xz/cmake/tuklib_integer.cmake

289 lines
12 KiB
CMake

# SPDX-License-Identifier: 0BSD
#############################################################################
#
# tuklib_integer.cmake - see tuklib_integer.m4 for description and comments
#
# Author: Lasse Collin
#
#############################################################################
include("${CMAKE_CURRENT_LIST_DIR}/tuklib_common.cmake")
include(TestBigEndian)
include(CheckCSourceCompiles)
include(CheckIncludeFile)
include(CheckSymbolExists)
# An internal helper for tuklib_integer that attempts to detect if
# -mstrict-align or -mno-strict-align is in effect. This sets the
# cache variable TUKLIB_INTEGER_STRICT_ALIGN to ON if OBJDUMP_REGEX
# matches the objdump output of a check program. Otherwise it is set to OFF.
function(tuklib_integer_internal_strict_align OBJDUMP_REGEX)
if(NOT DEFINED TUKLIB_INTEGER_STRICT_ALIGN)
# Build a static library because then the function won't be optimized
# away, and there won't be any unrelated startup code either.
set(CMAKE_TRY_COMPILE_TARGET_TYPE STATIC_LIBRARY)
# CMake >= 3.25 wouldn't require us to create a temporary file,
# but the following method is compatible with 3.20.
file(WRITE "${CMAKE_BINARY_DIR}/tuklib_integer_strict_align.c" "
#include <string.h>
unsigned int check_strict_align(const void *p)
{
unsigned int i;
memcpy(&i, p, sizeof(i));
return i;
}
")
# Force -O2 because memcpy() won't be optimized out if optimizations
# are disabled.
try_compile(
TRY_COMPILE_RESULT
"${CMAKE_BINARY_DIR}"
"${CMAKE_BINARY_DIR}/tuklib_integer_strict_align.c"
COMPILE_DEFINITIONS "${CMAKE_REQUIRED_DEFINITIONS}"
CMAKE_FLAGS "-DCOMPILE_DEFINITIONS=${CMAKE_REQUIRED_FLAGS} -O2"
COPY_FILE "${CMAKE_BINARY_DIR}/tuklib_integer_strict_align.a"
)
if(NOT TRY_COMPILE_RESULT)
message(FATAL_ERROR
"Compilation of the strict align check failed. "
"Either the specified compiler flags are broken "
"or ${CMAKE_CURRENT_FUNCTION_LIST_FILE} has a bug.")
endif()
# Use WORKING_DIRECTORY instead of passing the full path to objdump.
# This ensures that the pathname won't affect the objdump output,
# which could result in an unwanted regex match in the next step.
execute_process(
COMMAND "${CMAKE_OBJDUMP}" -d "tuklib_integer_strict_align.a"
WORKING_DIRECTORY "${CMAKE_BINARY_DIR}"
OUTPUT_VARIABLE OBJDUMP_OUTPUT
RESULT_VARIABLE OBJDUMP_RESULT
)
# FIXME? Should we remove the temporary files here?
# Look for instructions that load unsigned bytes. If none are found,
# assume that -mno-strict-align is in effect.
if(OBJDUMP_RESULT STREQUAL "0" AND
OBJDUMP_OUTPUT MATCHES "${OBJDUMP_REGEX}")
set(TUKLIB_INTEGER_STRICT_ALIGN ON CACHE INTERNAL "")
else()
set(TUKLIB_INTEGER_STRICT_ALIGN OFF CACHE INTERNAL "")
endif()
endif()
endfunction()
function(tuklib_integer TARGET_OR_ALL)
# Check for endianness. Unlike the Autoconf's AC_C_BIGENDIAN, this doesn't
# support Apple universal binaries. The CMake module will leave the
# variable unset so we can catch that situation here instead of continuing
# as if we were little endian.
test_big_endian(WORDS_BIGENDIAN)
if(NOT DEFINED WORDS_BIGENDIAN)
message(FATAL_ERROR "Cannot determine endianness")
endif()
tuklib_add_definition_if("${TARGET_OR_ALL}" WORDS_BIGENDIAN)
# Look for a byteswapping method.
check_c_source_compiles("
int main(void)
{
__builtin_bswap16(1);
__builtin_bswap32(1);
__builtin_bswap64(1);
return 0;
}
"
HAVE___BUILTIN_BSWAPXX)
if(HAVE___BUILTIN_BSWAPXX)
tuklib_add_definitions("${TARGET_OR_ALL}" HAVE___BUILTIN_BSWAPXX)
else()
check_include_file(byteswap.h HAVE_BYTESWAP_H)
if(HAVE_BYTESWAP_H)
tuklib_add_definitions("${TARGET_OR_ALL}" HAVE_BYTESWAP_H)
check_symbol_exists(bswap_16 byteswap.h HAVE_BSWAP_16)
tuklib_add_definition_if("${TARGET_OR_ALL}" HAVE_BSWAP_16)
check_symbol_exists(bswap_32 byteswap.h HAVE_BSWAP_32)
tuklib_add_definition_if("${TARGET_OR_ALL}" HAVE_BSWAP_32)
check_symbol_exists(bswap_64 byteswap.h HAVE_BSWAP_64)
tuklib_add_definition_if("${TARGET_OR_ALL}" HAVE_BSWAP_64)
else()
check_include_file(sys/endian.h HAVE_SYS_ENDIAN_H)
if(HAVE_SYS_ENDIAN_H)
tuklib_add_definitions("${TARGET_OR_ALL}" HAVE_SYS_ENDIAN_H)
else()
check_include_file(sys/byteorder.h HAVE_SYS_BYTEORDER_H)
tuklib_add_definition_if("${TARGET_OR_ALL}"
HAVE_SYS_BYTEORDER_H)
endif()
endif()
endif()
# Autodetect if unaligned memory access is fast when the cache variable
# TUKLIB_FAST_UNALIGNED_ACCESS isn't set. The result is stored in
# FAST_UNALIGNED_GUESS. Assume that unaligned access shouldn't be used.
# Initialize the variable here so that it's never undefined in the
# option() command after the if()...endif() block.
set(FAST_UNALIGNED_GUESS OFF)
if(NOT DEFINED TUKLIB_FAST_UNALIGNED_ACCESS)
message(CHECK_START "Check if unaligned memory access should be used")
# Guess that unaligned access is fast on these archs:
# - 32/64-bit x86 / x86-64
# - 32/64-bit big endian PowerPC
# - 64-bit little endian PowerPC
# - 32/64-bit Loongarch (*)
# - Some 32-bit ARM
# - Some 64-bit ARM64 (AArch64)
# - Some 32/64-bit RISC-V
#
# (*) See sections 7.4, 8.1, and 8.2:
# https://github.com/loongson/la-softdev-convention/blob/v0.2/la-softdev-convention.adoc
#
# That is, desktop and server processors likely support
# unaligned access in hardware but embedded processors
# might not. GCC defaults to -mno-strict-align and so
# do majority of GNU/Linux distributions. As of
# GCC 15.2, there is no predefined macro to detect
# if -mstrict-align or -mno-strict-align is in effect.
# We use heuristics based on compiler output.
#
# CMake < 4.1 doesn't provide a standardized/normalized list of arch
# names. For example, x86-64 may be "x86_64" (Linux),
# "AMD64" (Windows), or even "EM64T" (64-bit WinXP).
string(TOLOWER "${CMAKE_SYSTEM_PROCESSOR}" PROCESSOR)
# CMake 4.1 made CMAKE_<LANG>_COMPILER_ARCHITECTURE_ID useful on many
# targets. In earlier versions it's still useful with MSVC with which
# CMAKE_SYSTEM_PROCESSOR can refer to the build machine.
if(NOT CMAKE_C_COMPILER_ARCHITECTURE_ID STREQUAL "")
# CMake 4.2.0 docs say that the list typically has only one entry
# except possibly on macOS. On macOS, most (all?) archs support
# unaligned access. Just pick the first one from the list.
list(GET CMAKE_C_COMPILER_ARCHITECTURE_ID 0 PROCESSOR)
string(TOLOWER "${PROCESSOR}" PROCESSOR)
endif()
# There is no ^ in the first regex branch to allow "i" at
# the beginning so it can match "i386" to "i786", and "x86_64".
if(PROCESSOR MATCHES "[x34567]86|^x64|^amd64|^em64t")
set(FAST_UNALIGNED_GUESS ON)
elseif(PROCESSOR MATCHES "^powerpc|^ppc")
if(WORDS_BIGENDIAN OR PROCESSOR MATCHES "64")
set(FAST_UNALIGNED_GUESS ON)
endif()
elseif(PROCESSOR MATCHES "^arm|^riscv" AND
NOT PROCESSOR MATCHES "^arm64")
# On 32-bit ARM, GCC and Clang # #define __ARM_FEATURE_UNALIGNED
# if and only if unaligned access is supported.
#
# RISC-V C API Specification says that if
# __riscv_misaligned_fast is defined then
# unaligned access is known to be fast.
#
# MSVC is handled as a special case: We assume that
# 32-bit ARM supports fast unaligned access.
# If MSVC gets RISC-V support then this will assume
# fast unaligned access on RISC-V too.
check_c_source_compiles("
#if !defined(__ARM_FEATURE_UNALIGNED) \
&& !defined(__riscv_misaligned_fast) \
&& !defined(_MSC_VER)
compile error
#endif
int main(void) { return 0; }
"
TUKLIB_FAST_UNALIGNED_DEFINED_BY_PREPROCESSOR)
if(TUKLIB_FAST_UNALIGNED_DEFINED_BY_PREPROCESSOR)
set(FAST_UNALIGNED_GUESS ON)
endif()
elseif(PROCESSOR MATCHES "^aarch64|^arm64")
# On ARM64, Clang defines __ARM_FEATURE_UNALIGNED if and only if
# unaligned access is supported. However, GCC (at least up to 15.2.0)
# defines it even when using -mstrict-align, so autodetection with
# this macro doesn't work with GCC on ARM64. (It does work on
# 32-bit ARM.) See:
#
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=111555
#
# We need three checks:
#
# 1. If __ARM_FEATURE_UNALIGNED is defined and the
# compiler isn't GCC, unaligned access is enabled.
# If the compiler is MSVC, unaligned access is
# enabled even without __ARM_FEATURE_UNALIGNED.
check_c_source_compiles("
#if defined(__ARM_FEATURE_UNALIGNED) \
&& (!defined(__GNUC__) || defined(__clang__))
#elif defined(_MSC_VER)
#else
compile error
#endif
int main(void) { return 0; }
"
TUKLIB_FAST_UNALIGNED_DEFINED_BY_PREPROCESSOR)
if(TUKLIB_FAST_UNALIGNED_DEFINED_BY_PREPROCESSOR)
set(FAST_UNALIGNED_GUESS ON)
else()
# 2. If __ARM_FEATURE_UNALIGNED is not defined,
# unaligned access is disabled.
check_c_source_compiles("
#ifdef __ARM_FEATURE_UNALIGNED
compile error
#endif
int main(void) { return 0; }
"
TUKLIB_FAST_UNALIGNED_NOT_DEFINED_BY_PREPROCESSOR)
if(NOT TUKLIB_FAST_UNALIGNED_NOT_DEFINED_BY_PREPROCESSOR)
# 3. Use heuristics to detect if -mstrict-align is
# in effect when building with GCC.
tuklib_integer_internal_strict_align("[ \t]ldrb[ \t]")
if(NOT TUKLIB_INTEGER_STRICT_ALIGN)
set(FAST_UNALIGNED_GUESS ON)
endif()
endif()
endif()
elseif(PROCESSOR MATCHES "^loongarch")
tuklib_integer_internal_strict_align("[ \t]ld\\.bu[ \t]")
if(NOT TUKLIB_INTEGER_STRICT_ALIGN)
set(FAST_UNALIGNED_GUESS ON)
endif()
endif()
if(FAST_UNALIGNED_GUESS)
message(CHECK_PASS "yes")
else()
message(CHECK_PASS "no")
endif()
endif()
option(TUKLIB_FAST_UNALIGNED_ACCESS
"Enable if the system supports *fast* unaligned memory access \
with 16-bit, 32-bit, and 64-bit integers."
"${FAST_UNALIGNED_GUESS}")
tuklib_add_definition_if("${TARGET_OR_ALL}" TUKLIB_FAST_UNALIGNED_ACCESS)
# Unsafe type punning:
option(TUKLIB_USE_UNSAFE_TYPE_PUNNING
"This introduces strict aliasing violations and \
may result in broken code. However, this might improve performance \
in some cases, especially with old compilers \
(e.g. GCC 3 and early 4.x on x86, GCC < 6 on ARMv6 and ARMv7)."
OFF)
tuklib_add_definition_if("${TARGET_OR_ALL}" TUKLIB_USE_UNSAFE_TYPE_PUNNING)
# Check for GCC/Clang __builtin_assume_aligned().
check_c_source_compiles(
"int main(void) { __builtin_assume_aligned(\"\", 1); return 0; }"
HAVE___BUILTIN_ASSUME_ALIGNED)
tuklib_add_definition_if("${TARGET_OR_ALL}" HAVE___BUILTIN_ASSUME_ALIGNED)
endfunction()