmem_cache_cpus(struct kmem_cache *s)
lockdep_register_key(&s->lock_key);
for_each_possible_cpu(cpu) {
c = per_cpu_ptr(s->cpu_slab, cpu);
local_lock_init(&c->lock);
local_trylock_init(&c->lock);
if (finegrain_lockdep)
lockdep_set_class(&c->lock, &s->lock_key);
c->tid = init_tid(cpu);
@ -3699,6 +3749,47 @@ static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
}
}
/*
* ___slab_alloc()'s caller is supposed to check if kmem_cache::kmem_cache_cpu::lock
* can be acquired without a deadlock before invoking the function.
*
* Without LOCKDEP we trust the code to be correct. kmalloc_nolock() is
* using local_lock_is_locked() properly before calling local_lock_cpu_slab(),
* and kmalloc() is not used in an unsupported context.
*
* With LOCKDEP, on PREEMPT_RT lockdep does its checking in local_lock_irqsave().
* On !PREEMPT_RT we use trylock to avoid false positives in NMI, but
* lockdep_assert() will catch a bug in case:
* #1
* kmalloc() -> ___slab_alloc() -> irqsave -> NMI -> bpf -> kmalloc_nolock()
* or
* #2
* kmalloc() -> ___slab_alloc() -> irqsave -> tracepoint/kprobe -> bpf -> kmalloc_nolock()
*
* On PREEMPT_RT an invocation is not possible from IRQ-off or preempt
* disabled context. The lock will always be acquired and if needed it
* block and sleep until the lock is available.
* #1 is possible in !PREEMPT_RT only.
* #2 is possible in both with a twist that irqsave is replaced with rt_spinlock:
* kmalloc() -> ___slab_alloc() -> rt_spin_lock(kmem_cache_A) ->
* tracepoint/kprobe -> bpf -> kmalloc_nolock() -> rt_spin_lock(kmem_cache_B)
*
* local_lock_is_locked() prevents the case kmem_cache_A == kmem_cache_B
*/
#if defined(CONFIG_PREEMPT_RT) || !defined(CONFIG_LOCKDEP)
#define local_lock_cpu_slab(s, flags) \
local_lock_irqsave(&(s)->cpu_slab->lock, flags)
#else
#define local_lock_cpu_slab(s, flags) \
do { \
bool __l = local_trylock_irqsave(&(s)->cpu_slab->lock, flags); \
lockdep_assert(__l); \
} while (0)
#endif
#define local_unlock_cpu_slab(s, flags) \
local_unlock_irqrestore(&(s)->cpu_slab->lock, flags)
#ifdef CONFIG_SLUB_CPU_PARTIAL
static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
{
@ -3783,7 +3874,7 @@ static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
unsigned long flags;
int slabs = 0;
local_lock_irqsave(&s->cpu_slab->lock, flags);
local_lock_cpu_slab(s, flags);
oldslab = this_cpu_read(s->cpu_slab->partial);
@ -3808,7 +3899,7 @@ static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
this_cpu_write(s->cpu_slab->partial, slab);
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
local_unlock_cpu_slab(s, flags);
if (slab_to_put) {
__put_partials(s, slab_to_put);
@ -4323,6 +4414,7 @@ static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
{
bool allow_spin = gfpflags_allow_spinning(gfpflags);
void *freelist;
struct slab *slab;
unsigned long flags;
@ -4348,9 +4440,21 @@ reread_slab:
if (unlikely(!node_match(slab, node))) {
/*
* same as above but node_match() being false already
* implies node != NUMA_NO_NODE
* implies node != NUMA_NO_NODE.
*
* We don't strictly honor pfmemalloc and NUMA preferences
* when !allow_spin because:
*
* 1. Most kmalloc() users allocate objects on the local node,
* so kmalloc_nolock() tries not to interfere with them by
* deactivating the cpu slab.
*
* 2. Deactivating due to NUMA or pfmemalloc mismatch may cause
* unnecessary slab allocations even when n->partial list
* is not empty.
*/
if (!node_isset(node, slab_nodes)) {
if (!node_isset(node, slab_nodes) ||
!allow_spin) {
node = NUMA_NO_NODE;
} else {
stat(s, ALLOC_NODE_MISMATCH);
@ -4363,13 +4467,14 @@ reread_slab:
* PFMEMALLOC but right now, we are losing the pfmemalloc
* information when the page leaves the per-cpu allocator
*/
if (unlikely(!pfmemalloc_match(slab, gfpflags)))
if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin))
goto deactivate_slab;
/* must check again c->slab in case we got preempted and it changed */
local_lock_irqsave(&s->cpu_slab->lock, flags);
local_lock_cpu_slab(s, flags);
if (unlikely(slab != c->slab)) {
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
local_unlock_cpu_slab(s, flags);
goto reread_slab;
}
freelist = c->freelist;
@ -4381,7 +4486,7 @@ reread_slab:
if (!freelist) {
c->slab = NULL;
c->tid = next_tid(c->tid);
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
local_unlock_cpu_slab(s, flags);
stat(s, DEACTIVATE_BYPASS);
goto new_slab;
}
@ -4400,34 +4505,34 @@ load_freelist:
VM_BUG_ON(!c->slab->frozen);
c->freelist = get_freepointer(s, freelist);
c->tid = next_tid(c->tid);
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
local_unlock_cpu_slab(s, flags);
return freelist;
deactivate_slab:
local_lock_irqsave(&s->cpu_slab->lock, flags);
local_lock_cpu_slab(s, flags);
if (slab != c->slab) {
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
local_unlock_cpu_slab(s, flags);
goto reread_slab;
}
freelist = c->freelist;
c->slab = NULL;
c->freelist = NULL;
c->tid = next_tid(c->tid);
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
local_unlock_cpu_slab(s, flags);
deactivate_slab(s, slab, freelist);
new_slab:
#ifdef CONFIG_SLUB_CPU_PARTIAL
while (slub_percpu_partial(c)) {
local_lock_irqsave(&s->cpu_slab->lock, flags);
local_lock_cpu_slab(s, flags);
if (unlikely(c->slab)) {
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
local_unlock_cpu_slab(s, flags);
goto reread_slab;
}
if (unlikely(!slub_percpu_partial(c))) {
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
local_unlock_cpu_slab(s, flags);
/* we were preempted and partial list got empty */
goto new_objects;
}
@ -4436,7 +4541,8 @@ new_slab:
slub_set_percpu_partial(c, slab);
if (likely(node_match(slab, node) &&
pfmemalloc_match(slab, gfpflags))) {
pfmemalloc_match(slab, gfpflags)) ||
!allow_spin) {
c->slab = slab;
freelist = get_freelist(s, slab);
VM_BUG_ON(!freelist);
@ -4444,7 +4550,7 @@ new_slab:
goto load_freelist;
}
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
local_unlock_cpu_slab(s, flags);
slab->next = NULL;
__put_partials(s, slab);
@ -4466,8 +4572,13 @@ new_objects:
* allocating new page from other nodes
*/
if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
&& try_thisnode))
pc.flags = GFP_NOWAIT | __GFP_THISNODE;
&& try_thisnode)) {
if (unlikely(!allow_spin))
/* Do not upgrade gfp to NOWAIT from more restrictive mode */
pc.flags = gfpflags | __GFP_THISNODE;
else
pc.flags = GFP_NOWAIT | __GFP_THISNODE;
}
pc.orig_size = orig_size;
slab = get_partial(s, node, &pc);
@ -4506,7 +4617,7 @@ new_objects:
stat(s, ALLOC_SLAB);
if (kmem_cache_debug(s)) {
freelist = alloc_single_from_new_slab(s, slab, orig_size);
freelist = alloc_single_from_new_slab(s, slab, orig_size, gfpflags);
if (unlikely(!freelist))
goto new_objects;
@ -4528,7 +4639,7 @@ new_objects:
inc_slabs_node(s, slab_nid(slab), slab->objects);
if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin)) {
/*
* For !pfmemalloc_match() case we don't load freelist so that
* we don't make further mismatched allocations easier.
@ -4539,7 +4650,7 @@ new_objects:
retry_load_slab:
local_lock_irqsave(&s->cpu_slab->lock, flags);
local_lock_cpu_slab(s, flags);
if (unlikely(c->slab)) {
void *flush_freelist = c->freelist;
struct slab *flush_slab = c->slab;
@ -4548,9 +4659,14 @@ retry_load_slab:
c->freelist = NULL;
c->tid = next_tid(c->tid);
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
local_unlock_cpu_slab(s, flags);
deactivate_slab(s, flush_slab, flush_freelist);
if (unlikely(!allow_spin)) {
/* Reentrant slub cannot take locks, defer */
defer_deactivate_slab(flush_slab, flush_freelist);
} else {
deactivate_slab(s, flush_slab, flush_freelist);
}
stat(s, CPUSLAB_FLUSH);
@ -4560,6 +4676,19 @@ retry_load_slab:
goto load_freelist;
}
/*
* We disallow kprobes in ___slab_alloc() to prevent reentrance
*
* kmalloc() -> ___slab_alloc() -> local_lock_cpu_slab() protected part of
* ___slab_alloc() manipulating c->freelist -> kprobe -> bpf ->
* kmalloc_nolock() or kfree_nolock() -> __update_cpu_freelist_fast()
* manipulating c->freelist without lock.
*
* This does not prevent kprobe in functions called from ___slab_alloc() such as
* local_lock_irqsave() itself, and that is fine, we only need to protect the
* c->freelist manipulation in ___slab_alloc() itself.
*/
NOKPROBE_SYMBOL(___slab_alloc);
/*
* A wrapper for ___slab_alloc() for contexts where preemption is not yet
@ -4579,8 +4708,19 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
*/
c = slub_get_cpu_ptr(s->cpu_slab);
#endif
if (unlikely(!gfpflags_allow_spinning(gfpflags))) {
if (local_lock_is_locked(&s->cpu_slab->lock)) {
/*
* EBUSY is an internal signal to kmalloc_nolock() to
* retry a different bucket. It's not propagated
* to the caller.
*/
p = ERR_PTR(-EBUSY);
goto out;
}
}
p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
out:
#ifdef CONFIG_PREEMPT_COUNT
slub_put_cpu_ptr(s->cpu_slab);
#endif
@ -4704,7 +4844,7 @@ static void *__slab_alloc_node(struct kmem_cache *s,
return NULL;
}
object = alloc_single_from_new_slab(s, slab, orig_size);
object = alloc_single_from_new_slab(s, slab, orig_size, gfpflags);
return object;
}
@ -4783,8 +4923,9 @@ bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
if (p[i] && init && (!kasan_init ||
!kasan_has_integrated_init()))
memset(p[i], 0, zero_size);
kmemleak_alloc_recursive(p[i], s->object_size, 1,
s->flags, init_flags);
if (gfpflags_allow_spinning(flags))
kmemleak_alloc_recursive(p[i], s->object_size, 1,
s->flags, init_flags);
kmsan_slab_alloc(s, p[i], init_flags);
alloc_tagging_slab_alloc_hook(s, p[i], flags);
}
@ -5451,6 +5592,96 @@ void *__kmalloc_noprof(size_t size, gfp_t flags)
}
EXPORT_SYMBOL(__kmalloc_noprof);
/**
* kmalloc_nolock - Allocate an object of given size from any context.
* @size: size to allocate
* @gfp_flags: GFP flags. Only __GFP_ACCOUNT, __GFP_ZERO, __GFP_NO_OBJ_EXT
* allowed.
* @node: node number of the target node.
*
* Return: pointer to the new object or NULL in case of error.
* NULL does not mean EBUSY or EAGAIN. It means ENOMEM.
* There is no reason to call it again and expect !NULL.
*/
void *kmalloc_nolock_noprof(size_t size, gfp_t gfp_flags, int node)
{
gfp_t alloc_gfp = __GFP_NOWARN | __GFP_NOMEMALLOC | gfp_flags;
struct kmem_cache *s;
bool can_retry = true;
void *ret = ERR_PTR(-EBUSY);
VM_WARN_ON_ONCE(gfp_flags & ~(__GFP_ACCOUNT | __GFP_ZERO |
__GFP_NO_OBJ_EXT));
if (unlikely(!size))
return ZERO_SIZE_PTR;
if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
/* kmalloc_nolock() in PREEMPT_RT is not supported from irq */
return NULL;
retry:
if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
return NULL;
s = kmalloc_slab(size, NULL, alloc_gfp, _RET_IP_);
if (!(s->flags & __CMPXCHG_DOUBLE) && !kmem_cache_debug(s))
/*
* kmalloc_nolock() is not supported on architectures that
* don't implement cmpxchg16b, but debug caches don't use
* per-cpu slab and per-cpu partial slabs. They rely on
* kmem_cache_node->list_lock, so kmalloc_nolock() can
* attempt to allocate from debug caches by
* spin_trylock_irqsave(&n->list_lock, ...)
*/
return NULL;
/*
* Do not call slab_alloc_node(), since trylock mode isn't
* compatible with slab_pre_alloc_hook/should_failslab and
* kfence_alloc. Hence call __slab_alloc_node() (at most twice)
* and slab_post_alloc_hook() directly.
*
* In !PREEMPT_RT ___slab_alloc() manipulates (freelist,tid) pair
* in irq saved region. It assumes that the same cpu will not
* __update_cpu_freelist_fast() into the same (freelist,tid) pair.
* Therefore use in_nmi() to check whether particular bucket is in
* irq protected section.
*
* If in_nmi() && local_lock_is_locked(s->cpu_slab) then it means that
* this cpu was interrupted somewhere inside ___slab_alloc() after
* it did local_lock_irqsave(&s->cpu_slab->lock, flags).
* In this case fast path with __update_cpu_freelist_fast() is not safe.
*/
#ifndef CONFIG_SLUB_TINY
if (!in_nmi() || !local_lock_is_locked(&s->cpu_slab->lock))
#endif
ret = __slab_alloc_node(s, alloc_gfp, node, _RET_IP_, size);
if (PTR_ERR(ret) == -EBUSY) {
if (can_retry) {
/* pick the next kmalloc bucket */
size = s->object_size + 1;
/*
* Another alternative is to
* if (memcg) alloc_gfp &= ~__GFP_ACCOUNT;
* else if (!memcg) alloc_gfp |= __GFP_ACCOUNT;
* to retry from bucket of the same size.
*/
can_retry = false;
goto retry;
}
ret = NULL;
}
maybe_wipe_obj_freeptr(s, ret);
slab_post_alloc_hook(s, NULL, alloc_gfp, 1, &ret,
slab_want_init_on_alloc(alloc_gfp, s), size);
ret = kasan_kmalloc(s, ret, size, alloc_gfp);
return ret;
}
EXPORT_SYMBOL_GPL(kmalloc_nolock_noprof);
void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
int node, unsigned long caller)
{
@ -6108,6 +6339,93 @@ flush_remote:
}
}
struct defer_free {
struct llist_head objects;
struct llist_head slabs;
struct irq_work work;
};
static void free_deferred_objects(struct irq_work *work);
static DEFINE_PER_CPU(struct defer_free, defer_free_objects) = {
.objects = LLIST_HEAD_INIT(objects),
.slabs = LLIST_HEAD_INIT(slabs),
.work = IRQ_WORK_INIT(free_deferred_objects),
};
/*
* In PREEMPT_RT irq_work runs in per-cpu kthread, so it's safe
* to take sleeping spin_locks from __slab_free() and deactivate_slab().
* In !PREEMPT_RT irq_work will run after local_unlock_irqrestore().
*/
static void free_deferred_objects(struct irq_work *work)
{
struct defer_free *df = container_of(work, struct defer_free, work);
struct llist_head *objs = &df->objects;
struct llist_head *slabs = &df->slabs;
struct llist_node *llnode, *pos, *t;
if (llist_empty(objs) && llist_empty(slabs))
return;
llnode = llist_del_all(objs);
llist_for_each_safe(pos, t, llnode) {
struct kmem_cache *s;
struct slab *slab;
void *x = pos;
slab = virt_to_slab(x);
s = slab->slab_cache;
/*
* We used freepointer in 'x' to link 'x' into df->objects.
* Clear it to NULL to avoid false positive detection
* of "Freepointer corruption".
*/
*(void **)x = NULL;
/* Point 'x' back to the beginning of allocated object */
x -= s->offset;
__slab_free(s, slab, x, x, 1, _THIS_IP_);
}
llnode = llist_del_all(slabs);
llist_for_each_safe(pos, t, llnode) {
struct slab *slab = container_of(pos, struct slab, llnode);
#ifdef CONFIG_SLUB_TINY
discard_slab(slab->slab_cache, slab);
#else
deactivate_slab(slab->slab_cache, slab, slab->flush_freelist);
#endif
}
}
static void defer_free(struct kmem_cache *s, void *head)
{
struct defer_free *df = this_cpu_ptr(&defer_free_objects);
if (llist_add(head + s->offset, &df->objects))
irq_work_queue(&df->work);
}
static void defer_deactivate_slab(struct slab *slab, void *flush_freelist)
{
struct defer_free *df = this_cpu_ptr(&defer_free_objects);
slab->flush_freelist = flush_freelist;
if (llist_add(&slab->llnode, &df->slabs))
irq_work_queue(&df->work);
}
void defer_free_barrier(void)
{
int cpu;
for_each_possible_cpu(cpu)
irq_work_sync(&per_cpu_ptr(&defer_free_objects, cpu)->work);
}
#ifndef CONFIG_SLUB_TINY
/*
* Fastpath with forced inlining to produce a kfree and kmem_cache_free that
@ -6128,6 +6446,8 @@ static __always_inline void do_slab_free(struct kmem_cache *s,
struct slab *slab, void *head, void *tail,
int cnt, unsigned long addr)
{
/* cnt == 0 signals that it's called from kfree_nolock() */
bool allow_spin = cnt;
struct kmem_cache_cpu *c;
unsigned long tid;
void **freelist;
@ -6146,10 +6466,29 @@ redo:
barrier();
if (unlikely(slab != c->slab)) {
__slab_free(s, slab, head, tail, cnt, addr);
if (unlikely(!allow_spin)) {
/*
* __slab_free() can locklessly cmpxchg16 into a slab,
* but then it might need to take spin_lock or local_lock
* in put_cpu_partial() for further processing.
* Avoid the complexity and simply add to a deferred list.
*/
defer_free(s, head);
} else {
__slab_free(s, slab, head, tail, cnt, addr);
}
return;
}
if (unlikely(!allow_spin)) {
if ((in_nmi() || !USE_LOCKLESS_FAST_PATH()) &&
local_lock_is_locked(&s->cpu_slab->lock)) {
defer_free(s, head);
return;
}
cnt = 1; /* restore cnt. kfree_nolock() frees one object at a time */
}
if (USE_LOCKLESS_FAST_PATH()) {
freelist = READ_ONCE(c->freelist);
@ -6160,11 +6499,13 @@ redo:
goto redo;
}
} else {
__maybe_unused unsigned long flags = 0;
/* Update the free list under the local lock */
local_lock(&s->cpu_slab->lock);
local_lock_cpu_slab(s, flags);
c = this_cpu_ptr(s->cpu_slab);
if (unlikely(slab != c->slab)) {
local_unlock(&s->cpu_slab->lock);
local_unlock_cpu_slab(s, flags);
goto redo;
}
tid = c->tid;
@ -6174,7 +6515,7 @@ redo:
c->freelist = head;
c->tid = next_tid(tid);
local_unlock(&s->cpu_slab->lock);
local_unlock_cpu_slab(s, flags);
}
stat_add(s, FREE_FASTPATH, cnt);
}
@ -6405,6 +6746,71 @@ void kfree(const void *object)
}
EXPORT_SYMBOL(kfree);
/*
* Can be called while holding raw_spinlock_t or from IRQ and NMI,
* but ONLY for objects allocated by kmalloc_nolock().
* Debug checks (like kmemleak and kfence) were skipped on allocation,
* hence
* obj = kmalloc(); kfree_nolock(obj);
* will miss kmemleak/kfence book keeping and will cause false positives.
* large_kmalloc is not supported either.
*/
void kfree_nolock(const void *object)
{
struct folio *folio;
struct slab *slab;
struct kmem_cache *s;
void *x = (void *)object;
if (unlikely(ZERO_OR_NULL_PTR(object)))
return;
folio = virt_to_folio(object);
if (unlikely(!folio_test_slab(folio))) {
WARN_ONCE(1, "large_kmalloc is not supported by kfree_nolock()");
return;
}
slab = folio_slab(folio);
s = slab->slab_cache;
memcg_slab_free_hook(s, slab, &x, 1);
alloc_tagging_slab_free_hook(s, slab, &x, 1);
/*
* Unlike slab_free() do NOT call the following:
* kmemleak_free_recursive(x, s->flags);
* debug_check_no_locks_freed(x, s->object_size);
* debug_check_no_obj_freed(x, s->object_size);
* __kcsan_check_access(x, s->object_size, ..);
* kfence_free(x);
* since they take spinlocks or not safe from any context.
*/
kmsan_slab_free(s, x);
/*
* If KASAN finds a kernel bug it will do kasan_report_invalid_free()
* which will call raw_spin_lock_irqsave() which is technically
* unsafe from NMI, but take chance and report kernel bug.
* The sequence of
* kasan_report_invalid_free() -> raw_spin_lock_irqsave() -> NMI
* -> kfree_nolock() -> kasan_report_invalid_free() on the same CPU
* is double buggy and deserves to deadlock.
*/
if (kasan_slab_pre_free(s, x))
return;
/*
* memcg, kasan_slab_pre_free are done for 'x'.
* The only thing left is kasan_poison without quarantine,
* since kasan quarantine takes locks and not supported from NMI.
*/
kasan_slab_free(s, x, false, false, /* skip quarantine */true);
#ifndef CONFIG_SLUB_TINY
do_slab_free(s, slab, x, x, 0, _RET_IP_);
#else
defer_free(s, x);
#endif
}
EXPORT_SYMBOL_GPL(kfree_nolock);
static __always_inline __realloc_size(2) void *
__do_krealloc(const void *p, size_t new_size, gfp_t flags)
{