1078 lines
26 KiB
C
1078 lines
26 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* DAMON Code for Virtual Address Spaces
|
|
*
|
|
* Author: SeongJae Park <sj@kernel.org>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "damon-va: " fmt
|
|
|
|
#include <linux/highmem.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/page_idle.h>
|
|
#include <linux/pagewalk.h>
|
|
#include <linux/sched/mm.h>
|
|
|
|
#include "../internal.h"
|
|
#include "ops-common.h"
|
|
|
|
#ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
|
|
#undef DAMON_MIN_REGION
|
|
#define DAMON_MIN_REGION 1
|
|
#endif
|
|
|
|
/*
|
|
* 't->pid' should be the pointer to the relevant 'struct pid' having reference
|
|
* count. Caller must put the returned task, unless it is NULL.
|
|
*/
|
|
static inline struct task_struct *damon_get_task_struct(struct damon_target *t)
|
|
{
|
|
return get_pid_task(t->pid, PIDTYPE_PID);
|
|
}
|
|
|
|
/*
|
|
* Get the mm_struct of the given target
|
|
*
|
|
* Caller _must_ put the mm_struct after use, unless it is NULL.
|
|
*
|
|
* Returns the mm_struct of the target on success, NULL on failure
|
|
*/
|
|
static struct mm_struct *damon_get_mm(struct damon_target *t)
|
|
{
|
|
struct task_struct *task;
|
|
struct mm_struct *mm;
|
|
|
|
task = damon_get_task_struct(t);
|
|
if (!task)
|
|
return NULL;
|
|
|
|
mm = get_task_mm(task);
|
|
put_task_struct(task);
|
|
return mm;
|
|
}
|
|
|
|
/*
|
|
* Functions for the initial monitoring target regions construction
|
|
*/
|
|
|
|
/*
|
|
* Size-evenly split a region into 'nr_pieces' small regions
|
|
*
|
|
* Returns 0 on success, or negative error code otherwise.
|
|
*/
|
|
static int damon_va_evenly_split_region(struct damon_target *t,
|
|
struct damon_region *r, unsigned int nr_pieces)
|
|
{
|
|
unsigned long sz_orig, sz_piece, orig_end;
|
|
struct damon_region *n = NULL, *next;
|
|
unsigned long start;
|
|
unsigned int i;
|
|
|
|
if (!r || !nr_pieces)
|
|
return -EINVAL;
|
|
|
|
if (nr_pieces == 1)
|
|
return 0;
|
|
|
|
orig_end = r->ar.end;
|
|
sz_orig = damon_sz_region(r);
|
|
sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
|
|
|
|
if (!sz_piece)
|
|
return -EINVAL;
|
|
|
|
r->ar.end = r->ar.start + sz_piece;
|
|
next = damon_next_region(r);
|
|
for (start = r->ar.end, i = 1; i < nr_pieces; start += sz_piece, i++) {
|
|
n = damon_new_region(start, start + sz_piece);
|
|
if (!n)
|
|
return -ENOMEM;
|
|
damon_insert_region(n, r, next, t);
|
|
r = n;
|
|
}
|
|
/* complement last region for possible rounding error */
|
|
if (n)
|
|
n->ar.end = orig_end;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long sz_range(struct damon_addr_range *r)
|
|
{
|
|
return r->end - r->start;
|
|
}
|
|
|
|
/*
|
|
* Find three regions separated by two biggest unmapped regions
|
|
*
|
|
* vma the head vma of the target address space
|
|
* regions an array of three address ranges that results will be saved
|
|
*
|
|
* This function receives an address space and finds three regions in it which
|
|
* separated by the two biggest unmapped regions in the space. Please refer to
|
|
* below comments of '__damon_va_init_regions()' function to know why this is
|
|
* necessary.
|
|
*
|
|
* Returns 0 if success, or negative error code otherwise.
|
|
*/
|
|
static int __damon_va_three_regions(struct mm_struct *mm,
|
|
struct damon_addr_range regions[3])
|
|
{
|
|
struct damon_addr_range first_gap = {0}, second_gap = {0};
|
|
VMA_ITERATOR(vmi, mm, 0);
|
|
struct vm_area_struct *vma, *prev = NULL;
|
|
unsigned long start;
|
|
|
|
/*
|
|
* Find the two biggest gaps so that first_gap > second_gap > others.
|
|
* If this is too slow, it can be optimised to examine the maple
|
|
* tree gaps.
|
|
*/
|
|
rcu_read_lock();
|
|
for_each_vma(vmi, vma) {
|
|
unsigned long gap;
|
|
|
|
if (!prev) {
|
|
start = vma->vm_start;
|
|
goto next;
|
|
}
|
|
gap = vma->vm_start - prev->vm_end;
|
|
|
|
if (gap > sz_range(&first_gap)) {
|
|
second_gap = first_gap;
|
|
first_gap.start = prev->vm_end;
|
|
first_gap.end = vma->vm_start;
|
|
} else if (gap > sz_range(&second_gap)) {
|
|
second_gap.start = prev->vm_end;
|
|
second_gap.end = vma->vm_start;
|
|
}
|
|
next:
|
|
prev = vma;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (!sz_range(&second_gap) || !sz_range(&first_gap))
|
|
return -EINVAL;
|
|
|
|
/* Sort the two biggest gaps by address */
|
|
if (first_gap.start > second_gap.start)
|
|
swap(first_gap, second_gap);
|
|
|
|
/* Store the result */
|
|
regions[0].start = ALIGN(start, DAMON_MIN_REGION);
|
|
regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
|
|
regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
|
|
regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
|
|
regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
|
|
regions[2].end = ALIGN(prev->vm_end, DAMON_MIN_REGION);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Get the three regions in the given target (task)
|
|
*
|
|
* Returns 0 on success, negative error code otherwise.
|
|
*/
|
|
static int damon_va_three_regions(struct damon_target *t,
|
|
struct damon_addr_range regions[3])
|
|
{
|
|
struct mm_struct *mm;
|
|
int rc;
|
|
|
|
mm = damon_get_mm(t);
|
|
if (!mm)
|
|
return -EINVAL;
|
|
|
|
mmap_read_lock(mm);
|
|
rc = __damon_va_three_regions(mm, regions);
|
|
mmap_read_unlock(mm);
|
|
|
|
mmput(mm);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Initialize the monitoring target regions for the given target (task)
|
|
*
|
|
* t the given target
|
|
*
|
|
* Because only a number of small portions of the entire address space
|
|
* is actually mapped to the memory and accessed, monitoring the unmapped
|
|
* regions is wasteful. That said, because we can deal with small noises,
|
|
* tracking every mapping is not strictly required but could even incur a high
|
|
* overhead if the mapping frequently changes or the number of mappings is
|
|
* high. The adaptive regions adjustment mechanism will further help to deal
|
|
* with the noise by simply identifying the unmapped areas as a region that
|
|
* has no access. Moreover, applying the real mappings that would have many
|
|
* unmapped areas inside will make the adaptive mechanism quite complex. That
|
|
* said, too huge unmapped areas inside the monitoring target should be removed
|
|
* to not take the time for the adaptive mechanism.
|
|
*
|
|
* For the reason, we convert the complex mappings to three distinct regions
|
|
* that cover every mapped area of the address space. Also the two gaps
|
|
* between the three regions are the two biggest unmapped areas in the given
|
|
* address space. In detail, this function first identifies the start and the
|
|
* end of the mappings and the two biggest unmapped areas of the address space.
|
|
* Then, it constructs the three regions as below:
|
|
*
|
|
* [mappings[0]->start, big_two_unmapped_areas[0]->start)
|
|
* [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
|
|
* [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
|
|
*
|
|
* As usual memory map of processes is as below, the gap between the heap and
|
|
* the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
|
|
* region and the stack will be two biggest unmapped regions. Because these
|
|
* gaps are exceptionally huge areas in usual address space, excluding these
|
|
* two biggest unmapped regions will be sufficient to make a trade-off.
|
|
*
|
|
* <heap>
|
|
* <BIG UNMAPPED REGION 1>
|
|
* <uppermost mmap()-ed region>
|
|
* (other mmap()-ed regions and small unmapped regions)
|
|
* <lowermost mmap()-ed region>
|
|
* <BIG UNMAPPED REGION 2>
|
|
* <stack>
|
|
*/
|
|
static void __damon_va_init_regions(struct damon_ctx *ctx,
|
|
struct damon_target *t)
|
|
{
|
|
struct damon_target *ti;
|
|
struct damon_region *r;
|
|
struct damon_addr_range regions[3];
|
|
unsigned long sz = 0, nr_pieces;
|
|
int i, tidx = 0;
|
|
|
|
if (damon_va_three_regions(t, regions)) {
|
|
damon_for_each_target(ti, ctx) {
|
|
if (ti == t)
|
|
break;
|
|
tidx++;
|
|
}
|
|
pr_debug("Failed to get three regions of %dth target\n", tidx);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < 3; i++)
|
|
sz += regions[i].end - regions[i].start;
|
|
if (ctx->attrs.min_nr_regions)
|
|
sz /= ctx->attrs.min_nr_regions;
|
|
if (sz < DAMON_MIN_REGION)
|
|
sz = DAMON_MIN_REGION;
|
|
|
|
/* Set the initial three regions of the target */
|
|
for (i = 0; i < 3; i++) {
|
|
r = damon_new_region(regions[i].start, regions[i].end);
|
|
if (!r) {
|
|
pr_err("%d'th init region creation failed\n", i);
|
|
return;
|
|
}
|
|
damon_add_region(r, t);
|
|
|
|
nr_pieces = (regions[i].end - regions[i].start) / sz;
|
|
damon_va_evenly_split_region(t, r, nr_pieces);
|
|
}
|
|
}
|
|
|
|
/* Initialize '->regions_list' of every target (task) */
|
|
static void damon_va_init(struct damon_ctx *ctx)
|
|
{
|
|
struct damon_target *t;
|
|
|
|
damon_for_each_target(t, ctx) {
|
|
/* the user may set the target regions as they want */
|
|
if (!damon_nr_regions(t))
|
|
__damon_va_init_regions(ctx, t);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update regions for current memory mappings
|
|
*/
|
|
static void damon_va_update(struct damon_ctx *ctx)
|
|
{
|
|
struct damon_addr_range three_regions[3];
|
|
struct damon_target *t;
|
|
|
|
damon_for_each_target(t, ctx) {
|
|
if (damon_va_three_regions(t, three_regions))
|
|
continue;
|
|
damon_set_regions(t, three_regions, 3, DAMON_MIN_REGION);
|
|
}
|
|
}
|
|
|
|
static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
|
|
unsigned long next, struct mm_walk *walk)
|
|
{
|
|
pte_t *pte;
|
|
pmd_t pmde;
|
|
spinlock_t *ptl;
|
|
|
|
if (pmd_trans_huge(pmdp_get(pmd))) {
|
|
ptl = pmd_lock(walk->mm, pmd);
|
|
pmde = pmdp_get(pmd);
|
|
|
|
if (!pmd_present(pmde)) {
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
|
|
if (pmd_trans_huge(pmde)) {
|
|
damon_pmdp_mkold(pmd, walk->vma, addr);
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
spin_unlock(ptl);
|
|
}
|
|
|
|
pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
|
|
if (!pte)
|
|
return 0;
|
|
if (!pte_present(ptep_get(pte)))
|
|
goto out;
|
|
damon_ptep_mkold(pte, walk->vma, addr);
|
|
out:
|
|
pte_unmap_unlock(pte, ptl);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm,
|
|
struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
bool referenced = false;
|
|
pte_t entry = huge_ptep_get(mm, addr, pte);
|
|
struct folio *folio = pfn_folio(pte_pfn(entry));
|
|
unsigned long psize = huge_page_size(hstate_vma(vma));
|
|
|
|
folio_get(folio);
|
|
|
|
if (pte_young(entry)) {
|
|
referenced = true;
|
|
entry = pte_mkold(entry);
|
|
set_huge_pte_at(mm, addr, pte, entry, psize);
|
|
}
|
|
|
|
if (mmu_notifier_clear_young(mm, addr,
|
|
addr + huge_page_size(hstate_vma(vma))))
|
|
referenced = true;
|
|
|
|
if (referenced)
|
|
folio_set_young(folio);
|
|
|
|
folio_set_idle(folio);
|
|
folio_put(folio);
|
|
}
|
|
|
|
static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask,
|
|
unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct hstate *h = hstate_vma(walk->vma);
|
|
spinlock_t *ptl;
|
|
pte_t entry;
|
|
|
|
ptl = huge_pte_lock(h, walk->mm, pte);
|
|
entry = huge_ptep_get(walk->mm, addr, pte);
|
|
if (!pte_present(entry))
|
|
goto out;
|
|
|
|
damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr);
|
|
|
|
out:
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
#else
|
|
#define damon_mkold_hugetlb_entry NULL
|
|
#endif /* CONFIG_HUGETLB_PAGE */
|
|
|
|
static const struct mm_walk_ops damon_mkold_ops = {
|
|
.pmd_entry = damon_mkold_pmd_entry,
|
|
.hugetlb_entry = damon_mkold_hugetlb_entry,
|
|
.walk_lock = PGWALK_RDLOCK,
|
|
};
|
|
|
|
static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
mmap_read_lock(mm);
|
|
walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
|
|
mmap_read_unlock(mm);
|
|
}
|
|
|
|
/*
|
|
* Functions for the access checking of the regions
|
|
*/
|
|
|
|
static void __damon_va_prepare_access_check(struct mm_struct *mm,
|
|
struct damon_region *r)
|
|
{
|
|
r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
|
|
|
|
damon_va_mkold(mm, r->sampling_addr);
|
|
}
|
|
|
|
static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
|
|
{
|
|
struct damon_target *t;
|
|
struct mm_struct *mm;
|
|
struct damon_region *r;
|
|
|
|
damon_for_each_target(t, ctx) {
|
|
mm = damon_get_mm(t);
|
|
if (!mm)
|
|
continue;
|
|
damon_for_each_region(r, t)
|
|
__damon_va_prepare_access_check(mm, r);
|
|
mmput(mm);
|
|
}
|
|
}
|
|
|
|
struct damon_young_walk_private {
|
|
/* size of the folio for the access checked virtual memory address */
|
|
unsigned long *folio_sz;
|
|
bool young;
|
|
};
|
|
|
|
static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
|
|
unsigned long next, struct mm_walk *walk)
|
|
{
|
|
pte_t *pte;
|
|
pte_t ptent;
|
|
spinlock_t *ptl;
|
|
struct folio *folio;
|
|
struct damon_young_walk_private *priv = walk->private;
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
if (pmd_trans_huge(pmdp_get(pmd))) {
|
|
pmd_t pmde;
|
|
|
|
ptl = pmd_lock(walk->mm, pmd);
|
|
pmde = pmdp_get(pmd);
|
|
|
|
if (!pmd_present(pmde)) {
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
|
|
if (!pmd_trans_huge(pmde)) {
|
|
spin_unlock(ptl);
|
|
goto regular_page;
|
|
}
|
|
folio = damon_get_folio(pmd_pfn(pmde));
|
|
if (!folio)
|
|
goto huge_out;
|
|
if (pmd_young(pmde) || !folio_test_idle(folio) ||
|
|
mmu_notifier_test_young(walk->mm,
|
|
addr))
|
|
priv->young = true;
|
|
*priv->folio_sz = HPAGE_PMD_SIZE;
|
|
folio_put(folio);
|
|
huge_out:
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
|
|
regular_page:
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
|
|
if (!pte)
|
|
return 0;
|
|
ptent = ptep_get(pte);
|
|
if (!pte_present(ptent))
|
|
goto out;
|
|
folio = damon_get_folio(pte_pfn(ptent));
|
|
if (!folio)
|
|
goto out;
|
|
if (pte_young(ptent) || !folio_test_idle(folio) ||
|
|
mmu_notifier_test_young(walk->mm, addr))
|
|
priv->young = true;
|
|
*priv->folio_sz = folio_size(folio);
|
|
folio_put(folio);
|
|
out:
|
|
pte_unmap_unlock(pte, ptl);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask,
|
|
unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct damon_young_walk_private *priv = walk->private;
|
|
struct hstate *h = hstate_vma(walk->vma);
|
|
struct folio *folio;
|
|
spinlock_t *ptl;
|
|
pte_t entry;
|
|
|
|
ptl = huge_pte_lock(h, walk->mm, pte);
|
|
entry = huge_ptep_get(walk->mm, addr, pte);
|
|
if (!pte_present(entry))
|
|
goto out;
|
|
|
|
folio = pfn_folio(pte_pfn(entry));
|
|
folio_get(folio);
|
|
|
|
if (pte_young(entry) || !folio_test_idle(folio) ||
|
|
mmu_notifier_test_young(walk->mm, addr))
|
|
priv->young = true;
|
|
*priv->folio_sz = huge_page_size(h);
|
|
|
|
folio_put(folio);
|
|
|
|
out:
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
#else
|
|
#define damon_young_hugetlb_entry NULL
|
|
#endif /* CONFIG_HUGETLB_PAGE */
|
|
|
|
static const struct mm_walk_ops damon_young_ops = {
|
|
.pmd_entry = damon_young_pmd_entry,
|
|
.hugetlb_entry = damon_young_hugetlb_entry,
|
|
.walk_lock = PGWALK_RDLOCK,
|
|
};
|
|
|
|
static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
|
|
unsigned long *folio_sz)
|
|
{
|
|
struct damon_young_walk_private arg = {
|
|
.folio_sz = folio_sz,
|
|
.young = false,
|
|
};
|
|
|
|
mmap_read_lock(mm);
|
|
walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
|
|
mmap_read_unlock(mm);
|
|
return arg.young;
|
|
}
|
|
|
|
/*
|
|
* Check whether the region was accessed after the last preparation
|
|
*
|
|
* mm 'mm_struct' for the given virtual address space
|
|
* r the region to be checked
|
|
*/
|
|
static void __damon_va_check_access(struct mm_struct *mm,
|
|
struct damon_region *r, bool same_target,
|
|
struct damon_attrs *attrs)
|
|
{
|
|
static unsigned long last_addr;
|
|
static unsigned long last_folio_sz = PAGE_SIZE;
|
|
static bool last_accessed;
|
|
|
|
if (!mm) {
|
|
damon_update_region_access_rate(r, false, attrs);
|
|
return;
|
|
}
|
|
|
|
/* If the region is in the last checked page, reuse the result */
|
|
if (same_target && (ALIGN_DOWN(last_addr, last_folio_sz) ==
|
|
ALIGN_DOWN(r->sampling_addr, last_folio_sz))) {
|
|
damon_update_region_access_rate(r, last_accessed, attrs);
|
|
return;
|
|
}
|
|
|
|
last_accessed = damon_va_young(mm, r->sampling_addr, &last_folio_sz);
|
|
damon_update_region_access_rate(r, last_accessed, attrs);
|
|
|
|
last_addr = r->sampling_addr;
|
|
}
|
|
|
|
static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
|
|
{
|
|
struct damon_target *t;
|
|
struct mm_struct *mm;
|
|
struct damon_region *r;
|
|
unsigned int max_nr_accesses = 0;
|
|
bool same_target;
|
|
|
|
damon_for_each_target(t, ctx) {
|
|
mm = damon_get_mm(t);
|
|
same_target = false;
|
|
damon_for_each_region(r, t) {
|
|
__damon_va_check_access(mm, r, same_target,
|
|
&ctx->attrs);
|
|
max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
|
|
same_target = true;
|
|
}
|
|
if (mm)
|
|
mmput(mm);
|
|
}
|
|
|
|
return max_nr_accesses;
|
|
}
|
|
|
|
static bool damos_va_filter_young_match(struct damos_filter *filter,
|
|
struct folio *folio, struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep, pmd_t *pmdp)
|
|
{
|
|
bool young = false;
|
|
|
|
if (ptep)
|
|
young = pte_young(ptep_get(ptep));
|
|
else if (pmdp)
|
|
young = pmd_young(pmdp_get(pmdp));
|
|
|
|
young = young || !folio_test_idle(folio) ||
|
|
mmu_notifier_test_young(vma->vm_mm, addr);
|
|
|
|
if (young && ptep)
|
|
damon_ptep_mkold(ptep, vma, addr);
|
|
else if (young && pmdp)
|
|
damon_pmdp_mkold(pmdp, vma, addr);
|
|
|
|
return young == filter->matching;
|
|
}
|
|
|
|
static bool damos_va_filter_out(struct damos *scheme, struct folio *folio,
|
|
struct vm_area_struct *vma, unsigned long addr,
|
|
pte_t *ptep, pmd_t *pmdp)
|
|
{
|
|
struct damos_filter *filter;
|
|
bool matched;
|
|
|
|
if (scheme->core_filters_allowed)
|
|
return false;
|
|
|
|
damos_for_each_ops_filter(filter, scheme) {
|
|
/*
|
|
* damos_folio_filter_match checks the young filter by doing an
|
|
* rmap on the folio to find its page table. However, being the
|
|
* vaddr scheme, we have direct access to the page tables, so
|
|
* use that instead.
|
|
*/
|
|
if (filter->type == DAMOS_FILTER_TYPE_YOUNG)
|
|
matched = damos_va_filter_young_match(filter, folio,
|
|
vma, addr, ptep, pmdp);
|
|
else
|
|
matched = damos_folio_filter_match(filter, folio);
|
|
|
|
if (matched)
|
|
return !filter->allow;
|
|
}
|
|
return scheme->ops_filters_default_reject;
|
|
}
|
|
|
|
struct damos_va_migrate_private {
|
|
struct list_head *migration_lists;
|
|
struct damos *scheme;
|
|
};
|
|
|
|
/*
|
|
* Place the given folio in the migration_list corresponding to where the folio
|
|
* should be migrated.
|
|
*
|
|
* The algorithm used here is similar to weighted_interleave_nid()
|
|
*/
|
|
static void damos_va_migrate_dests_add(struct folio *folio,
|
|
struct vm_area_struct *vma, unsigned long addr,
|
|
struct damos_migrate_dests *dests,
|
|
struct list_head *migration_lists)
|
|
{
|
|
pgoff_t ilx;
|
|
int order;
|
|
unsigned int target;
|
|
unsigned int weight_total = 0;
|
|
int i;
|
|
|
|
/*
|
|
* If dests is empty, there is only one migration list corresponding
|
|
* to s->target_nid.
|
|
*/
|
|
if (!dests->nr_dests) {
|
|
i = 0;
|
|
goto isolate;
|
|
}
|
|
|
|
order = folio_order(folio);
|
|
ilx = vma->vm_pgoff >> order;
|
|
ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
|
|
|
|
for (i = 0; i < dests->nr_dests; i++)
|
|
weight_total += dests->weight_arr[i];
|
|
|
|
/* If the total weights are somehow 0, don't migrate at all */
|
|
if (!weight_total)
|
|
return;
|
|
|
|
target = ilx % weight_total;
|
|
for (i = 0; i < dests->nr_dests; i++) {
|
|
if (target < dests->weight_arr[i])
|
|
break;
|
|
target -= dests->weight_arr[i];
|
|
}
|
|
|
|
/* If the folio is already in the right node, don't do anything */
|
|
if (folio_nid(folio) == dests->node_id_arr[i])
|
|
return;
|
|
|
|
isolate:
|
|
if (!folio_isolate_lru(folio))
|
|
return;
|
|
|
|
list_add(&folio->lru, &migration_lists[i]);
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static int damos_va_migrate_pmd_entry(pmd_t *pmd, unsigned long addr,
|
|
unsigned long next, struct mm_walk *walk)
|
|
{
|
|
struct damos_va_migrate_private *priv = walk->private;
|
|
struct list_head *migration_lists = priv->migration_lists;
|
|
struct damos *s = priv->scheme;
|
|
struct damos_migrate_dests *dests = &s->migrate_dests;
|
|
struct folio *folio;
|
|
spinlock_t *ptl;
|
|
pmd_t pmde;
|
|
|
|
ptl = pmd_lock(walk->mm, pmd);
|
|
pmde = pmdp_get(pmd);
|
|
|
|
if (!pmd_present(pmde) || !pmd_trans_huge(pmde))
|
|
goto unlock;
|
|
|
|
/* Tell page walk code to not split the PMD */
|
|
walk->action = ACTION_CONTINUE;
|
|
|
|
folio = damon_get_folio(pmd_pfn(pmde));
|
|
if (!folio)
|
|
goto unlock;
|
|
|
|
if (damos_va_filter_out(s, folio, walk->vma, addr, NULL, pmd))
|
|
goto put_folio;
|
|
|
|
damos_va_migrate_dests_add(folio, walk->vma, addr, dests,
|
|
migration_lists);
|
|
|
|
put_folio:
|
|
folio_put(folio);
|
|
unlock:
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
#else
|
|
#define damos_va_migrate_pmd_entry NULL
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
static int damos_va_migrate_pte_entry(pte_t *pte, unsigned long addr,
|
|
unsigned long next, struct mm_walk *walk)
|
|
{
|
|
struct damos_va_migrate_private *priv = walk->private;
|
|
struct list_head *migration_lists = priv->migration_lists;
|
|
struct damos *s = priv->scheme;
|
|
struct damos_migrate_dests *dests = &s->migrate_dests;
|
|
struct folio *folio;
|
|
pte_t ptent;
|
|
|
|
ptent = ptep_get(pte);
|
|
if (pte_none(ptent) || !pte_present(ptent))
|
|
return 0;
|
|
|
|
folio = damon_get_folio(pte_pfn(ptent));
|
|
if (!folio)
|
|
return 0;
|
|
|
|
if (damos_va_filter_out(s, folio, walk->vma, addr, pte, NULL))
|
|
goto put_folio;
|
|
|
|
damos_va_migrate_dests_add(folio, walk->vma, addr, dests,
|
|
migration_lists);
|
|
|
|
put_folio:
|
|
folio_put(folio);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Functions for the target validity check and cleanup
|
|
*/
|
|
|
|
static bool damon_va_target_valid(struct damon_target *t)
|
|
{
|
|
struct task_struct *task;
|
|
|
|
task = damon_get_task_struct(t);
|
|
if (task) {
|
|
put_task_struct(task);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void damon_va_cleanup_target(struct damon_target *t)
|
|
{
|
|
put_pid(t->pid);
|
|
}
|
|
|
|
#ifndef CONFIG_ADVISE_SYSCALLS
|
|
static unsigned long damos_madvise(struct damon_target *target,
|
|
struct damon_region *r, int behavior)
|
|
{
|
|
return 0;
|
|
}
|
|
#else
|
|
static unsigned long damos_madvise(struct damon_target *target,
|
|
struct damon_region *r, int behavior)
|
|
{
|
|
struct mm_struct *mm;
|
|
unsigned long start = PAGE_ALIGN(r->ar.start);
|
|
unsigned long len = PAGE_ALIGN(damon_sz_region(r));
|
|
unsigned long applied;
|
|
|
|
mm = damon_get_mm(target);
|
|
if (!mm)
|
|
return 0;
|
|
|
|
applied = do_madvise(mm, start, len, behavior) ? 0 : len;
|
|
mmput(mm);
|
|
|
|
return applied;
|
|
}
|
|
#endif /* CONFIG_ADVISE_SYSCALLS */
|
|
|
|
static unsigned long damos_va_migrate(struct damon_target *target,
|
|
struct damon_region *r, struct damos *s,
|
|
unsigned long *sz_filter_passed)
|
|
{
|
|
LIST_HEAD(folio_list);
|
|
struct damos_va_migrate_private priv;
|
|
struct mm_struct *mm;
|
|
int nr_dests;
|
|
int nid;
|
|
bool use_target_nid;
|
|
unsigned long applied = 0;
|
|
struct damos_migrate_dests *dests = &s->migrate_dests;
|
|
struct mm_walk_ops walk_ops = {
|
|
.pmd_entry = damos_va_migrate_pmd_entry,
|
|
.pte_entry = damos_va_migrate_pte_entry,
|
|
.walk_lock = PGWALK_RDLOCK,
|
|
};
|
|
|
|
use_target_nid = dests->nr_dests == 0;
|
|
nr_dests = use_target_nid ? 1 : dests->nr_dests;
|
|
priv.scheme = s;
|
|
priv.migration_lists = kmalloc_array(nr_dests,
|
|
sizeof(*priv.migration_lists), GFP_KERNEL);
|
|
if (!priv.migration_lists)
|
|
return 0;
|
|
|
|
for (int i = 0; i < nr_dests; i++)
|
|
INIT_LIST_HEAD(&priv.migration_lists[i]);
|
|
|
|
|
|
mm = damon_get_mm(target);
|
|
if (!mm)
|
|
goto free_lists;
|
|
|
|
mmap_read_lock(mm);
|
|
walk_page_range(mm, r->ar.start, r->ar.end, &walk_ops, &priv);
|
|
mmap_read_unlock(mm);
|
|
mmput(mm);
|
|
|
|
for (int i = 0; i < nr_dests; i++) {
|
|
nid = use_target_nid ? s->target_nid : dests->node_id_arr[i];
|
|
applied += damon_migrate_pages(&priv.migration_lists[i], nid);
|
|
cond_resched();
|
|
}
|
|
|
|
free_lists:
|
|
kfree(priv.migration_lists);
|
|
return applied * PAGE_SIZE;
|
|
}
|
|
|
|
struct damos_va_stat_private {
|
|
struct damos *scheme;
|
|
unsigned long *sz_filter_passed;
|
|
};
|
|
|
|
static inline bool damos_va_invalid_folio(struct folio *folio,
|
|
struct damos *s)
|
|
{
|
|
return !folio || folio == s->last_applied;
|
|
}
|
|
|
|
static int damos_va_stat_pmd_entry(pmd_t *pmd, unsigned long addr,
|
|
unsigned long next, struct mm_walk *walk)
|
|
{
|
|
struct damos_va_stat_private *priv = walk->private;
|
|
struct damos *s = priv->scheme;
|
|
unsigned long *sz_filter_passed = priv->sz_filter_passed;
|
|
struct vm_area_struct *vma = walk->vma;
|
|
struct folio *folio;
|
|
spinlock_t *ptl;
|
|
pte_t *start_pte, *pte, ptent;
|
|
int nr;
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
if (pmd_trans_huge(*pmd)) {
|
|
pmd_t pmde;
|
|
|
|
ptl = pmd_trans_huge_lock(pmd, vma);
|
|
if (!ptl)
|
|
return 0;
|
|
pmde = pmdp_get(pmd);
|
|
if (!pmd_present(pmde))
|
|
goto huge_unlock;
|
|
|
|
folio = vm_normal_folio_pmd(vma, addr, pmde);
|
|
|
|
if (damos_va_invalid_folio(folio, s))
|
|
goto huge_unlock;
|
|
|
|
if (!damos_va_filter_out(s, folio, vma, addr, NULL, pmd))
|
|
*sz_filter_passed += folio_size(folio);
|
|
s->last_applied = folio;
|
|
|
|
huge_unlock:
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
#endif
|
|
start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
|
|
if (!start_pte)
|
|
return 0;
|
|
|
|
for (; addr < next; pte += nr, addr += nr * PAGE_SIZE) {
|
|
nr = 1;
|
|
ptent = ptep_get(pte);
|
|
|
|
if (pte_none(ptent) || !pte_present(ptent))
|
|
continue;
|
|
|
|
folio = vm_normal_folio(vma, addr, ptent);
|
|
|
|
if (damos_va_invalid_folio(folio, s))
|
|
continue;
|
|
|
|
if (!damos_va_filter_out(s, folio, vma, addr, pte, NULL))
|
|
*sz_filter_passed += folio_size(folio);
|
|
nr = folio_nr_pages(folio);
|
|
s->last_applied = folio;
|
|
}
|
|
pte_unmap_unlock(start_pte, ptl);
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long damos_va_stat(struct damon_target *target,
|
|
struct damon_region *r, struct damos *s,
|
|
unsigned long *sz_filter_passed)
|
|
{
|
|
struct damos_va_stat_private priv;
|
|
struct mm_struct *mm;
|
|
struct mm_walk_ops walk_ops = {
|
|
.pmd_entry = damos_va_stat_pmd_entry,
|
|
.walk_lock = PGWALK_RDLOCK,
|
|
};
|
|
|
|
priv.scheme = s;
|
|
priv.sz_filter_passed = sz_filter_passed;
|
|
|
|
if (!damos_ops_has_filter(s))
|
|
return 0;
|
|
|
|
mm = damon_get_mm(target);
|
|
if (!mm)
|
|
return 0;
|
|
|
|
mmap_read_lock(mm);
|
|
walk_page_range(mm, r->ar.start, r->ar.end, &walk_ops, &priv);
|
|
mmap_read_unlock(mm);
|
|
mmput(mm);
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx,
|
|
struct damon_target *t, struct damon_region *r,
|
|
struct damos *scheme, unsigned long *sz_filter_passed)
|
|
{
|
|
int madv_action;
|
|
|
|
switch (scheme->action) {
|
|
case DAMOS_WILLNEED:
|
|
madv_action = MADV_WILLNEED;
|
|
break;
|
|
case DAMOS_COLD:
|
|
madv_action = MADV_COLD;
|
|
break;
|
|
case DAMOS_PAGEOUT:
|
|
madv_action = MADV_PAGEOUT;
|
|
break;
|
|
case DAMOS_HUGEPAGE:
|
|
madv_action = MADV_HUGEPAGE;
|
|
break;
|
|
case DAMOS_NOHUGEPAGE:
|
|
madv_action = MADV_NOHUGEPAGE;
|
|
break;
|
|
case DAMOS_MIGRATE_HOT:
|
|
case DAMOS_MIGRATE_COLD:
|
|
return damos_va_migrate(t, r, scheme, sz_filter_passed);
|
|
case DAMOS_STAT:
|
|
return damos_va_stat(t, r, scheme, sz_filter_passed);
|
|
default:
|
|
/*
|
|
* DAMOS actions that are not yet supported by 'vaddr'.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
return damos_madvise(t, r, madv_action);
|
|
}
|
|
|
|
static int damon_va_scheme_score(struct damon_ctx *context,
|
|
struct damon_target *t, struct damon_region *r,
|
|
struct damos *scheme)
|
|
{
|
|
|
|
switch (scheme->action) {
|
|
case DAMOS_PAGEOUT:
|
|
return damon_cold_score(context, r, scheme);
|
|
case DAMOS_MIGRATE_HOT:
|
|
return damon_hot_score(context, r, scheme);
|
|
case DAMOS_MIGRATE_COLD:
|
|
return damon_cold_score(context, r, scheme);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return DAMOS_MAX_SCORE;
|
|
}
|
|
|
|
static int __init damon_va_initcall(void)
|
|
{
|
|
struct damon_operations ops = {
|
|
.id = DAMON_OPS_VADDR,
|
|
.init = damon_va_init,
|
|
.update = damon_va_update,
|
|
.prepare_access_checks = damon_va_prepare_access_checks,
|
|
.check_accesses = damon_va_check_accesses,
|
|
.target_valid = damon_va_target_valid,
|
|
.cleanup_target = damon_va_cleanup_target,
|
|
.cleanup = NULL,
|
|
.apply_scheme = damon_va_apply_scheme,
|
|
.get_scheme_score = damon_va_scheme_score,
|
|
};
|
|
/* ops for fixed virtual address ranges */
|
|
struct damon_operations ops_fvaddr = ops;
|
|
int err;
|
|
|
|
/* Don't set the monitoring target regions for the entire mapping */
|
|
ops_fvaddr.id = DAMON_OPS_FVADDR;
|
|
ops_fvaddr.init = NULL;
|
|
ops_fvaddr.update = NULL;
|
|
|
|
err = damon_register_ops(&ops);
|
|
if (err)
|
|
return err;
|
|
return damon_register_ops(&ops_fvaddr);
|
|
};
|
|
|
|
subsys_initcall(damon_va_initcall);
|
|
|
|
#include "tests/vaddr-kunit.h"
|