linux/tools/testing/selftests/futex/functional/futex_requeue_pi.c

401 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/******************************************************************************
*
* Copyright © International Business Machines Corp., 2006-2008
*
* DESCRIPTION
* This test excercises the futex syscall op codes needed for requeuing
* priority inheritance aware POSIX condition variables and mutexes.
*
* AUTHORS
* Sripathi Kodi <sripathik@in.ibm.com>
* Darren Hart <dvhart@linux.intel.com>
*
* HISTORY
* 2008-Jan-13: Initial version by Sripathi Kodi <sripathik@in.ibm.com>
* 2009-Nov-6: futex test adaptation by Darren Hart <dvhart@linux.intel.com>
*
*****************************************************************************/
#define _GNU_SOURCE
#include <errno.h>
#include <limits.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <string.h>
#include "atomic.h"
#include "futextest.h"
#include "../../kselftest_harness.h"
#define MAX_WAKE_ITERS 1000
#define THREAD_MAX 10
#define SIGNAL_PERIOD_US 100
atomic_t waiters_blocked = ATOMIC_INITIALIZER;
atomic_t waiters_woken = ATOMIC_INITIALIZER;
futex_t f1 = FUTEX_INITIALIZER;
futex_t f2 = FUTEX_INITIALIZER;
futex_t wake_complete = FUTEX_INITIALIZER;
struct thread_arg {
long id;
struct timespec *timeout;
int lock;
int ret;
};
#define THREAD_ARG_INITIALIZER { 0, NULL, 0, 0 }
FIXTURE(args)
{
};
FIXTURE_SETUP(args)
{
};
FIXTURE_TEARDOWN(args)
{
};
FIXTURE_VARIANT(args)
{
long timeout_ns;
bool broadcast;
bool owner;
bool locked;
};
/*
* For a given timeout value, this macro creates a test input with all the
* possible combinations of valid arguments
*/
#define FIXTURE_VARIANT_ADD_TIMEOUT(timeout) \
\
FIXTURE_VARIANT_ADD(args, t_##timeout) \
{ \
.timeout_ns = timeout, \
}; \
\
FIXTURE_VARIANT_ADD(args, t_##timeout##_broadcast) \
{ \
.timeout_ns = timeout, \
.broadcast = true, \
}; \
\
FIXTURE_VARIANT_ADD(args, t_##timeout##_broadcast_locked) \
{ \
.timeout_ns = timeout, \
.broadcast = true, \
.locked = true, \
}; \
\
FIXTURE_VARIANT_ADD(args, t_##timeout##_broadcast_owner) \
{ \
.timeout_ns = timeout, \
.broadcast = true, \
.owner = true, \
}; \
\
FIXTURE_VARIANT_ADD(args, t_##timeout##_locked) \
{ \
.timeout_ns = timeout, \
.locked = true, \
}; \
\
FIXTURE_VARIANT_ADD(args, t_##timeout##_owner) \
{ \
.timeout_ns = timeout, \
.owner = true, \
}; \
FIXTURE_VARIANT_ADD_TIMEOUT(0);
FIXTURE_VARIANT_ADD_TIMEOUT(5000);
FIXTURE_VARIANT_ADD_TIMEOUT(500000);
FIXTURE_VARIANT_ADD_TIMEOUT(2000000000);
int create_rt_thread(pthread_t *pth, void*(*func)(void *), void *arg,
int policy, int prio)
{
int ret;
struct sched_param schedp;
pthread_attr_t attr;
pthread_attr_init(&attr);
memset(&schedp, 0, sizeof(schedp));
ret = pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
if (ret) {
ksft_exit_fail_msg("pthread_attr_setinheritsched\n");
return -1;
}
ret = pthread_attr_setschedpolicy(&attr, policy);
if (ret) {
ksft_exit_fail_msg("pthread_attr_setschedpolicy\n");
return -1;
}
schedp.sched_priority = prio;
ret = pthread_attr_setschedparam(&attr, &schedp);
if (ret) {
ksft_exit_fail_msg("pthread_attr_setschedparam\n");
return -1;
}
ret = pthread_create(pth, &attr, func, arg);
if (ret) {
ksft_exit_fail_msg("pthread_create\n");
return -1;
}
return 0;
}
void *waiterfn(void *arg)
{
struct thread_arg *args = (struct thread_arg *)arg;
futex_t old_val;
ksft_print_dbg_msg("Waiter %ld: running\n", args->id);
/* Each thread sleeps for a different amount of time
* This is to avoid races, because we don't lock the
* external mutex here */
usleep(1000 * (long)args->id);
old_val = f1;
atomic_inc(&waiters_blocked);
ksft_print_dbg_msg("Calling futex_wait_requeue_pi: %p (%u) -> %p\n",
&f1, f1, &f2);
args->ret = futex_wait_requeue_pi(&f1, old_val, &f2, args->timeout,
FUTEX_PRIVATE_FLAG);
ksft_print_dbg_msg("waiter %ld woke with %d %s\n", args->id, args->ret,
args->ret < 0 ? strerror(errno) : "");
atomic_inc(&waiters_woken);
if (args->ret < 0) {
if (args->timeout && errno == ETIMEDOUT)
args->ret = 0;
else {
ksft_exit_fail_msg("futex_wait_requeue_pi\n");
}
futex_lock_pi(&f2, NULL, 0, FUTEX_PRIVATE_FLAG);
}
futex_unlock_pi(&f2, FUTEX_PRIVATE_FLAG);
ksft_print_dbg_msg("Waiter %ld: exiting with %d\n", args->id, args->ret);
pthread_exit((void *)&args->ret);
}
void *broadcast_wakerfn(void *arg)
{
struct thread_arg *args = (struct thread_arg *)arg;
int nr_requeue = INT_MAX;
int task_count = 0;
futex_t old_val;
int nr_wake = 1;
int i = 0;
ksft_print_dbg_msg("Waker: waiting for waiters to block\n");
while (waiters_blocked.val < THREAD_MAX)
usleep(1000);
usleep(1000);
ksft_print_dbg_msg("Waker: Calling broadcast\n");
if (args->lock) {
ksft_print_dbg_msg("Calling FUTEX_LOCK_PI on mutex=%x @ %p\n", f2, &f2);
futex_lock_pi(&f2, NULL, 0, FUTEX_PRIVATE_FLAG);
}
continue_requeue:
old_val = f1;
args->ret = futex_cmp_requeue_pi(&f1, old_val, &f2, nr_wake, nr_requeue,
FUTEX_PRIVATE_FLAG);
if (args->ret < 0) {
ksft_exit_fail_msg("FUTEX_CMP_REQUEUE_PI failed\n");
} else if (++i < MAX_WAKE_ITERS) {
task_count += args->ret;
if (task_count < THREAD_MAX - waiters_woken.val)
goto continue_requeue;
} else {
ksft_exit_fail_msg("max broadcast iterations (%d) reached with %d/%d tasks woken or requeued\n",
MAX_WAKE_ITERS, task_count, THREAD_MAX);
}
futex_wake(&wake_complete, 1, FUTEX_PRIVATE_FLAG);
if (args->lock)
futex_unlock_pi(&f2, FUTEX_PRIVATE_FLAG);
if (args->ret > 0)
args->ret = task_count;
ksft_print_dbg_msg("Waker: exiting with %d\n", args->ret);
pthread_exit((void *)&args->ret);
}
void *signal_wakerfn(void *arg)
{
struct thread_arg *args = (struct thread_arg *)arg;
unsigned int old_val;
int nr_requeue = 0;
int task_count = 0;
int nr_wake = 1;
int i = 0;
ksft_print_dbg_msg("Waker: waiting for waiters to block\n");
while (waiters_blocked.val < THREAD_MAX)
usleep(1000);
usleep(1000);
while (task_count < THREAD_MAX && waiters_woken.val < THREAD_MAX) {
ksft_print_dbg_msg("task_count: %d, waiters_woken: %d\n",
task_count, waiters_woken.val);
if (args->lock) {
ksft_print_dbg_msg("Calling FUTEX_LOCK_PI on mutex=%x @ %p\n",
f2, &f2);
futex_lock_pi(&f2, NULL, 0, FUTEX_PRIVATE_FLAG);
}
ksft_print_dbg_msg("Waker: Calling signal\n");
/* cond_signal */
old_val = f1;
args->ret = futex_cmp_requeue_pi(&f1, old_val, &f2,
nr_wake, nr_requeue,
FUTEX_PRIVATE_FLAG);
if (args->ret < 0)
args->ret = -errno;
ksft_print_dbg_msg("futex: %x\n", f2);
if (args->lock) {
ksft_print_dbg_msg("Calling FUTEX_UNLOCK_PI on mutex=%x @ %p\n",
f2, &f2);
futex_unlock_pi(&f2, FUTEX_PRIVATE_FLAG);
}
ksft_print_dbg_msg("futex: %x\n", f2);
if (args->ret < 0)
ksft_exit_fail_msg("FUTEX_CMP_REQUEUE_PI failed\n");
task_count += args->ret;
usleep(SIGNAL_PERIOD_US);
i++;
/* we have to loop at least THREAD_MAX times */
if (i > MAX_WAKE_ITERS + THREAD_MAX) {
ksft_exit_fail_msg("max signaling iterations (%d) reached, giving up on pending waiters.\n",
MAX_WAKE_ITERS + THREAD_MAX);
}
}
futex_wake(&wake_complete, 1, FUTEX_PRIVATE_FLAG);
if (args->ret >= 0)
args->ret = task_count;
ksft_print_dbg_msg("Waker: exiting with %d\n", args->ret);
ksft_print_dbg_msg("Waker: waiters_woken: %d\n", waiters_woken.val);
pthread_exit((void *)&args->ret);
}
void *third_party_blocker(void *arg)
{
struct thread_arg *args = (struct thread_arg *)arg;
int ret2 = 0;
args->ret = futex_lock_pi(&f2, NULL, 0, FUTEX_PRIVATE_FLAG);
if (args->ret)
goto out;
args->ret = futex_wait(&wake_complete, wake_complete, NULL,
FUTEX_PRIVATE_FLAG);
ret2 = futex_unlock_pi(&f2, FUTEX_PRIVATE_FLAG);
out:
if (args->ret || ret2)
ksft_exit_fail_msg("third_party_blocker() futex error");
pthread_exit((void *)&args->ret);
}
TEST_F(args, futex_requeue_pi)
{
struct thread_arg blocker_arg = THREAD_ARG_INITIALIZER;
struct thread_arg waker_arg = THREAD_ARG_INITIALIZER;
pthread_t waiter[THREAD_MAX], waker, blocker;
void *(*wakerfn)(void *) = signal_wakerfn;
bool third_party_owner = variant->owner;
long timeout_ns = variant->timeout_ns;
bool broadcast = variant->broadcast;
struct thread_arg args[THREAD_MAX];
struct timespec ts, *tsp = NULL;
bool lock = variant->locked;
int *waiter_ret, i, ret = 0;
ksft_print_msg(
"\tArguments: broadcast=%d locked=%d owner=%d timeout=%ldns\n",
broadcast, lock, third_party_owner, timeout_ns);
if (timeout_ns) {
time_t secs;
ksft_print_dbg_msg("timeout_ns = %ld\n", timeout_ns);
ret = clock_gettime(CLOCK_MONOTONIC, &ts);
secs = (ts.tv_nsec + timeout_ns) / 1000000000;
ts.tv_nsec = ((int64_t)ts.tv_nsec + timeout_ns) % 1000000000;
ts.tv_sec += secs;
ksft_print_dbg_msg("ts.tv_sec = %ld\n", ts.tv_sec);
ksft_print_dbg_msg("ts.tv_nsec = %ld\n", ts.tv_nsec);
tsp = &ts;
}
if (broadcast)
wakerfn = broadcast_wakerfn;
if (third_party_owner) {
if (create_rt_thread(&blocker, third_party_blocker,
(void *)&blocker_arg, SCHED_FIFO, 1)) {
ksft_exit_fail_msg("Creating third party blocker thread failed\n");
}
}
atomic_set(&waiters_woken, 0);
for (i = 0; i < THREAD_MAX; i++) {
args[i].id = i;
args[i].timeout = tsp;
ksft_print_dbg_msg("Starting thread %d\n", i);
if (create_rt_thread(&waiter[i], waiterfn, (void *)&args[i],
SCHED_FIFO, 1)) {
ksft_exit_fail_msg("Creating waiting thread failed\n");
}
}
waker_arg.lock = lock;
if (create_rt_thread(&waker, wakerfn, (void *)&waker_arg,
SCHED_FIFO, 1)) {
ksft_exit_fail_msg("Creating waker thread failed\n");
}
/* Wait for threads to finish */
/* Store the first error or failure encountered in waiter_ret */
waiter_ret = &args[0].ret;
for (i = 0; i < THREAD_MAX; i++)
pthread_join(waiter[i],
*waiter_ret ? NULL : (void **)&waiter_ret);
if (third_party_owner)
pthread_join(blocker, NULL);
pthread_join(waker, NULL);
if (!ret) {
if (*waiter_ret)
ret = *waiter_ret;
else if (waker_arg.ret < 0)
ret = waker_arg.ret;
else if (blocker_arg.ret)
ret = blocker_arg.ret;
}
if (ret)
ksft_test_result_fail("fail");
}
TEST_HARNESS_MAIN