490 lines
14 KiB
C
490 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
#include <asm/msr-index.h>
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "kvm_util.h"
|
|
#include "processor.h"
|
|
|
|
/* Use HYPERVISOR for MSRs that are emulated unconditionally (as is HYPERVISOR). */
|
|
#define X86_FEATURE_NONE X86_FEATURE_HYPERVISOR
|
|
|
|
struct kvm_msr {
|
|
const struct kvm_x86_cpu_feature feature;
|
|
const struct kvm_x86_cpu_feature feature2;
|
|
const char *name;
|
|
const u64 reset_val;
|
|
const u64 write_val;
|
|
const u64 rsvd_val;
|
|
const u32 index;
|
|
const bool is_kvm_defined;
|
|
};
|
|
|
|
#define ____MSR_TEST(msr, str, val, rsvd, reset, feat, f2, is_kvm) \
|
|
{ \
|
|
.index = msr, \
|
|
.name = str, \
|
|
.write_val = val, \
|
|
.rsvd_val = rsvd, \
|
|
.reset_val = reset, \
|
|
.feature = X86_FEATURE_ ##feat, \
|
|
.feature2 = X86_FEATURE_ ##f2, \
|
|
.is_kvm_defined = is_kvm, \
|
|
}
|
|
|
|
#define __MSR_TEST(msr, str, val, rsvd, reset, feat) \
|
|
____MSR_TEST(msr, str, val, rsvd, reset, feat, feat, false)
|
|
|
|
#define MSR_TEST_NON_ZERO(msr, val, rsvd, reset, feat) \
|
|
__MSR_TEST(msr, #msr, val, rsvd, reset, feat)
|
|
|
|
#define MSR_TEST(msr, val, rsvd, feat) \
|
|
__MSR_TEST(msr, #msr, val, rsvd, 0, feat)
|
|
|
|
#define MSR_TEST2(msr, val, rsvd, feat, f2) \
|
|
____MSR_TEST(msr, #msr, val, rsvd, 0, feat, f2, false)
|
|
|
|
/*
|
|
* Note, use a page aligned value for the canonical value so that the value
|
|
* is compatible with MSRs that use bits 11:0 for things other than addresses.
|
|
*/
|
|
static const u64 canonical_val = 0x123456789000ull;
|
|
|
|
/*
|
|
* Arbitrary value with bits set in every byte, but not all bits set. This is
|
|
* also a non-canonical value, but that's coincidental (any 64-bit value with
|
|
* an alternating 0s/1s pattern will be non-canonical).
|
|
*/
|
|
static const u64 u64_val = 0xaaaa5555aaaa5555ull;
|
|
|
|
#define MSR_TEST_CANONICAL(msr, feat) \
|
|
__MSR_TEST(msr, #msr, canonical_val, NONCANONICAL, 0, feat)
|
|
|
|
#define MSR_TEST_KVM(msr, val, rsvd, feat) \
|
|
____MSR_TEST(KVM_REG_ ##msr, #msr, val, rsvd, 0, feat, feat, true)
|
|
|
|
/*
|
|
* The main struct must be scoped to a function due to the use of structures to
|
|
* define features. For the global structure, allocate enough space for the
|
|
* foreseeable future without getting too ridiculous, to minimize maintenance
|
|
* costs (bumping the array size every time an MSR is added is really annoying).
|
|
*/
|
|
static struct kvm_msr msrs[128];
|
|
static int idx;
|
|
|
|
static bool ignore_unsupported_msrs;
|
|
|
|
static u64 fixup_rdmsr_val(u32 msr, u64 want)
|
|
{
|
|
/*
|
|
* AMD CPUs drop bits 63:32 on some MSRs that Intel CPUs support. KVM
|
|
* is supposed to emulate that behavior based on guest vendor model
|
|
* (which is the same as the host vendor model for this test).
|
|
*/
|
|
if (!host_cpu_is_amd)
|
|
return want;
|
|
|
|
switch (msr) {
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
case MSR_TSC_AUX:
|
|
return want & GENMASK_ULL(31, 0);
|
|
default:
|
|
return want;
|
|
}
|
|
}
|
|
|
|
static void __rdmsr(u32 msr, u64 want)
|
|
{
|
|
u64 val;
|
|
u8 vec;
|
|
|
|
vec = rdmsr_safe(msr, &val);
|
|
__GUEST_ASSERT(!vec, "Unexpected %s on RDMSR(0x%x)", ex_str(vec), msr);
|
|
|
|
__GUEST_ASSERT(val == want, "Wanted 0x%lx from RDMSR(0x%x), got 0x%lx",
|
|
want, msr, val);
|
|
}
|
|
|
|
static void __wrmsr(u32 msr, u64 val)
|
|
{
|
|
u8 vec;
|
|
|
|
vec = wrmsr_safe(msr, val);
|
|
__GUEST_ASSERT(!vec, "Unexpected %s on WRMSR(0x%x, 0x%lx)",
|
|
ex_str(vec), msr, val);
|
|
__rdmsr(msr, fixup_rdmsr_val(msr, val));
|
|
}
|
|
|
|
static void guest_test_supported_msr(const struct kvm_msr *msr)
|
|
{
|
|
__rdmsr(msr->index, msr->reset_val);
|
|
__wrmsr(msr->index, msr->write_val);
|
|
GUEST_SYNC(fixup_rdmsr_val(msr->index, msr->write_val));
|
|
|
|
__rdmsr(msr->index, msr->reset_val);
|
|
}
|
|
|
|
static void guest_test_unsupported_msr(const struct kvm_msr *msr)
|
|
{
|
|
u64 val;
|
|
u8 vec;
|
|
|
|
/*
|
|
* KVM's ABI with respect to ignore_msrs is a mess and largely beyond
|
|
* repair, just skip the unsupported MSR tests.
|
|
*/
|
|
if (ignore_unsupported_msrs)
|
|
goto skip_wrmsr_gp;
|
|
|
|
/*
|
|
* {S,U}_CET exist if IBT or SHSTK is supported, but with bits that are
|
|
* writable only if their associated feature is supported. Skip the
|
|
* RDMSR #GP test if the secondary feature is supported, but perform
|
|
* the WRMSR #GP test as the to-be-written value is tied to the primary
|
|
* feature. For all other MSRs, simply do nothing.
|
|
*/
|
|
if (this_cpu_has(msr->feature2)) {
|
|
if (msr->index != MSR_IA32_U_CET &&
|
|
msr->index != MSR_IA32_S_CET)
|
|
goto skip_wrmsr_gp;
|
|
|
|
goto skip_rdmsr_gp;
|
|
}
|
|
|
|
vec = rdmsr_safe(msr->index, &val);
|
|
__GUEST_ASSERT(vec == GP_VECTOR, "Wanted #GP on RDMSR(0x%x), got %s",
|
|
msr->index, ex_str(vec));
|
|
|
|
skip_rdmsr_gp:
|
|
vec = wrmsr_safe(msr->index, msr->write_val);
|
|
__GUEST_ASSERT(vec == GP_VECTOR, "Wanted #GP on WRMSR(0x%x, 0x%lx), got %s",
|
|
msr->index, msr->write_val, ex_str(vec));
|
|
|
|
skip_wrmsr_gp:
|
|
GUEST_SYNC(0);
|
|
}
|
|
|
|
void guest_test_reserved_val(const struct kvm_msr *msr)
|
|
{
|
|
/* Skip reserved value checks as well, ignore_msrs is trully a mess. */
|
|
if (ignore_unsupported_msrs)
|
|
return;
|
|
|
|
/*
|
|
* If the CPU will truncate the written value (e.g. SYSENTER on AMD),
|
|
* expect success and a truncated value, not #GP.
|
|
*/
|
|
if (!this_cpu_has(msr->feature) ||
|
|
msr->rsvd_val == fixup_rdmsr_val(msr->index, msr->rsvd_val)) {
|
|
u8 vec = wrmsr_safe(msr->index, msr->rsvd_val);
|
|
|
|
__GUEST_ASSERT(vec == GP_VECTOR,
|
|
"Wanted #GP on WRMSR(0x%x, 0x%lx), got %s",
|
|
msr->index, msr->rsvd_val, ex_str(vec));
|
|
} else {
|
|
__wrmsr(msr->index, msr->rsvd_val);
|
|
__wrmsr(msr->index, msr->reset_val);
|
|
}
|
|
}
|
|
|
|
static void guest_main(void)
|
|
{
|
|
for (;;) {
|
|
const struct kvm_msr *msr = &msrs[READ_ONCE(idx)];
|
|
|
|
if (this_cpu_has(msr->feature))
|
|
guest_test_supported_msr(msr);
|
|
else
|
|
guest_test_unsupported_msr(msr);
|
|
|
|
if (msr->rsvd_val)
|
|
guest_test_reserved_val(msr);
|
|
|
|
GUEST_SYNC(msr->reset_val);
|
|
}
|
|
}
|
|
|
|
static bool has_one_reg;
|
|
static bool use_one_reg;
|
|
|
|
#define KVM_X86_MAX_NR_REGS 1
|
|
|
|
static bool vcpu_has_reg(struct kvm_vcpu *vcpu, u64 reg)
|
|
{
|
|
struct {
|
|
struct kvm_reg_list list;
|
|
u64 regs[KVM_X86_MAX_NR_REGS];
|
|
} regs = {};
|
|
int r, i;
|
|
|
|
/*
|
|
* If KVM_GET_REG_LIST succeeds with n=0, i.e. there are no supported
|
|
* regs, then the vCPU obviously doesn't support the reg.
|
|
*/
|
|
r = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®s.list);
|
|
if (!r)
|
|
return false;
|
|
|
|
TEST_ASSERT_EQ(errno, E2BIG);
|
|
|
|
/*
|
|
* KVM x86 is expected to support enumerating a relative small number
|
|
* of regs. The majority of registers supported by KVM_{G,S}ET_ONE_REG
|
|
* are enumerated via other ioctls, e.g. KVM_GET_MSR_INDEX_LIST. For
|
|
* simplicity, hardcode the maximum number of regs and manually update
|
|
* the test as necessary.
|
|
*/
|
|
TEST_ASSERT(regs.list.n <= KVM_X86_MAX_NR_REGS,
|
|
"KVM reports %llu regs, test expects at most %u regs, stale test?",
|
|
regs.list.n, KVM_X86_MAX_NR_REGS);
|
|
|
|
vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®s.list);
|
|
for (i = 0; i < regs.list.n; i++) {
|
|
if (regs.regs[i] == reg)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void host_test_kvm_reg(struct kvm_vcpu *vcpu)
|
|
{
|
|
bool has_reg = vcpu_cpuid_has(vcpu, msrs[idx].feature);
|
|
u64 reset_val = msrs[idx].reset_val;
|
|
u64 write_val = msrs[idx].write_val;
|
|
u64 rsvd_val = msrs[idx].rsvd_val;
|
|
u32 reg = msrs[idx].index;
|
|
u64 val;
|
|
int r;
|
|
|
|
if (!use_one_reg)
|
|
return;
|
|
|
|
TEST_ASSERT_EQ(vcpu_has_reg(vcpu, KVM_X86_REG_KVM(reg)), has_reg);
|
|
|
|
if (!has_reg) {
|
|
r = __vcpu_get_reg(vcpu, KVM_X86_REG_KVM(reg), &val);
|
|
TEST_ASSERT(r && errno == EINVAL,
|
|
"Expected failure on get_reg(0x%x)", reg);
|
|
rsvd_val = 0;
|
|
goto out;
|
|
}
|
|
|
|
val = vcpu_get_reg(vcpu, KVM_X86_REG_KVM(reg));
|
|
TEST_ASSERT(val == reset_val, "Wanted 0x%lx from get_reg(0x%x), got 0x%lx",
|
|
reset_val, reg, val);
|
|
|
|
vcpu_set_reg(vcpu, KVM_X86_REG_KVM(reg), write_val);
|
|
val = vcpu_get_reg(vcpu, KVM_X86_REG_KVM(reg));
|
|
TEST_ASSERT(val == write_val, "Wanted 0x%lx from get_reg(0x%x), got 0x%lx",
|
|
write_val, reg, val);
|
|
|
|
out:
|
|
r = __vcpu_set_reg(vcpu, KVM_X86_REG_KVM(reg), rsvd_val);
|
|
TEST_ASSERT(r, "Expected failure on set_reg(0x%x, 0x%lx)", reg, rsvd_val);
|
|
}
|
|
|
|
static void host_test_msr(struct kvm_vcpu *vcpu, u64 guest_val)
|
|
{
|
|
u64 reset_val = msrs[idx].reset_val;
|
|
u32 msr = msrs[idx].index;
|
|
u64 val;
|
|
|
|
if (!kvm_cpu_has(msrs[idx].feature))
|
|
return;
|
|
|
|
val = vcpu_get_msr(vcpu, msr);
|
|
TEST_ASSERT(val == guest_val, "Wanted 0x%lx from get_msr(0x%x), got 0x%lx",
|
|
guest_val, msr, val);
|
|
|
|
if (use_one_reg)
|
|
vcpu_set_reg(vcpu, KVM_X86_REG_MSR(msr), reset_val);
|
|
else
|
|
vcpu_set_msr(vcpu, msr, reset_val);
|
|
|
|
val = vcpu_get_msr(vcpu, msr);
|
|
TEST_ASSERT(val == reset_val, "Wanted 0x%lx from get_msr(0x%x), got 0x%lx",
|
|
reset_val, msr, val);
|
|
|
|
if (!has_one_reg)
|
|
return;
|
|
|
|
val = vcpu_get_reg(vcpu, KVM_X86_REG_MSR(msr));
|
|
TEST_ASSERT(val == reset_val, "Wanted 0x%lx from get_reg(0x%x), got 0x%lx",
|
|
reset_val, msr, val);
|
|
}
|
|
|
|
static void do_vcpu_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct ucall uc;
|
|
|
|
for (;;) {
|
|
vcpu_run(vcpu);
|
|
|
|
switch (get_ucall(vcpu, &uc)) {
|
|
case UCALL_SYNC:
|
|
host_test_msr(vcpu, uc.args[1]);
|
|
return;
|
|
case UCALL_PRINTF:
|
|
pr_info("%s", uc.buffer);
|
|
break;
|
|
case UCALL_ABORT:
|
|
REPORT_GUEST_ASSERT(uc);
|
|
case UCALL_DONE:
|
|
TEST_FAIL("Unexpected UCALL_DONE");
|
|
default:
|
|
TEST_FAIL("Unexpected ucall: %lu", uc.cmd);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void vcpus_run(struct kvm_vcpu **vcpus, const int NR_VCPUS)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NR_VCPUS; i++)
|
|
do_vcpu_run(vcpus[i]);
|
|
}
|
|
|
|
#define MISC_ENABLES_RESET_VAL (MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | MSR_IA32_MISC_ENABLE_BTS_UNAVAIL)
|
|
|
|
static void test_msrs(void)
|
|
{
|
|
const struct kvm_msr __msrs[] = {
|
|
MSR_TEST_NON_ZERO(MSR_IA32_MISC_ENABLE,
|
|
MISC_ENABLES_RESET_VAL | MSR_IA32_MISC_ENABLE_FAST_STRING,
|
|
MSR_IA32_MISC_ENABLE_FAST_STRING, MISC_ENABLES_RESET_VAL, NONE),
|
|
MSR_TEST_NON_ZERO(MSR_IA32_CR_PAT, 0x07070707, 0, 0x7040600070406, NONE),
|
|
|
|
/*
|
|
* TSC_AUX is supported if RDTSCP *or* RDPID is supported. Add
|
|
* entries for each features so that TSC_AUX doesn't exists for
|
|
* the "unsupported" vCPU, and obviously to test both cases.
|
|
*/
|
|
MSR_TEST2(MSR_TSC_AUX, 0x12345678, u64_val, RDTSCP, RDPID),
|
|
MSR_TEST2(MSR_TSC_AUX, 0x12345678, u64_val, RDPID, RDTSCP),
|
|
|
|
MSR_TEST(MSR_IA32_SYSENTER_CS, 0x1234, 0, NONE),
|
|
/*
|
|
* SYSENTER_{ESP,EIP} are technically non-canonical on Intel,
|
|
* but KVM doesn't emulate that behavior on emulated writes,
|
|
* i.e. this test will observe different behavior if the MSR
|
|
* writes are handed by hardware vs. KVM. KVM's behavior is
|
|
* intended (though far from ideal), so don't bother testing
|
|
* non-canonical values.
|
|
*/
|
|
MSR_TEST(MSR_IA32_SYSENTER_ESP, canonical_val, 0, NONE),
|
|
MSR_TEST(MSR_IA32_SYSENTER_EIP, canonical_val, 0, NONE),
|
|
|
|
MSR_TEST_CANONICAL(MSR_FS_BASE, LM),
|
|
MSR_TEST_CANONICAL(MSR_GS_BASE, LM),
|
|
MSR_TEST_CANONICAL(MSR_KERNEL_GS_BASE, LM),
|
|
MSR_TEST_CANONICAL(MSR_LSTAR, LM),
|
|
MSR_TEST_CANONICAL(MSR_CSTAR, LM),
|
|
MSR_TEST(MSR_SYSCALL_MASK, 0xffffffff, 0, LM),
|
|
|
|
MSR_TEST2(MSR_IA32_S_CET, CET_SHSTK_EN, CET_RESERVED, SHSTK, IBT),
|
|
MSR_TEST2(MSR_IA32_S_CET, CET_ENDBR_EN, CET_RESERVED, IBT, SHSTK),
|
|
MSR_TEST2(MSR_IA32_U_CET, CET_SHSTK_EN, CET_RESERVED, SHSTK, IBT),
|
|
MSR_TEST2(MSR_IA32_U_CET, CET_ENDBR_EN, CET_RESERVED, IBT, SHSTK),
|
|
MSR_TEST_CANONICAL(MSR_IA32_PL0_SSP, SHSTK),
|
|
MSR_TEST(MSR_IA32_PL0_SSP, canonical_val, canonical_val | 1, SHSTK),
|
|
MSR_TEST_CANONICAL(MSR_IA32_PL1_SSP, SHSTK),
|
|
MSR_TEST(MSR_IA32_PL1_SSP, canonical_val, canonical_val | 1, SHSTK),
|
|
MSR_TEST_CANONICAL(MSR_IA32_PL2_SSP, SHSTK),
|
|
MSR_TEST(MSR_IA32_PL2_SSP, canonical_val, canonical_val | 1, SHSTK),
|
|
MSR_TEST_CANONICAL(MSR_IA32_PL3_SSP, SHSTK),
|
|
MSR_TEST(MSR_IA32_PL3_SSP, canonical_val, canonical_val | 1, SHSTK),
|
|
|
|
MSR_TEST_KVM(GUEST_SSP, canonical_val, NONCANONICAL, SHSTK),
|
|
};
|
|
|
|
const struct kvm_x86_cpu_feature feat_none = X86_FEATURE_NONE;
|
|
const struct kvm_x86_cpu_feature feat_lm = X86_FEATURE_LM;
|
|
|
|
/*
|
|
* Create three vCPUs, but run them on the same task, to validate KVM's
|
|
* context switching of MSR state. Don't pin the task to a pCPU to
|
|
* also validate KVM's handling of cross-pCPU migration. Use the full
|
|
* set of features for the first two vCPUs, but clear all features in
|
|
* third vCPU in order to test both positive and negative paths.
|
|
*/
|
|
const int NR_VCPUS = 3;
|
|
struct kvm_vcpu *vcpus[NR_VCPUS];
|
|
struct kvm_vm *vm;
|
|
int i;
|
|
|
|
kvm_static_assert(sizeof(__msrs) <= sizeof(msrs));
|
|
kvm_static_assert(ARRAY_SIZE(__msrs) <= ARRAY_SIZE(msrs));
|
|
memcpy(msrs, __msrs, sizeof(__msrs));
|
|
|
|
ignore_unsupported_msrs = kvm_is_ignore_msrs();
|
|
|
|
vm = vm_create_with_vcpus(NR_VCPUS, guest_main, vcpus);
|
|
|
|
sync_global_to_guest(vm, msrs);
|
|
sync_global_to_guest(vm, ignore_unsupported_msrs);
|
|
|
|
/*
|
|
* Clear features in the "unsupported features" vCPU. This needs to be
|
|
* done before the first vCPU run as KVM's ABI is that guest CPUID is
|
|
* immutable once the vCPU has been run.
|
|
*/
|
|
for (idx = 0; idx < ARRAY_SIZE(__msrs); idx++) {
|
|
/*
|
|
* Don't clear LM; selftests are 64-bit only, and KVM doesn't
|
|
* honor LM=0 for MSRs that are supposed to exist if and only
|
|
* if the vCPU is a 64-bit model. Ditto for NONE; clearing a
|
|
* fake feature flag will result in false failures.
|
|
*/
|
|
if (memcmp(&msrs[idx].feature, &feat_lm, sizeof(feat_lm)) &&
|
|
memcmp(&msrs[idx].feature, &feat_none, sizeof(feat_none)))
|
|
vcpu_clear_cpuid_feature(vcpus[2], msrs[idx].feature);
|
|
}
|
|
|
|
for (idx = 0; idx < ARRAY_SIZE(__msrs); idx++) {
|
|
struct kvm_msr *msr = &msrs[idx];
|
|
|
|
if (msr->is_kvm_defined) {
|
|
for (i = 0; i < NR_VCPUS; i++)
|
|
host_test_kvm_reg(vcpus[i]);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Verify KVM_GET_SUPPORTED_CPUID and KVM_GET_MSR_INDEX_LIST
|
|
* are consistent with respect to MSRs whose existence is
|
|
* enumerated via CPUID. Skip the check for FS/GS.base MSRs,
|
|
* as they aren't reported in the save/restore list since their
|
|
* state is managed via SREGS.
|
|
*/
|
|
TEST_ASSERT(msr->index == MSR_FS_BASE || msr->index == MSR_GS_BASE ||
|
|
kvm_msr_is_in_save_restore_list(msr->index) ==
|
|
(kvm_cpu_has(msr->feature) || kvm_cpu_has(msr->feature2)),
|
|
"%s %s in save/restore list, but %s according to CPUID", msr->name,
|
|
kvm_msr_is_in_save_restore_list(msr->index) ? "is" : "isn't",
|
|
(kvm_cpu_has(msr->feature) || kvm_cpu_has(msr->feature2)) ?
|
|
"supported" : "unsupported");
|
|
|
|
sync_global_to_guest(vm, idx);
|
|
|
|
vcpus_run(vcpus, NR_VCPUS);
|
|
vcpus_run(vcpus, NR_VCPUS);
|
|
}
|
|
|
|
kvm_vm_free(vm);
|
|
}
|
|
|
|
int main(void)
|
|
{
|
|
has_one_reg = kvm_has_cap(KVM_CAP_ONE_REG);
|
|
|
|
test_msrs();
|
|
|
|
if (has_one_reg) {
|
|
use_one_reg = true;
|
|
test_msrs();
|
|
}
|
|
}
|