linux/tools/testing/selftests/kvm/pre_fault_memory_test.c

244 lines
6.4 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2024, Intel, Inc
*
* Author:
* Isaku Yamahata <isaku.yamahata at gmail.com>
*/
#include <linux/sizes.h>
#include <test_util.h>
#include <kvm_util.h>
#include <processor.h>
#include <pthread.h>
/* Arbitrarily chosen values */
#define TEST_SIZE (SZ_2M + PAGE_SIZE)
#define TEST_NPAGES (TEST_SIZE / PAGE_SIZE)
#define TEST_SLOT 10
static void guest_code(uint64_t base_gpa)
{
volatile uint64_t val __used;
int i;
for (i = 0; i < TEST_NPAGES; i++) {
uint64_t *src = (uint64_t *)(base_gpa + i * PAGE_SIZE);
val = *src;
}
GUEST_DONE();
}
struct slot_worker_data {
struct kvm_vm *vm;
u64 gpa;
uint32_t flags;
bool worker_ready;
bool prefault_ready;
bool recreate_slot;
};
static void *delete_slot_worker(void *__data)
{
struct slot_worker_data *data = __data;
struct kvm_vm *vm = data->vm;
WRITE_ONCE(data->worker_ready, true);
while (!READ_ONCE(data->prefault_ready))
cpu_relax();
vm_mem_region_delete(vm, TEST_SLOT);
while (!READ_ONCE(data->recreate_slot))
cpu_relax();
vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, data->gpa,
TEST_SLOT, TEST_NPAGES, data->flags);
return NULL;
}
static void pre_fault_memory(struct kvm_vcpu *vcpu, u64 base_gpa, u64 offset,
u64 size, u64 expected_left, bool private)
{
struct kvm_pre_fault_memory range = {
.gpa = base_gpa + offset,
.size = size,
.flags = 0,
};
struct slot_worker_data data = {
.vm = vcpu->vm,
.gpa = base_gpa,
.flags = private ? KVM_MEM_GUEST_MEMFD : 0,
};
bool slot_recreated = false;
pthread_t slot_worker;
int ret, save_errno;
u64 prev;
/*
* Concurrently delete (and recreate) the slot to test KVM's handling
* of a racing memslot deletion with prefaulting.
*/
pthread_create(&slot_worker, NULL, delete_slot_worker, &data);
while (!READ_ONCE(data.worker_ready))
cpu_relax();
WRITE_ONCE(data.prefault_ready, true);
for (;;) {
prev = range.size;
ret = __vcpu_ioctl(vcpu, KVM_PRE_FAULT_MEMORY, &range);
save_errno = errno;
TEST_ASSERT((range.size < prev) ^ (ret < 0),
"%sexpecting range.size to change on %s",
ret < 0 ? "not " : "",
ret < 0 ? "failure" : "success");
/*
* Immediately retry prefaulting if KVM was interrupted by an
* unrelated signal/event.
*/
if (ret < 0 && save_errno == EINTR)
continue;
/*
* Tell the worker to recreate the slot in order to complete
* prefaulting (if prefault didn't already succeed before the
* slot was deleted) and/or to prepare for the next testcase.
* Wait for the worker to exit so that the next invocation of
* prefaulting is guaranteed to complete (assuming no KVM bugs).
*/
if (!slot_recreated) {
WRITE_ONCE(data.recreate_slot, true);
pthread_join(slot_worker, NULL);
slot_recreated = true;
/*
* Retry prefaulting to get a stable result, i.e. to
* avoid seeing random EAGAIN failures. Don't retry if
* prefaulting already succeeded, as KVM disallows
* prefaulting with size=0, i.e. blindly retrying would
* result in test failures due to EINVAL. KVM should
* always return success if all bytes are prefaulted,
* i.e. there is no need to guard against EAGAIN being
* returned.
*/
if (range.size)
continue;
}
/*
* All done if there are no remaining bytes to prefault, or if
* prefaulting failed (EINTR was handled above, and EAGAIN due
* to prefaulting a memslot that's being actively deleted should
* be impossible since the memslot has already been recreated).
*/
if (!range.size || ret < 0)
break;
}
TEST_ASSERT(range.size == expected_left,
"Completed with %llu bytes left, expected %lu",
range.size, expected_left);
/*
* Assert success if prefaulting the entire range should succeed, i.e.
* complete with no bytes remaining. Otherwise prefaulting should have
* failed due to ENOENT (due to RET_PF_EMULATE for emulated MMIO when
* no memslot exists).
*/
if (!expected_left)
TEST_ASSERT_VM_VCPU_IOCTL(!ret, KVM_PRE_FAULT_MEMORY, ret, vcpu->vm);
else
TEST_ASSERT_VM_VCPU_IOCTL(ret && save_errno == ENOENT,
KVM_PRE_FAULT_MEMORY, ret, vcpu->vm);
}
static void __test_pre_fault_memory(unsigned long vm_type, bool private)
{
const struct vm_shape shape = {
.mode = VM_MODE_DEFAULT,
.type = vm_type,
};
struct kvm_vcpu *vcpu;
struct kvm_run *run;
struct kvm_vm *vm;
struct ucall uc;
uint64_t guest_test_phys_mem;
uint64_t guest_test_virt_mem;
uint64_t alignment, guest_page_size;
vm = vm_create_shape_with_one_vcpu(shape, &vcpu, guest_code);
alignment = guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size;
guest_test_phys_mem = (vm->max_gfn - TEST_NPAGES) * guest_page_size;
#ifdef __s390x__
alignment = max(0x100000UL, guest_page_size);
#else
alignment = SZ_2M;
#endif
guest_test_phys_mem = align_down(guest_test_phys_mem, alignment);
guest_test_virt_mem = guest_test_phys_mem & ((1ULL << (vm->va_bits - 1)) - 1);
vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
guest_test_phys_mem, TEST_SLOT, TEST_NPAGES,
private ? KVM_MEM_GUEST_MEMFD : 0);
virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, TEST_NPAGES);
if (private)
vm_mem_set_private(vm, guest_test_phys_mem, TEST_SIZE);
pre_fault_memory(vcpu, guest_test_phys_mem, 0, SZ_2M, 0, private);
pre_fault_memory(vcpu, guest_test_phys_mem, SZ_2M, PAGE_SIZE * 2, PAGE_SIZE, private);
pre_fault_memory(vcpu, guest_test_phys_mem, TEST_SIZE, PAGE_SIZE, PAGE_SIZE, private);
vcpu_args_set(vcpu, 1, guest_test_virt_mem);
vcpu_run(vcpu);
run = vcpu->run;
TEST_ASSERT(run->exit_reason == KVM_EXIT_IO,
"Wanted KVM_EXIT_IO, got exit reason: %u (%s)",
run->exit_reason, exit_reason_str(run->exit_reason));
switch (get_ucall(vcpu, &uc)) {
case UCALL_ABORT:
REPORT_GUEST_ASSERT(uc);
break;
case UCALL_DONE:
break;
default:
TEST_FAIL("Unknown ucall 0x%lx.", uc.cmd);
break;
}
kvm_vm_free(vm);
}
static void test_pre_fault_memory(unsigned long vm_type, bool private)
{
if (vm_type && !(kvm_check_cap(KVM_CAP_VM_TYPES) & BIT(vm_type))) {
pr_info("Skipping tests for vm_type 0x%lx\n", vm_type);
return;
}
__test_pre_fault_memory(vm_type, private);
}
int main(int argc, char *argv[])
{
TEST_REQUIRE(kvm_check_cap(KVM_CAP_PRE_FAULT_MEMORY));
test_pre_fault_memory(0, false);
#ifdef __x86_64__
test_pre_fault_memory(KVM_X86_SW_PROTECTED_VM, false);
test_pre_fault_memory(KVM_X86_SW_PROTECTED_VM, true);
#endif
return 0;
}